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Abstract

This paper studies the global dynamics of a class of infinitely repeated
two-player games in which the action space of each player is an in-
terval, and the one-shot payoff of each player is additively separable
in actions. We define an immediately reactive equilibrium (IRE) as
a pure-strategy subgame perfect equilibrium such that each player’s
action is a stationary function of the opponent’s last action. We com-
pletely characterize IREs and their dynamics in terms of certain in-
difference curves. Our results are used to show that in a prisoners’
dilemma game with mixed strategies, gradual cooperation occurs when
the players are sufficiently patient, and that in a certain duopoly game,
kinked demand curves emerge naturally.
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1 Introduction

In infinitely repeated games with a prisoners’ dilemma-like stage game, Nash
reversion trigger strategies (Friedman, 1971) are often used to show that
cooperation (or collusion) can be sustained by the threat to revert to a non-
cooperative Nash equilibrium. In such equilibria, each player continues to
cooperate as long as all the other players do so, but will choose to behave
selfishly once anyone defects. While Nash reversion equilibria are simple
and intuitive, they seem to have two disadvantages. First, small deviations
are punished as harshly as large deviations. Second, there are no nontrivial
transition dynamics between cooperative and noncooperative states.

This paper studies the global dynamics of a class of infinitely repeated
two-player games in which the action space of each player is an interval.
We follow Friedman (1968) in focusing on strategies such that each player’s
action is a stationary function of the opponent’s last action. We call such
strategies immediately reactive, and say that a subgame perfect equilibrium
is an immediately reactive equilibrium (IRE) if each player chooses an im-
mediately reactive strategy.1 Unlike Nash reversion equilibria, IREs can be
continuous;2 their global dynamics are typically nontrivial and can be char-
acterized graphically.

In our framework, interesting dynamics arise naturally. For example, co-
operation is achieved gradually in a repeated prisoners’ dilemma with mixed
strategies if the players are sufficiently patient.3 In a duopoly game, kinked
demand curves emerge naturally.4 In a collusive steady state, each firm cuts
its price if the other firm does so, but neither firm responds if the other firm

1Friedman (1968) called IREs “reaction function equilibria.” We avoid his terminology
since it has been used in a broader sense in the subsequent literature. The concept of
IRE is related to a few other ones (Friedman and Samuelson, 1994a; Kalai, Samet, and
Stanford, 1988; Maskin and Tirole, 1988a, 1988b); see Sections 2.3 and 2.4.

2Existence of nontrivial continuous equilibria has been studied by Samuelson (1987),
Friedman and Samuelson (1990, 1994a, 1994b), and Langlois and Sachs (1993).

3Gradual cooperation is known to arise in certain partnership games (e.g., Kranton,
1996; Watson, 1999, 2002; Furusawa and Kawakami, 2006). Our example shows a simplest
mechanism of gradual cooperation.

4Although there are game-theoretic models of kinked demand in the literature (e.g.,
Maskin and Tiroel, 1988b; Bhaskar, Machin, and Reid, 1991; Radner, 2003; Sen, 2004),
they typically require rather specific assumptions. Though our example also requires
specific assumptions, it allows one to derive and visualize kinked demand curves in an
extremely simple manner.

1



raises its price. In “inefficient” IREs, the collusive steady state is unstable:
a small price cut by either firm triggers price war, eventually leading to a
noncollusive steady state. In “efficient” IREs, however, the collusive steady
state is stable: a price cut by either firm is matched by a smaller price cut,
and the steady state is restored in the long run. All of these dynamic phe-
nomena are properties of IREs in regular form, which we define as IREs that
are continuous and punish deviations in a minimal way.

To obtain such sharp results, we assume that the one-shot payoff of each
player is additively separable in actions.5 In addition we assume that each
player’s one-shot payoff is continuous, monotone in the opponent’s action,
and monotone or unimodal in his own action. These assumptions are satisfied
in various games, including the models mentioned above.

As one can easily see, additive separability trivializes the analysis of one-
shot games by ruling out strategic interactions. However, it does not trivialize
the analysis of repeated games, where various interesting strategic interac-
tions arise, as mentioned above. Those interactions are purely dynamic in
nature since they are totally absent in one-shot games. In other words, our
framework enables one to concentrate on purely dynamic phenomena.

Given a stage game satisfying the assumptions mentioned above, we show
that the set of IREs in the simultaneous move game is identical to that in the
alternating move game.6 In both games, we completely characterize IREs in
terms of indifference curves associated with what we call effective payoffs.
The effective payoff of a player is the part of his discounted sum of payoffs
that is directly affected by his current action.7 We show that in any IRE, any
equilibrium path stays on the associated indifference curves except for the
initial period. By this result, equilibrium dynamics are always characterized
by two indifference curves.

Our main results are as follows: First, a pair of indifference curves can be
supported by an IRE if and only if it satisfies two certain graphical conditions.

5This assumption is also necessary since, as shown by Stanford (1986) and Robson
(1986), the only possible IRE is a trivial one in certain duopoly games with additively
non-separable payoffs.

6Section 2.6 discusses the relationship of this result to Lagunoff and Matsui’s (1997)
anti-folk theorem for alternating move games of pure coordination. See Haller and Lagunoff
(2000) and Yoon (2001) for further results on alternating move games.

7Effective payoffs are similar to what Kamihigashi and Roy (2006) call partial gains
in an optimal growth model with linear utility. Equations (2.13)–(2.15) in this paper
are similar to (3.7)–(3.9) in Kamihigashi and Roy (2006), but essentially this is the only
similarity in analysis between the two papers.
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Second, under these conditions, there is an IRE in regular form (which is
continuous) supporting the given pair of indifference curves.

All our results depend critically on the simple observation that under
additive separability, each player’s dynamic maximization problem given the
opponent’s strategy reduces to a static problem. Although we fully exploit
this special feature, it is only our point of departure. Our main results, which
characterize the entire set of IREs in terms of effective payoffs, still require
rather complex reasoning, as is evident in the proofs.

The rest of the paper is organized as follows. Section 2 describes the one-
shot game and our assumptions, presents some examples, and introduces
the simultaneous and the alternating move games. Section 3 discusses some
immediate implications of the simple observation mentioned above. Section
4 examines the dynamics induced by IREs. Section 5 characterizes the entire
set of IREs in terms of effective payoffs. Section 6 applies our results to a
prisoner’s dilemma and a duopoly game. Section 7 concludes the paper.

2 The Games

2.1 The One-Shot Game

Before introducing repeated games, we describe the underlying one-shot
game. There are two players indexed by i = 1, 2. Each player’s action space
is given by [0, 1]. This is merely a normalization, and each player’s action
space may be different, and may be any interval. Throughout we follow the
following conventions unless otherwise indicated: (a) i and j always belong
to {1, 2}; (b) whenever i (or j) is given, j (or i) denotes the other index; (c)
“∀i” means “∀i ∈ {1, 2}”, “∀si” means “∀si ∈ [0, 1],” and these conventions
also apply to other similar expressions.

