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Abstract
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infinity. Bubbles may affect output positively or negative depending
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1 Introduction

It is popularly believed that the bursting of a stock market bubble is often
followed by a severe recession. Famous examples include the Great Depres-
sion after the Wall Street Crash of 1929, and Japan’s “lost decade” after the
bursting of the Japanese bubble in the early 1990s.1 While there is a large
empirical literature on the relationship between stock prices and real activ-
ity,2 there has been little theoretical research on the effects of stock market
bubbles on output fluctuations. The purpose of this paper is to construct a
simple general equilibrium model in which stock market bubbles affect real
activity, giving rise to output fluctuations.

The biggest difficulty in constructing such a model is that there are very
few general equilibrium models in which stock market bubbles arise under the
hypotheses of rational expectations and symmetric information. It is known
that in deterministic representative agent models, bubbles are simply impos-
sible (Kamihigashi, 2001). Even in stochastic representative models, bubbles
are impossible except under rather pathological specifications (Kamihigashi,
1998; Montrucchio and Privileggi, 2001). For general overlapping generations
models with complete markets, it has been known since Wilson (1981) that
bubbles are impossible if the value of aggregate wealth is finite. This result
also holds for general overlapping generations models with incomplete mar-
kets (Santos and Woodford, 1997). The value of aggregate wealth is finite
if for example there is a traded stock whose dividend stream is larger than
a fixed fraction of the aggregate endowment stream. Therefore, if we are
to analyze a general equilibrium model in which the “Lucas tree” is traded,
some deviation from standard assumptions is necessary.

As surveyed in Brunnermeier (2007) and Iraola and Santos (2007), bub-
bles are possible in models with asymmetric information, heterogeneous be-
liefs, limited rationality, limited arbitrage, or agency problems. While such
settings offer attractive explanations for bubbles, they are rather difficult to
formulate in an aggregative framework in which the effects of stock market
bubbles on output fluctuations can be analyzed relatively easily. In this pa-
per we propose an alternative explanation for bubbles based on “the spirit

1See, e.g., Allen and Gale (1999) for other historical examples. This paper focuses on
stock market bubbles though bubbles on other assets such as real estate are often discussed
together in the literature.

2See, e.g., Hassapis and Kalyvistis (2002), Binswanger (2004), and the references
therein.
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of capitalism” (Weber, 1905).
According to Zou (1995, p. 132), the spirit of capitalism in the sense of

Weber (1905) “motivates the continual accumulation of wealth not only for
the material reward that it brings, but also for its own sake,” and “even
before Weber, Adam Smith, Nassau Senior, and Karl Marx expressed similar
views, and subsequently Werner Sombart, Joseph Schumpeter, John May-
nard Keynes and Gustav Cassel argued essentially the same hypothesis.”3 In
the recent literature, Zou (1994, 1995) and Bakshi and Chen (1996) among
others formulated the spirit of capitalism by assuming a utility function that
depends not only on consumption but also on wealth itself.4 Following this
approach we show that stock market bubbles are possible when the spirit
of capitalism, or the marginal utility of wealth, does not decline to zero as
wealth increases to infinity.

Though this paper seems the first to show the possibility of bubbles in a
wealth-in-the-utility-function model, it has been known since Obstfeld and
Rogoff (1986) that (deflationary) bubbles are possible in a money-in-the-
utility-function model.5 In both cases bubbles are possible for the same
reason: if the marginal utility of wealth (or real balances) does not decline fast
enough as wealth increases to infinity, the associated transversality condition
is satisfied for divergent paths. In this paper, however, showing the possibility
of bubbles is only an initial step toward the analysis of the effects of stock
market bubbles on output.