Let πi : [0, 1]× [0, 1] → [−∞,∞) denote player i’s payoff. The following
assumptions are maintained throughout.

Assumption 2.1. For i = 1, 2, there exist ui : [0, 1] → [−∞,∞) and vi :
[0, 1] → R such that

∀si,∀sj, πi(si, sj) = ui(si) + vi(sj). (2.1)

Assumption 2.2. v1, v2 : [0, 1] → R are continuous and bounded. Either
both are strictly increasing or both are strictly decreasing. Without loss of
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generality we assume that both are strictly increasing, and we extend each
vi to a strictly increasing continuous function from R to R, denoted vi again,
such that lims↓−∞ vi(s) = −∞ and lims↑∞ vi(s) = ∞.

Assumption 2.3. For i = 1, 2, ui is continuous and bounded above.8 There
exists ŝi ∈ [0, 1] such that ui is strictly increasing on [0, ŝi] provided ŝi > 0,
and strictly decreasing on [ŝi, 1] provided ŝi < 1.

Assumption 2.1 is crucial to our analysis. Assumption 2.3 implies that ŝi
is player i’s strictly dominant strategy and that (ŝ1, ŝ2) is the unique static
Nash equilibrium.

2.2 Examples

Although the above assumptions may appear rather restrictive, they are
satisfied in various games. We provide specific examples below.

2.2.1 Tariff War

Consider a game between two countries, 1 and 2, with two goods, 1 and
2. Country i exports good i, imports good j, and imposes a tariff rate si
on imports of good j. Let vi(sj) denote the sum of country i’s producer
surplus and consumer surplus for good i. Under standard assumptions, vi is
a strictly decreasing function of sj. Let ui(si) denote the sum of country i’s
tariff revenue, consumer surplus, and producer surplus for good j. Optimal
tariff theory suggests that ui is increasing where si is small, and decreasing
where si is large. For simplicity we assume that ui has a single peak at ŝi,
and that ui is strictly increasing for si ≤ ŝi and strictly decreasing for si ≥ ŝi.
Country i seeks to maximize its welfare ui(si)+vi(sj). This game satisfies our
assumptions, and is analyzed in detail in Furusawa and Kamihigashi (2006).9

2.2.2 Duopoly

Consider a game played by two firms. Each firm i produces a differentiated
product with a constant marginal cost ci and with no fixed cost. Firm i

8We follow the convention that if ui(r) = −∞ for r = 0 or 1, then continuity of ui at
r means lims→r ui(s) = −∞.

9A preliminary version of Furusawa and Kamihigashi (2006) contained some of the
arguments in this paper, which now appear exclusively in this paper.
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faces a demand function Di(pi, pj) that depends on the prices pi and pj
chosen by the two firms. Firm i’s profit is Di(pi, pj)(pi − ci). Suppose Di

is multiplicatively separable: Di(pi, pj) = dii(pi)d
j
i (pj) for some functions dii

and dji . Then the profit maximization problem of firm i is equivalent to
maximizing ui(pi) + vi(pj), where

ui(pi) = ln dii(pi) + ln(pi − ci), vi(pj) = ln dji (pj). (2.2)

This transformation is innocuous in the one-shot game, and our assumptions
are satisfied under reasonable assumptions on dii and d

j
i . In repeated games

the above transformation may be justified by assuming that the owners of
the firms are “risk averse,” or prefer stable to unstable profit streams.

2.2.3 Prisoner’s Dilemma

Though the action spaces are assumed to be intervals in this paper, our
framework applies to 2 × 2 games with mixed strategies as well. A case in
point is the prisoner’s dilemma game in Figure 1 (with a, c > 0), which is a
parametrized version of the game discussed by Fudenberg and Tirole (1991,
p. 10, p. 111). For i = 1, 2, let si be player i’s probability of choosing action
C. Let πi(si, sj) be player i’s expected payoff:

πi(si, sj) = sisjc+ si(1− sj)(−a) + (1− si)sj(c+ a) (2.3)

= −asi + (c+ a)sj. (2.4)

Our assumptions are clearly satisfied with ŝ1 = ŝ2 = 0.10 In fact our assump-
tions are satisfied in more general 2 × 2 games as long as the coefficient of
sisj is zero in πi(si, sj).

2.3 The Repeated Game with Simultaneous Moves

Consider the infinitely repeated game in which the stage game is given by
the one-shot game described in Section 2.1. For i = 1, 2, let δi ∈ (0, 1) be
player i’s discount factor. We restrict ourselves to pure-strategy subgame
perfect equilibria in which player i’s action in period t, si,t, is a stationary
function fi of player j’s action in period t− 1, sj,t−1; i.e., si,t = fi(sj,t−1). We
call such strategies immediately reactive.

10Furusawa and Kawakami (2008) use a payoff function similar to (2.3) to analyze perfect
Bayesian equilibria in a model with stochastic outside options.
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C D

Player 1

Player 2

Figure 1: Prisoner’s dilemma

Friedman (1968) called such strategies “reaction functions.” Immediately
reactive strategies are a special case of “single-period-recall strategies” (Fried-
man and Samuelson, 1994a) and “reactive strategies” (Kalai et al., 1988).
Single-period-recall strategies depend only on both players’ last actions, and
reactive strategies depend only on the opponent’s past actions. We focus on
stationary strategies that depend only on the opponent’s last action.

Let F be the set of all functions from [0, 1] to [0, 1]. Taking player j’s
strategy fj ∈ F as given, player i faces the following problem:

max
{si,t}∞t=1

∞∑
t=1

δt−1
i [ui(si,t) + vi(sj,t)] (2.5)

s.t. ∀t ∈ N, sj,t = fj(si,t−1), (2.6)

∀t ∈ N, si,t ∈ [0, 1]. (2.7)

We say that fi ∈ F is a best response to fj if for any (si,0, sj,0) ∈ [0, 1]2, the
above maximization problem has a solution {si,t}∞t=1 such that si,t = fi(sj,t−1)
for all t ∈ N. We call a strategy profile (f1, f2) ∈ F 2 an immediately reactive
equilibrium (IRE) if f1 is a best response to f2, and vice versa. Note that
f1 and f2 are not required to be continuous or even measurable, but the
maximization problem (2.5)–(2.7) is required to be well defined given fj.

11

11Our results are unaffected even if f1 and f2 are required to be continuous or upper
semi-continuous. The same remark applies to the alternating move game.
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2.4 The Repeated Game with Alternating Moves

Now consider the case of alternating moves. Player 1 updates his action in
odd periods, while player 2 updates his action in even periods.12 Define

T1 = {1, 3, 5, · · · }, T2 = {2, 4, 6, · · · }. (2.8)

As in the simultaneous move case, we restrict ourselves to subgame perfect
equilibria in which each player chooses an immediately reactive strategy, i.e,
in each period t ∈ Ti, player i chooses an action si,t according to a stationary
function fi of player j’s last (or equivalently current) action sj,t−1.

Given player j’s strategy fj ∈ F , player i faces the following problem:

max
{si,t}∞t=i

∞∑
t=i

δt−i
i [ui(si,t) + vi(sj,t)] (2.9)

s.t. ∀t ∈ Tj, sj,t = fj(si,t−1), si,t = si,t−1, (2.10)

∀t ∈ Ti, si,t ∈ [0, 1], sj,t = sj,t−1. (2.11)

We say that fi ∈ F is a best response to fj if for any sj,i−1 ∈ [0, 1],13 the above
maximization problem has a solution {si,t}∞t=i such that si,t = fi(sj,t−1) for all
t ∈ Ti. We call a strategy profile (f1, f2) ∈ F 2 an immediately reactive equi-
librium (IRE) if f1 is a best response to f2, and vice versa. This equilibrium
concept is consistent with one definition of “Markov perfect equilibrium”
(Maskin and Tirole, 1988b, Section 2), but distinct from another (Maskin
and Tirole, 2001) due to additive separability of payoffs.

2.5 Effective Payoffs

We now introduce a function that plays a central role in our analysis. For
i = 1, 2, define wi : [0, 1]

2 → [−∞,∞) by

wi(si, sj) = ui(si) + δivi(sj). (2.12)

We call this function player i’s effective payoff since in both repeated games,
player i in effect seeks to maximize the discounted sum of effective payoffs.

12In alternating move games, it is often assumed that the players play simultaneously
in the initial period and take turns afterwards. Such an assumption does not affect our
analysis, which is concerned only with stationary subgame perfect equilibria.

13Notice that for i = 1, 2, the first period in which player i plays is period i.
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Indeed, in both games, player i’s discounted sum of payoffs from period 1
onward is written as

∞∑
t=1

δt−1
i [vi(sj,t) + ui(si,t)] (2.13)

= vi(sj,1) +
∞∑
t=1

δt−1
i [ui(si,t) + δivi(sj,t+1)] (2.14)

= vi(sj,1) +
∞∑
t=1

δt−1
i wi(si,t, sj,t+1). (2.15)

In both games, player i has no influence on sj,1, so player i’s problem is
equivalent to maximizing the discounted sum of effective payoffs. This implies
that each player’s best responses are characterized by a static maximization
problem:

Lemma 2.1. In both the simultaneous and the alternating move games, for
i = 1, 2, fi ∈ F is a best response to fj ∈ F iff

∀sj, fi(sj) ∈ argmax
si∈[0,1]

wi(si, fj(si)). (2.16)

In other words, (f1, f2) ∈ F 2 is an IRE iff (2.16) holds for i = 1, 2.

Proof. See Appendix A.

Lemma 2.1 implies that the simultaneous and the alternating move games
are equivalent as far as IREs are concerned. This allows us to discuss IREs
without specifying which repeated game is considered. The differences in
dynamics between the two games are discussed in Section 4.

Given an IRE (f1, f2), we say that (s1, s2) ∈ [0, 1]2 is a steady state if
s1 = f1(s2) and s2 = f2(s1). Needless to say, if the game starts from a steady
state (s1, s2), each player i keeps choosing si forever according to fi. Note
that any intersection of the graphs of f1 and f2 (on the (s1, s2) plane) is a
steady state.

2.6 Discussions

The equivalence between simultaneous and alternating move games discussed
above would appear in sharp contrast to the anti-folk theorem of Lagunoff
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and Matsui (1997) for alternating move games of pure coordination. They
show that there is a considerable difference between the simultaneous and the
alternating move games in the case of pure coordination. If ui(si) = vj(si)
and vi(sj) = uj(sj) for all si, sj and i, then the one-shot game described
in Section 2.1 becomes a pure coordination game. Lemma 2.1 of course
applies to this case (which is consistent with our assumptions), but does not
contradict Lagunoff and Matsui’s result. This is because their result deals
with all subgame perfect equilibria, while Lemma 2.1 deals only with IREs.

One may also notice that the property of IREs given by (2.16) is similar
to the definition of “conjectural variations equilibrium” (e.g., Figuières et al.,
2004, p. 14). The main difference is that a conjectural variations equilibrium
consists of an action profile supported by “variational conjectures” as to how
each player reacts to an infinitesimal deviation from the action profile by the
opponent, while an IRE consists only of two functions that represent how
each player optimally reacts to any action by the opponent.

To be more specific, let (f1, f2) ∈ F 2 be an IRE, and suppose that it
has a steady state (s1, s2) ∈ [0, 1]2. Consider the one-shot game in which
player i’s payoff is given by wi(si, sj). If both f1 and f2 are differentiable and
(s1, s2) ∈ (0, 1)2, then (2.16) implies that (s1, s2) is a conjectural variations
equilibrium with variational conjectures (f ′

1, f
′
2) for this one-shot game. As we

show in Section 5, however, IREs are typically not everywhere differentiable
even when ui and vi are many times differentiable. Thus not every “interior”
steady state can be supported as a conjectural variations equilibrium with
variational conjectures (f ′

1, f
′
2).

14

On the other hand, any steady state of an IRE can be supported as a more
general “conjectural equilibrium” (Figuières et al., 2004, p. 30), which does
not require differentiability. In fact (2.16) is very similar to the definition
of “consistent conjectural equilibrium.” The main difference is that a con-
sistent conjectural equilibrium is an action profile supported by “consistent
conjectures,” while an IRE consists only of two optimal reaction functions.15

14This does not mean that the set of steady states of IREs is larger than that of con-
jectural variations equilibria. On the contrary, under mild regularity conditions, any
(s1, s2) ∈ (0, 1)2 is a conjectural variations equilibrium for the one-shot game consid-
ered here (Figuières et al., 2004, p. 14). Since Theorem 5.1 indicates that not every
(s1, s2) ∈ (0, 1)2 can be supported as a steady state of an IRE, the set of steady states of
IREs in (0, 1)2 is typically smaller than that of conjectural variations equilibria.

15See Sabourian (1992) and Figuières et al. (2004) for detailed discussions on the relation
between conjectural variations equilibria and repeated games.

9



0 1

1

si

sj
ψ
wi(ŝi,1)
i (si)

ψωi
i (si)

ψ
wi(ŝi,0)
i (si)

ŝi

Figure 2: Indifference curve ψωi
i with ωi ∈ [wi(ŝi, 0), wi(ŝi, 1)]

3 A Preliminary Characterization of IREs

Lemma 2.1 suggests that the indifference curves associated with effective pay-
offs are closely related with best responses. Since each vi is strictly increasing
and the inverse of vi is defined over R by Assumption 2.2, each indifference
curve wi(si, sj) = ωi can be expressed as the graph of a function from si to
sj. We denote this function by ψωi

i :

∀si, ωi = wi(si, ψ
ωi
i (si)) = ui(si) + δivi(ψ

ωi
i (si)). (3.1)

Equivalently,

∀si, ψωi
i (si) = v−1

i

(
ωi − ui(si)

δi

)
. (3.2)

Since vi is strictly increasing, a higher indifference curve is associated with a
higher effective payoff. See Figure 2.