The relationship between bubbles and growth has already been addressed
in the literature. Grossman and Yanagawa (1993) and Futagami and Shi-
bata (2000) analyzed endogenous growth models with overlapping genera-
tions, showing that bubbles on intrinsically useless assets negatively affect
the growth rate of output by crowding out productive investment.6 By con-
trast Olivier (2000) showed that bubbles on stocks in newly created firms (or
technologies) positively affect growth by encouraging creation of new firms.7

3See Zou (1994, 1995) for numerous historical quotes.
4This approach was pioneered by Kurz (1968). Recent studies based on the wealth-

in-the-utility-function approach include Smith (2001), Gong and Zou (2002), Nakajima
(2003), and Chang et al. (2004).

5See Buiter and Sibert (2007) for a recent treatment of deflationary bubbles in a money-
in-the-utility-function model.

6See Tirole (1985) for related arguments in a neoclassical overlapping generations
model.

7In his model, however, economically identical stocks are required to have different
prices in order to prevent the aggregate bubble from outgrowing the economy.

2



In this paper we show that stock market bubbles can have a positive or
negative effect on output (or the capital stock) depending on whether the
production function exhibits increasing or decreasing returns to scale. We
consider a one-sector growth model with homogeneous consumers who derive
utility from consumption and wealth. Both the capital stock and stocks in
homogeneous firms are traded. Since firms are homogeneous, all stocks have
the same price. When the stock price rises, the marginal utility of wealth
declines, so that the incentive to hold capital as wealth decreases. This
means that the supply curve of capital, which is upward sloping, shifts to
the left. If the production function exhibits decreasing returns to scale, the
demand curve for capital is downward sloping. Hence a rise in stock price
results in a fall in capital. If on the other hand the production function
exhibits increasing returns (or, more precisely, the private marginal product
of capital is increasing in the overall capital stock), then the demand curve
for capital is upward sloping and a rise in stock price may entail a rise in
capital. We show that there is an equilibrium in which bubbles always affect
the capital stock positively in the case of increasing returns.

Because a current change in stock price affects investment for the next
period, a large drop in stock price caused by a sunspot shock is followed by
a large drop in output in the next period. In other words, the bursting of a
bubble is followed by a sharp decline in output one period later. This feature
is not captured in standard real business cycle models, where productivity
shocks affect output and stock prices simultaneously (e.g., Rebelo, 2005).

The rest of the paper is organized as follows. Section 2 studies an ex-
change economy to show that a strong spirit of capitalism implies the possibil-
ity of bubbles. We assume that utility is additively separable in consumption
and wealth, and show the existence of a unique steady state. We completely
characterize the equilibria, showing that there exists a continuum of equilib-
ria with bubbles. Then we introduce sunspot shocks to the stock market,
giving several numerical examples of stochastic equilibria. We observe that
bubbles decay to zero asymptotically if the sunspot shocks are sufficiently
volatile. Section 3 introduces a typical neoclassical production function to
the exchange economy, deriving conditions characterizing the equilibria. Sec-
tion 4 considers the special case of this production economy in which utility
is linear in wealth. We show that the equilibrium capital path is determined
independently of the stock price path, i.e., bubbles do not affect real activ-
ity. Section 5 considers the special case of the production economy in which
utility is linear in consumption. We show the existence of a unique steady
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state and characterize equilibria (from initial capital stocks at least as large
as the steady state capital stock). We show that there exists a continuum
of equilibria with bubbles as in the exchange economy, but that in equilibria
with bubbles, the stock price keeps rising, while the capital stock keeps de-
clining. Section 6 assumes that the production function exhibits increasing
returns to scale at the social level but decreasing returns at the private level.
We establish the existence of a steady state and the existence of a contin-
uum of equilibria with bubbles. In these equilibria, the stock price and the
capital stock both increase over time. Then we introduce sunspot shocks to
the stock market, illustrating how a change in stock price is followed by a
similar change in output one period later. Section 7 concludes the paper.