Given player j’s strategy fj ∈ F , let ω∗
i |fj denote player i’s maximum

effective payoff:
ω∗
i |fj = sup

si∈[0,1]
wi(si, fj(si)). (3.3)

Assuming that the supremum is attained at some si, the associated maxi-
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mization problem can be expressed as

max
si,sj∈[0,1]

wi(si, sj) s.t. sj = fj(si). (3.4)

Let ψ∗
i |fj be player i’s optimal indifference curve given player j’s strategy fj:

ψ∗
i |fj = ψ

ω∗
i |fj

i . (3.5)

Note that in (3.4), player i takes sj = fj(si) as a constraint. Thus ψ∗
i |fj is

the highest indifference curve tangent to the graph of fj. See Figure 3.
The following result provides a necessary and sufficient condition for a

given strategy profile to be an IRE:

Proposition 3.1. A strategy profile (f1, f2) ∈ F 2 is an IRE iff

∀i,∀sj, fj(fi(sj)) = ψ∗
i |fj(fi(sj)). (3.6)

Proof. For sufficiency, assume (3.6). Fix i and sj. Let si = fi(sj). Then
wi(si, fj(si)) = wi(si, ψ

∗
i |fj(si)) = ω∗

i |fj . Thus by Lemma 2.1, fi is a best
response to fj. It follows that (f1, f2) is an IRE. Reversing this argument
yields the converse.

To illustrate Proposition 3.1, let (f1, f2) be given by fi(sj) = ŝi for all sj
and i. In other words each player plays his static Nash strategy. See Figure
4. One can easily see that (f1, f2) satisfies (3.6), so it is an IRE.

As another example, let (f1, f2) be such that fi(sj) = si if sj = sj, and
fi(sj) = ŝi otherwise, where s1 and s2 are as in Figure 5. In this case each
player “cooperates” as long as the opponent does so, but reverts to the static
Nash strategy if the opponent deviates at all. Once again one can easily see
that (f1, f2) satisfies (3.6), so it is an IRE.

While Proposition 3.1 can be used to construct specific IREs as above,
or to check whether a given strategy profile is an IRE, it does not provide
the entire picture of how large the set of IREs may be. The main purpose of
this paper is to characterize the entire set of IREs. To this end we define an
IRE associated with ω = (ω1, ω2) ∈ R2 as an IRE (f1, f2) such that

∀i, ωi = ω∗
i |fj . (3.7)

16From here on we omit the arguments of functions in figures.
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1
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Figure 3: ψ∗
i |fj and Ψωi

i (defined in (5.1))
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Figure 5: Nash reversion
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In other words, in an IRE associated with ω, each player i’s effective payoff is
ωi. Notice that any IRE (f1, f2) is associated with (ω∗

1|f2 , ω∗
2|f1) by definition.

The following result shows one way to construct a nontrivial IRE associated
with ω ∈ R2.

Proposition 3.2. Let ω ∈ R2. Suppose

∀i, ∀si, ψωi
i (si) ∈ [0, 1]. (3.8)

Then (f1, f2) = (ψω2
2 , ψ

ω1
1 ) is an IRE associated with ω.

Proof. Let (f1, f2) = (ψω2
2 , ψ

ω1
1 ). Then for each i,

∀si, wi(si, fj(si)) = wi(si, ψ
ωi
i (si)) = ωi, (3.9)

so (3.7) trivially holds.17 It follows that ψ∗
i |fj = ψωi

i = fj for both i. Thus
(3.6) holds, and (f1, f2) is an IRE by Proposition 3.1.

This result can be seen more directly as follows: Notice that if (f1, f2) =
(ψω2

2 , ψ
ω1
1 ), each player is entirely indifferent among all possible actions, since

whatever player i does, his effective payoff is ωi by (3.9). This implies that
both players are entirely indifferent among all possible strategies; in partic-
ular, choosing fi = ψ

ωj

j is optimal for each player i, which makes (f1, f2) an
IRE. See Figure 6 for an example of an IRE satisfying (3.8) and (3.7).

4 Dynamics

Before we turn to our main results, it is useful to have a basic understanding
of the dynamics induced by IREs. For this purpose we take an IRE (f1, f2) ∈
F 2 as given and study its dynamic properties in this section.

Consider first the alternating move game. Recall that in each period
t ∈ N, player i with t ∈ Ti updates his action as a function of player j’s last
(or current) action. So the “state variable” in each period t ∈ Ti is player j’s
last action sj,t−1. Given initial condition s2,0, the entire path {s1,t, s2,t}∞t=1

(with s2,1 = s2,0) of the game is uniquely determined by

∀i,∀t ∈ Ti, si,t+1 = si,t = fi(sj,t−1). (4.1)

17Note that (3.9) implies supsi wi(si, fj(si)) = ωi.
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Figure 6: Example of IRE satisfying (3.8) and (3.7).

This means that

s1,1 = f1(s2,0), s2,2 = f2(s1,1), s1,3 = f1(s2,2), · · · . (4.2)

For the alternating move game, we define an IRE path associated with (f1, f2)
as a sequence {s1,t, s2,t}∞t=0 satisfying (4.1) and s2,1 = s2,0.

18 See Figure 6 for
an example of an IRE path.

Now consider the simultaneous move game. The state variable in each
period t ∈ N is the pair of both players’ last actions (s1,t−1, s2,t−1). Given ini-
tial condition (s1,0, s2,0), the entire path {s1,t, s2,t}∞t=1 of the game is uniquely
determined by

∀i,∀t ∈ N, si,t = fi(sj,t−1). (4.3)

For the simultaneous move game, we define an IRE path associated with
(f1, f2) as a sequence {s1,t, s2,t}∞t=0 satisfying (4.3). Any IRE path can be
decoupled into two sequences, one originating from s2,0, the other from s1,0:

s1,1 = f1(s2,0), s2,2 = f2(s1,1), s1,3 = f1(s2,2), · · · , (4.4)

s2,1 = f2(s1,0), s1,2 = f1(s2,1), s2,3 = f2(s1,2), · · · . (4.5)

18Though s1,0 is irrelevant for this game, it is included here for notational simplicity.
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Obviously, given s2,0, the sequences given by (4.2) and (4.4) are identical.
The sequence given by (4.5) can be viewed as an IRE path for the alternat-
ing move game in which player 2 moves first. Hence an IRE path for the
simultaneous move game is equivalent to a pair of IRE paths for the two
alternating move games in one of which player 1 moves first and in the other
player 2 moves first.

The following result is a simple consequence of Proposition 3.1.

Theorem 4.1. Any IRE path {s1,t, s2,t}∞t=0 associated with (f1, f2) ∈ F 2 for
the simultaneous move game satisfies

∀t ≥ 2, ∀i, si,t = ψ∗
j |fi(sj,t−1). (4.6)

Furthermore, any IRE path {s1,t, s2,t}∞t=0 associated with (f1, f2) ∈ F 2 for the
alternating move game satisfies

∀t ≥ 2, ∀i, t ∈ Ti ⇒ si,t = ψ∗
j |fi(sj,t−1). (4.7)

Proof. Consider the simultaneous move game. Let {s1,t, s2,t}∞t=0 be an IRE
path associated with (f1, f2). For each i and t ≥ 2, we have

si,t = fi(sj,t−1) = fi(fj(si,t−2)) = ψ∗
j |fi(fj(si,t−2)) = ψ∗

j |fi(sj,t−1), (4.8)

where the third equality uses (3.6) (with i and j interchanged). Now (4.6)
follows. The proof for the alternating move game is similar.

The above result shows that any IRE path is characterized by the corre-
sponding pair of indifference curves (ψ∗

2|f1 , ψ∗
1|f2) except for the initial period.

To better understand this result, consider the alternating move game. The
initial period must be excluded in (4.7) because s2,0 is an arbitrary initial
condition that need not be optimal for player 2 given f1, i.e., it need not
satisfy s1,1 = ψ∗

2|f1(s2,0). Since all subsequent actions must be individually
optimal, they must be on the optimal indifference curves. In Figure 6, any
IRE path satisfies the equality in (4.7) for all t ≥ 1. In Figure 4, by contrast,
an IRE path (not shown in the figure) violates the equality for t = 1 unless
s2,0 = ŝ2, but trivially satisfies it for t ≥ 2.

Theorem 4.1 also shows that in both games the dynamics of an IRE
associated with ω ∈ R2 are essentially characterized by the same dynamical
system:

∀t ∈ T1, s1,t+2 = ψω2
2 (ψω1

1 (s1,t)). (4.9)
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To be precise, the simultaneous move game has another equation, s2,t+2 =
ψω1
1 (ψω2

2 (s2,t)) for t ∈ T1, but this system is equivalent to (4.9) in terms
of dynamics. Hence one can obtain conditions for dynamic properties such
as monotonicity and chaos by applying numerous results available on one-
dimensional dynamical systems (e.g., Devaney, 1989).19

5 Main Results

Theorem 4.1 shows that the dynamics of an IRE are characterized by the
associated pair of indifference curves. The remaining question then is what
pairs of indifference curves are supported by IREs. This section answers this
question.

For i = 1, 2 and ω ∈ R2, define

Ψωi
i = {(si, sj) ∈ [0, 1]2 |wi(si, sj) ≥ ωi} (5.1)

= {(si, sj) ∈ [0, 1]2 |ψωi
i (si) ≤ sj}. (5.2)

The set Ψωi
i is the collection of all pairs (si, sj) with player i’s effective payoff

at least as large as ωi. On the (si, sj) plane, it is the area on or above the
graph sj = ψωi

i (si); see Figure 3. Provided Ψωi
i ∩Ψ

ωj

j ̸= ∅,20 we define

sωi = max{si ∈ [0, 1] | ∃sj ∈ [0, 1], (si, sj) ∈ Ψωi
i ∩Ψ

ωj

j }, (5.3)

sωi = min{si ∈ [0, 1] |ψωi
i (si) ≤ sωj }. (5.4)

See Figure 7. Note from (5.3) and (5.2) that there is si such that ψωi
i (si) ≤ sωj

and ψ
ωj

j (sωj ) ≤ si; the former inequality assures the existence of sωi . In
Figure 6, sω1 = sω2 = 1 and sω1 = sω2 = 0.

We are now ready to state our main results.

Theorem 5.1. Let ω ∈ R2. There exists an IRE associated with ω iff

Ψω1
1 ∩Ψω2

2 ̸= ∅, (5.5)

∀i, sωi ≤ ψ
ωj

j (ŝj). (5.6)

19See Rand (1978) for an early example of complex dynamics in an “adaptive” dynamic
model that has a structure similar to Figure 6. See Rosser (2002) for a recent survey of
adaptive duopoly/oligopoly models that generate complex dynamics.

20It is understood that the coordinates of Ψ
ωj

j (or Ψωi
i ) are interchanged so that Ψωi

i and

Ψ
ωj

j have the same order of coordinates. Similar comments apply to similar expressions
below.
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Figure 7: si, si, and IRE in regular form

Proof. See Appendix B.

The sufficiency part of the above result is a consequence of the following:

Theorem 5.2.21 Let ω ∈ R2 satisfy (5.5) and (5.6). Define (f1, f2) ∈ F 2 by

∀sj, fi(sj) = min{ψωj

j (sj), s
ω
i }. (5.7)

Then (f1, f2) is an IRE associated with ω.22 Furthermore, there exists (s1, s2) ∈
[0, 1]2 such that

∀i, (a) ωi = wi(si, sj), (b) si = fi(sj) = ψ
ωj

j (sj). (5.8)

Proof. See Appendix B.1.

We say that an IRE satisfying (5.7) is in regular form. Note that any
IRE in regular form is continuous (i.e, each fi is continuous). See Figure 7
for an example of an IRE in regular form. By (5.8), any IRE in regular form
has a steady state (si, sj), where the two indifference curves cross each other.

21We would like to thank an anonymous referee for his or her suggestion to emphasize
this result.

22By Lemma B.2, ψ
ωj

j (ŝj) ≤ sωi , so fi(ŝj) = ψ
ωj

j (ŝj).
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We call (5.5) the nonemptiness condition, and (5.6) the no-sticking-out
condition. Theorem 5.1 shows that these conditions are necessary and suffi-
cient for an IRE associated with ω ∈ R2 to exist. The nonemptiness condition
says that the intersection of the two sets Ψω1

1 and Ψω2
2 must be nonempty.

The no-sticking-out condition says that the graph of ψ
ωj

j must not “stick out”
of the straight line si = si.

These conditions can be better understood by considering examples where
they are violated. In Figure 8(a), the nonemptiness condition (5.5) is vio-
lated. In this case, any IRE path for the alternating move game must behave
like the path depicted in the figure (except for the initial period) by Theorem
4.1. But since such a path cannot stay on the indifference curves forever, it
cannot be an IRE path. In Figure 8(b), the no-sticking-out condition (5.6)
is violated for i = 1. In this case, if an IRE associated with ω ∈ R2 exists,
there is s2,0 such that f1(s2,0) ≤ ψω2

2 (s2,0) < sω1 .
23 As shown in the figure, the

IRE path from such s2,0 cannot stay on the indifference curves forever.
We should mention that the IRE in regular form associated with ω ∈

R2 is not the only IRE associated with ω. However, any IRE satisfies one
restriction:

Proposition 5.1. Let (f1, f2) be an IRE associated with ω ∈ R2. Then

∀i,∀sj, fi(sj) ≤ sωi . (5.9)

Proof. Immediate from (B.14) and (B.26).

To see the idea of this result, suppose the inequality in (5.9) is violated
for i = 1. Consider the alternating move game. Then for some s2,0, we have
s1,1 = f1(s2,0) > sω1 . If this path is continued, it behaves like the one depicted
in Figure 7 by Theorem 4.1. But such a path cannot be an IRE path since
it cannot stay on the indifference curves forever.