2 An Exchange Economy

Our model here is similar to the Lucas (1978) asset pricing model except
that utility depends on wealth in addition to consumption. The dependence
of utility on wealth captures the idea of the spirit of capitalism. Consider an
economy in which there is only one asset, or “stock,” and there are many ho-
mogeneous consumers each of whom faces the following maximization prob-
lem:

max
{ct,wt,st}∞t=0

∞∑
t=0

βt[u(ct) + v(wt)](2.1)

s.t. ct + wt = (pt + d)st−1,(2.2)

wt = ptst,(2.3)

ct, st ≥ 0,(2.4)

s−1 = 1 given,(2.5)

where ct is consumption in period t, wt is wealth in period t, pt is the price
of the stock in period t, st is shares of the stock held at the end of period t,
and d > 0 is the dividend per share, which is assumed to be constant over
time. We assume the following.

Assumption 2.1. u, v : R+ → [−∞,∞) are continuously differentiable on
R++, continuous, concave, and strictly increasing.
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The Euler equation and the transversality condition are given by

[u′(ct)− v′(wt)]pt = βu′(ct+1)(pt+1 + d),(2.6)

lim
t→∞

βt[u′(ct)− v′(wt)]ptst = 0.(2.7)

The above conditions are sufficient for optimality by a standard argument
(e.g., Stokey and Lucas, 1989). The Euler equation is necessary for interior
solutions, while the transversality condition is necessary under additional
conditions (e.g, Kamihigashi, 2001, 2003).8

An equilibrium of this economy is a set of nonnegative paths {pt, ct, wt, st}∞t=0

such that (i) given {pt}, {ct, wt, st} solves the maximization problem (2.1)–
(2.5); and (ii) the good and stock markets clear:

ct = d,(2.8)

st = 1.(2.9)

If pt ≤ 0, consumers wish to increase st indefinitely in order to receive an
indefinite amount of dividend payment in period t + 1.9 Since this cannot
happen in equilibrium, we have in equilibrium

(2.10) pt > 0.

We may normalize u′(d) to one without loss of generality.

Assumption 2.2. u′(d) = 1.

We assume that the marginal utility of wealth does not decline to zero as
wealth goes to infinity.

Assumption 2.3. limw→∞ v′(w) ≡ ν > 0.

This assumption means that the spirit of capitalism stays strong even
when wealth is very large.10 Our analysis goes through as long as v′ declines
sufficiently slowly to zero, as in Obstfeld and Rogoff (1986, p. 356).

Though we assume that the marginal utility of wealth does not go to zero,
we assume that it becomes sufficiently small as wealth increases to infinity:

Assumption 2.4. 1− ν > β, where ν is given by Assumption 2.3.

This assumption is needed to ensure the existence of a steady state.

8In this paper the necessity of the transversality condition is not required.
9Strictly speaking, before this argument is applied to the case in which v is unbounded

below, the concept of optimality must be extended properly.
10For a money-in-the-utility-function model, Ono (2001) justified the same assumption

using Keynes’s notion of liquidity preference.
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2.1 Bubbles

By Assumption 2.2 and equilibrium conditions (2.8) and (2.9), the Euler
equation (2.6) and the transversality condition (2.7) reduce to

[1− v′(pt)]pt = β(pt+1 + d),(2.11)

lim
t→∞

βt[1− v′(pt)]pt = 0.(2.12)

Equation (2.11) can be rewritten as

(2.13) pt+1 =
1− v′(pt)

β
pt − d.

Define

R(pt) =
1− v′(pt)

β
,(2.14)

qt+1 =
1

R(pt)
.(2.15)

Note that R(pt) is the (implicit) gross interest rate, and qt+1 is its inverse.
From (2.13), pt can be written successively as

pt = qt+1d + qt+1pt+1(2.16)

= qt+1d + qt+1qt+2d + qt+1qt+2pt+2(2.17)

= qt+1d + qt+1qt+2d + qt+1qt+2qt+3d + qt+1qt+2qt+3pt+3(2.18)

...(2.19)

=
J∑

j=1

(
j∏

i=1

qt+i

)
d +

(
J∏

i=1

qt+i

)
pt+J(2.20)