Proposition 5.1 along with (5.7) implies that if (f1, f2) is an IRE associ-
ated with ω ∈ R2, and if (f1, f 2) is the IRE in regular form associated with ω,
then fi ≤ f i for both i. In other words, in the IRE (f1, f 2), each player gives
the opponent the highest possible effective payoff among all IREs associated
with ω in response to any action by the opponent.

In what follows, we say that an IRE (f1, f2) is effectively efficient if there
is no IRE (f̃1, f̃2) such that ω∗

1|f2 ≤ ω∗
1|f̃2 and ω∗

2|f1 ≤ ω∗
2|f̃1 with at least

23The first inequality holds since ψω2
2 = ψ∗

2 |f1 ; recall Figure 3. Figure 8(b) implicitly
assumes f1(s2,0) = ψω2

2 (s2,0).
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Figure 8: Examples with no IRE
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Figure 9: Effectively efficient IRE

one of the inequalities holding strictly. That is, (f1, f2) is effectively efficient
if it is not Pareto dominated by any other IRE in terms of effective pay-
offs. As illustrated in Section 6, effective efficiency has important dynamic
implications.

For i = 1, 2 and ω ∈ R2, define

Ψ̃ωi
i = {(si, sj) ∈ [0, 1]2 |wi(si, sj) > ωi}. (5.10)

Since ψωi
i is strictly increasing in ωi, it is clear from Theorem 5.1 that an

IRE associated with ω is effectively efficient if

Ψ̃ω1
1 ∩ Ψ̃ω2

2 = ∅. (5.11)

See Figures 9 and 8(a).
One might conjecture that (5.11) is also necessary for effective efficiency.

Unfortunately it is not the case. This is because the no-sticking-out condition
(5.6), a necessary condition for an IRE, is not stable under small perturba-
tions to ω. In other words, even when (5.11) does not hold, (5.6) can be
violated if ω is slightly changed. For example, when (5.6) holds with equal-
ity for i = 1, it can be violated after ω2 is slightly increased, depending on
how fast the two sides of the inequality in (5.6) vary with ω2.
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Even if (5.6) holds with strict inequality, it can be violated after small
perturbations to ω, since sωi need not be continuous in ω. Figure 10 illustrates
this point. There is an IRE in Figure 10(a), but there is no IRE in Figure
10(b) due to violation of (5.6). Note that both sω1 and sω2 are discontinuous
in this example.24

It turns out, however, that (5.11) is a necessary and sufficient condition
for effective efficiency if both players’ effective payoffs are higher than the
static Nash levels:

Proposition 5.2.25 Let ω ∈ R2 satisfy

∀i, ωi ≥ wi(ŝi, ŝj). (5.12)

Suppose an IRE associated with ω exists. Then it is effectively efficient iff
(5.11) holds.

Proof. See Appendix C.

For example, (5.12) trivially holds for any IRE if ŝi = 0 for both i, as in
the prisoner’s dilemma game in Section 2.2.3.

6 Applications

6.1 Prisoner’s Dilemma

Consider the alternating move game associated with the prisoner’s dilemma
in Section 2.2.3.26 For simplicity, we assume directly that the one-shot payoff
of player i is given by (2.4),27 and that both players have the same discount

24Though Figure 10 only shows that the IRE in (a) is “locally” effectively efficient, it
should be clear that one can easily construct a fully specified example of an effectively
efficient IRE that violates (5.11).

25We would like to thank an anonymous referee for inspiring us to establish this result.
26The simultaneous move game can be analyzed similarly; recall Lemma 2.1 and Sec-

tion 4.
27Alternatively one may assume that player i’s mixed action in period t ∈ Ti is observable

to player j at the beginning of period t+1. In this case, player i’s expected one-shot payoff
in period t is −asi,t + (c+ a)rj,t−1, where si,t is player i’s probability of choosing C, and
rj,t−1 is player j’s realized action in period t − 1. Since rj,t−1 does not affect player
i’s preferences over his actions from period t onward, all our results hold in this case as
well. This argument is unnecessary for the simultaneous move game, where rj,t−1 must
be replaced by sj,t.
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Figure 10: Effectively efficient IRE violating (5.11)
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factor: δ1 = δ2 = δ ∈ (0, 1). Player i’s effective payoff is given by

wi(si, sj) = −asi + δesj, (6.1)

where e = c + a. Replacing wi(si, sj) with ωi and solving for sj, we see that
the indifference curve associated with ωi ∈ R, or ψωi

i , is linear:

ψωi
i (si) =

ωi

δe
+

a

δe
si. (6.2)

Since ŝi = 0 here, Proposition 5.2 applies. We consider three cases separately.
Case 1: δ < a/e. In this case the slope of ψωi

i is strictly greater than one
for any ω ∈ R2. By the no-sticking-out condition (5.6), ψωi

i (0) ≥ sωj ≥ 0 for
both i in any IRE associated with ω. Thus if ψωi

i (0) > 0 for either i, the
nonemptiness condition (5.5) is violated; see Figure 11. Hence ψωi

i (0) = 0
and ωi = 0 for both i. In any IRE (f1, f2) associated with (0, 0), therefore,

by Proposition 5.1, fi(sj) ≤ s
(0,0)
i = 0, i.e., fi(sj) = 0, for all sj and i. This

is the unique IRE here, which corresponds to the static Nash equilibrium;
see Figure 11 again. This IRE is effectively efficient by Proposition 5.2 (or
simply by uniqueness).

Case 2: δ = a/e. In this knife edge case, the slope of ψωi
i is equal to one,

and the two indifference curves emanating from the origin coincide. The
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above argument still shows ψωi
i (0) = 0 and ωi = 0 for both i. Though,

as in the previous case, there is an IRE corresponding to the static Nash
equilibrium, there are many other IREs here. Figure 12 depicts one example.

Case 3: δ > a/e. In this case the slope of ψωi
i is strictly less than one,

and there are many pairs of effective payoffs supported by IREs. An IRE
satisfying (3.8) is depicted in Figure 13, where there is a unique and globally
stable steady state. The existence of a unique and globally stable steady
state is a general property of this case by (4.9) and (6.2).

Figure 14 shows a symmetric IRE that is effectively efficient. In this
case, gradual cooperation occurs, and full cooperation is achieved in the long
run.28 Figure 15 shows an effectively efficient IRE in which uneven gradual
cooperation occurs: in the long run, only player 2 fully cooperates, while
player 1 enjoys the highest possible effective payoff supported by an IRE.

28Gradual cooperation is known to arise in certain partnership games; see Furusawa and
Kawakami (2008) and the references therein.
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Figure 14: Case δ > a/e: Gradual cooperation
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6.2 Duopoly

Consider the alternating move game associated with the duopoly game of
Section 2.2.2.29 For simplicity we assume that the firms are symmetric. Let
c and δ denote their common marginal cost and discount factor. Recall that
firm i’s one-shot profit is given by Di(pi, pj)(pi − c). We parametrize Di as
follows:

Di(pi, pj) = (p− pi)pj, (6.3)

where p > c. Fix i. Recalling (2.2), we see that firm i’s effective payoff is
given by

wi(pi, pj) = ln(p− pi) + ln(pi − c) + δ ln pj. (6.4)

Replacing wi(pi, pj) with ωi and solving for pj, we obtain

ψωi
i (pi) = exp[{ωi − ln(p− pi)− ln(pi − c)}/δ]. (6.5)

Note that ψωi
i (c) = ψωi

i (p) = ∞. Direct calculation of the second derivative
shows that ψωi

i is strictly convex. It is easy to see that given pj, firm i’s one-
shot profit, as well as its effective payoff, is maximized at pi = p̂ ≡ (c+ p)/2.
This is the price charged by both firms in the unique static Nash equilibrium.

29Once again, the dynamics of the simultaneous move game can be analyzed similarly.

27



p1

p2

f2

f
1

s2,0

p̂

p̂

c p
c

p

Figure 16: Kinked demand curves with unstable collusion

Figure 16 illustrates a symmetric IRE in which both firms receive the ef-
fective payoff corresponding to the static Nash equilibrium. The indifference
curves in this figure are similar to those in Figure 4, which shows the IRE
corresponding to the static Nash equilibrium. Figure 16 shows an alterna-
tive IRE (which is in regular form). In this IRE, there is a steady state in
which both firms charge the static Nash price, as in Figure 4. In Figure 16,
however, there is another steady state with a higher symmetric price. At this
steady state, each firm faces a “kinked demand curve.” If one of the firms
raises its price, the other does not follow. Proposition 5.1 implies that this
kinked feature is a rather general property in the sense that in any IRE, the
firms never charge prices higher than those given by the highest intersection
of the two indifference curves. On the other hand, if one of the firms lowers
its price, this triggers price war, and the prices converge to the lower steady
state. Figure 16 shows an example of an IRE path after a small price cut by
firm 2 in period 0 (which is taken as the initial condition of the model).

Clearly the above properties of the two steady states continue to hold even
if the firms receive higher effective payoffs, as long as there are two steady
states. In fact there can be at most two steady states by strict concavity
of ψωi

i , provided that the firms receive effective payoffs no smaller than the
static Nash level.

If there is only one steady state, then the IRE is effectively efficient by
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Figure 17: Kinked demand curves with stable collusion

(5.11). Figure 17 illustrates a symmetric, effectively efficient IRE in regular
form. At the unique steady state, each firm faces a kinked demand curve once
again. This steady state, however, is globally stable. If one of the firms raises
its price, the other does not follow, as in Figure 16. If one of them lowers
its price, the other lowers its price too but by a smaller degree. Eventually
the prices return to the initial high level. This process is shown in Figure 17
assuming that firm 2 cuts its price to the static Nash level in period 0. It
follows from Theorem 4.1 that the global stability of the unique steady state
is a general property of any effectively efficient IRE here.

7 Concluding Comments

This paper offers a complete and graphical characterization of immediately
reactive equilibria (IREs) and their global dynamics for infinitely repeated
games with two players in which the action space of each player is an in-
terval, and the one-shot payoff of each player consists of two continuous
functions, one unimodal in his own action, the other strictly monotone in
the opponent’s action. IREs extend Nash reversion equilibria by allowing for
continuous strategies and nontrivial dynamics. The global dynamics of an
IRE are completely characterized by the associated indifference curves. Our
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main results show that a given pair of indifference curves is supported by
an IRE if and only if it satisfies two certain graphical conditions, and that
under these conditions, there is a continuous IRE that punishes deviations
in a minimal way.

Although additive separability, which is crucial to our analysis, is rather
restrictive, there are various interesting games that satisfy it. We have ana-
lyzed two such games and characterized their IREs by applying our general
results. We have shown among other things that gradual cooperation arises
in an effectively efficient IRE of a prisoners’ dilemma game, and that kinked
demand curves with stable collusion emerge in an effectively efficient IRE of
a duopoly game.

We believe that our results are useful not only in analyzing games that
satisfy our assumptions, but also in constructing completely tractable special
cases of more general games. Such special cases, whose dynamics can be
analyzed explicitly, would enhance the understanding of various interesting
problems.

Appendix A Proof of Lemma 2.1

We reproduce (2.16) and define Mi as follows:

∀sj, fi(sj) ∈Mi ≡ argmax
si∈[0,1]

wi(si, fj(si)). (A.1)

Consider the simultaneous move game. Fix i and fj ∈ F . From (2.13)–
(2.15) and (2.6), we have

∞∑
t=1

δt−1
i [ui(si,t) + vi(sj,t)] = vi(sj,1) +

∞∑
t=1

δt−1
i wi(si,t, fj(si,t)). (A.2)

Thus the maximization problem (2.5)–(2.7) is solved iff si,t ∈ Mi for all
t ∈ N. Hence if fi ∈ F is a best response to fj, then fi(sj,0) = si,1 ∈ Mi

for all sj,0; thus (A.1) holds. Conversely, if fi ∈ F satisfies (A.1), then
si,t = fi(sj,t−1) ∈ Mi for all t ∈ N, so the maximization problem is solved,
i.e., fi is a best response to fj.

Now consider the alternating move game. From (2.13)–(2.15), (2.10), and
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(2.11), we have

∞∑
t=i

δt−i
i [ui(si,t) + vi(sj,t)] (A.3)

= vi(sj,i) +
∑
t∈Ti

δt−i
i (1 + δi)wi(si,t, sj,t+1) (A.4)

= vi(sj,i) + (1 + δi)
∑
t∈Ti

δt−1
i wi(si,t, fj(si,t)). (A.5)

Thus the maximization problem (2.9)–(2.11) is solved iff si,t ∈ Mi for all
t ∈ Ti. Hence the proposition follows as in the simultaneous move case.

Appendix B Proof of Theorem 5.1

We start by preparing some lemmas.

Lemma B.1. Let (f1, f2) ∈ F 2. Recall the definition of Mi in (A.1). For
i = 1, 2, we have

Mi = {si ∈ [0, 1] | fj(si) = ψ∗
i |fi(si)}. (B.1)

Proof. Fix i. Since wi(si, sj) is strictly increasing in sj, we have

wi(si, fj(si))

{
=
<

}
ω∗
i |fj ⇐⇒ fj(si)

{
=
<

}
ψ∗
i |fj(si). (B.2)

Recall Figure 3. Now (B.1) follows.

From here on we fix ω ∈ R2 and omit the superscripts ωi, ωj, and ω.

Lemma B.2. Under (5.5), for i = 1, 2,

ψi(si) ≤ sj, (B.3)

ψi(ŝi) ≤ ψi(si) ≤ sj, (B.4)

si ≤ ŝi. (B.5)

Proof. To see (B.3), suppose ψi(si) > sj. By (5.3) and compactness of
Ψi ∩ Ψj, there is sj such that (si, sj) ∈ Ψi ∩ Ψj. By (5.2), ψi(si) ≤ sj.
But then sj < ψi(si) ≤ sj, contradicting the definition of sj.

Note from (5.4) that ψi(si) ≤ sj. We obtain (B.4) since ψi(si) is mini-
mized at si = ŝi (recall (3.2)). Finally (B.5) follows from (B.4) and (5.4).
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The sufficiency part of Theorem 5.1 follows from Theorem 5.2, which we
prove first.

B.1 Sufficiency: Proof of Theorem 5.2

Assume (5.5) and (5.6). Define (f1, f2) by (5.7). To show that (f1, f2) is an
IRE, it suffices to verify (A.1) for i = 1, 2 by Lemma 2.1. Fix i. By (B.4)
and (5.7) (with i and j interchanged),

∀si, fj(ŝi) = ψi(ŝi) ≤ fj(si) ≤ ψi(si), (B.6)

where the first inequality holds since ψi(si) is minimized at si = ŝi (recall
(3.2)). Since wi(si, sj) is increasing in sj, it follows that

∀si, wi(si, fj(si)) ≤ wi(si, ψi(si)) = ωi (B.7)

= wi(ŝi, ψi(ŝi)) = wi(ŝi, fj(ŝi)). (B.8)

This implies ω∗
i |fj = ωi and ψ

∗
i |fj = ψi. Hence by (B.1) and (5.7),

Mi = {si ∈ [0, 1] |ψi(si) ≤ sj}. (B.9)

It follows by (B.3) and (B.4) that si, si ∈Mi. Fix sj. We have

si ≤ ψj(ŝj) ≤ fi(sj) ≤ si (B.10)

by (5.6), (B.6) (with i and j interchanged), and (5.7). Since si, si ∈ Mi and
Mi is an interval by (B.9), we obtain fi(sj) ∈Mi, i.e., (A.1).

Regarding (5.8), since fi(fj(·)) is a continuous function from [0, 1] to
itself, it has a fixed point si (i.e., si = fi(fj(si))) by Brouwer’s fixed point
theorem. Let sj = fj(si). Then (s1, s2) is a steady state and satisfies (5.8)(b)
by Theorem 4.1. This in turn implies (5.8)(a).

B.2 Necessity

Let (f1, f2) be an IRE associated with ω. We wish to verify (5.5) and (5.6).
Although (B.3) implies (s1, s2) ∈ Ψ1 ∩ Ψ2, we cannot show Ψ1 ∩ Ψ2 ̸= ∅ by
using (s1, s2), whose existence requires Ψ1∩Ψ2 ̸= ∅. Thus we need to find an
action profile defined in terms of (f1, f2) that belongs to Ψ1 ∩Ψ2.

To this end, note that since (f1, f2) is an IRE associated with ω, for
i = 1, 2,

ψi (= ψωi
i ) = ψ∗

i |fj . (B.11)
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Define

Di = {si ∈ [0, 1] |ψi(si) ∈ [0, 1]}, (B.12)

Ri = {si ∈ [0, 1] | ∃sj ∈ [0, 1], si = fi(sj)}, (B.13)

ri = supRi, (B.14)

ri = min{si ∈ Di |ψi(si) ≤ rj}. (B.15)

Note that Di is the domain of ψi when its range is restricted to [0, 1], Ri is
the range of fi, and ri exists since there is si with fj(si) = ψi(si) by (B.1)
and (B.11). The idea here is to use ri and ri as substitutes for si and si.

Lemma B.3. For i = 1, 2, we have

(a) ri ∈ Di, (b) ψi(ri) ∈ Dj, (c) ψj(ψi(ri)) ≤ ri. (B.16)

Proof. Fix i. By (A.1) (which holds by Lemma 2.1), (B.1), and (B.11),

Ri ⊂Mi ⊂ Di. (B.17)

Since Di is compact by continuity of ψi,
30 (a) follows from (B.17).

Note from (3.6), (B.11), and (B.17) (with i and j interchanged) that

∀si ∈ Ri, ψi(si) = fj(si) ∈ Rj ⊂ Dj. (B.18)

Thus (b) follows by continuity of ψi and compactness of Dj.
For (c), note from (B.18) (with i and j interchanged) that supsj∈Rj

ψj(sj) ≤
ri. Since ψi(si) ∈ Rj for si ∈ Ri by (B.18),

∀si, ψj(ψi(si)) ≤ sup
sj∈Rj

ψj(sj) ≤ ri. (B.19)

Now (c) follows by continuity of ψi and ψj.

Lemma B.4. For i = 1, 2,

(ri, ψi(ri)) ∈ Ψi ∩Ψj, (B.20)

(a) ŝj ∈ Dj, (b) ri ≤ ψj(ŝj). (B.21)

30Note that Ri need not be compact since fi need not be continuous.
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Proof. Fix i. We have (ri, ψi(ri)) ∈ Ψi by (5.2) (with si = ri and sj =
ψi(ri)) and (B.16)(a),(b). By (5.2) (with i and j interchanged) and (B.16),
(ri, ψi(ri)) ∈ Ψj.

31 Thus (B.20) follows.
For (B.21), note from (B.2) and (B.11) that

0 ≤ fi(ŝj) ≤ ψj(ŝj) ≤ 1, (B.22)

which implies (B.21)(a). By (B.1), (B.11), and (B.14),

∀si ∈Mi, ψi(si) = fj(si) ≤ rj. (B.23)

Hence Mi ⊂ {si ∈ Di |ψi(si) ≤ rj} ≡ Ai. Thus by (B.22) and (A.1),

ψj(ŝj) ≥ fi(ŝj) ∈Mi ⊂ Ai. (B.24)

Note from (B.15) that
ri = minAi. (B.25)

Thus (B.21)(b) follows.

Let us now complete the proof of Theorem 5.1. We have (5.5) by (B.20).
Fix i. By (B.20) and (5.3) (both with i and j interchanged),

rj ≤ sj. (B.26)

Thus Ai ⊂ {si ∈ [0, 1] |ψi(si) ≤ sj}. Recalling (B.25) and (5.4), we have
rj ≥ sj. This together with (B.21) establishes (5.6).

Appendix C Proof of Proposition 5.2

Sufficiency follows from the discussion leading to (5.11). For necessity, fix an
IRE (f1, f2) associated with ω ∈ R2 satisfying (5.12). This implies

∀i, ψωi
i (ŝi) ≥ ŝj. (C.1)

Suppose (5.11) does not hold, i.e., Ψ̃ω1
1 ∩Ψ̃ω2

2 ≠ ∅. Since each ψωi
i is continuous

and strictly increasing in ωi by (3.2), there is ω′ ≫ ω such that Ψ̃
ω′
1

1 ∩Ψ̃
ω′
2

2 ̸= ∅
and ψ

ω′
i

i (ŝi) > ψωi
i (ŝi) for i = 1, 2. This together with (C.1) and (B.5) yields

ψ
ω′
i

i (ŝi) > ψωi
i (ŝi) ≥ ŝj ≥ sω

′
i , which implies (5.6). Thus by Theorem 5.1,

there is an IRE associated with ω′, so (f1, f2) cannot be effective efficient.

31Recall footnote 20.
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