=
∞∑

j=1

(
j∏

i=1

qt+i

)
d + lim

J→∞

(
J∏

i=1

qt+i

)
pt+J .(2.21)

The above limit exists since the sum in (2.20) is increasing in J and thus the
second term in (2.20) is decreasing in J . Define

pf
t =

∞∑
j=1

(
j∏

i=1

qt+i

)
d,(2.22)

pb
t = lim

J→∞

(
J∏

i=1

qt+i

)
pt+J .(2.23)
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Note that pf
t is the present discounted value of the dividend stream. We call

pf
t the fundamental value of the stock, and pb

t the bubble component of pt.
Now pt can be written as

(2.24) pt = pf
t + pb

t .

Recall from (2.15) that qt+1 depends on pt. Thus the fundamental value pf
t

itself depends on the price path {pt}. Hence the fundamental value cannot
be expressed in terms of fundamentals here, in sharp contrast to the case in
which utility does not depend on wealth.

2.2 Steady States

Let us consider steady states, where pt is constant over time. It follows from
(2.13) that steady state prices are characterized by

(2.25) p = R(p)p− d,

which rearranges to

(2.26)
d

p
= R(p)− 1.

As p varies from zero to infinity, d/p decreases from infinity to zero, while
[R(p)−1] increases from a value no greater than (1−ν)/β−1 to (1−ν)/β−1 >
0, where the inequality uses Assumption 2.4. It follows that (2.26) has a
unique solution in p. Since the transversality condition (2.12) is trivially
satisfied if pt is constant over time, we obtain the following.

Proposition 2.1. There exists a unique steady state.

Let p∗ and q∗ be the steady state values of pt and qt, respectively. Note
from (2.15) and (2.26) that

(2.27)
1

q∗
= R(p∗) =

d

p∗
+ 1 > 1.

Thus from (2.26) and (2.15),

(2.28) p∗ =
d

R(p∗)− 1
=

q∗

1− q∗
d =

∞∑
i=1

q∗id,

i.e., p∗ equals the fundamental value of the stock:

Proposition 2.2. The steady state price p∗ contains no bubble.
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2.3 Dynamics

It follows from (2.13) and (2.14) that

(2.29) pt+1 = R(pt)pt − d.

To characterize the equilibrium dynamics, let us prepare the following lemma.

Lemma 2.1. A strictly positive sequence {pt} is an equilibrium price path if
and only if it satisfies (2.29) for all t ≥ 0.

Proof. The “only if” part follows from the fact that (2.29), which is equivalent
to the Euler equation (2.11), is a necessary condition for optimality. To show
the “if” part, let {pt} be a strictly positive sequence satisfying (2.29) for all
t ≥ 0. It suffices to verify the transversality condition (2.12). By (2.29) and
Assumption 2.3, pt+1/pt ≤ (1 − ν)/β < 1/β. Thus βtpt → 0 as t → ∞.
Since 0 < 1− v′(pt) ≤ 1−ν by (2.11) and Assumption 2.3, the transversality
condition (2.12) holds.

The following result characterizes all equilibrium price paths.

Proposition 2.3. There exists a continuum of equilibria. In particular, for
each p ≥ p∗, there exists a unique equilibrium price path {pt} with p0 = p. If
p0 = p∗, then pt = p∗ for all t ≥ 0. If p0 > p∗, then {pt} is strictly increasing
and satisfies limt→∞ pt = ∞. There exists no equilibrium price path {pt} with
p0 < p∗.

Proof. Let {pt} be a strictly positive sequence satisfying (2.29). To show
that there is no equilibrium price path with p0 < p∗, let us begin by making
two observations. First, if pt < p∗ for some t ≥ 0, then from (2.29), (2.14),
and (2.27),

(2.30)
pt+1

pt

= R(pt)− d

pt

< R(p∗)− d

p∗
= 1.

Second, for pt sufficiently close to zero,

(2.31)
pt+1

pt

= R(pt)− d

pt

≤ R(p∗)− d

pt

< 0.

Suppose p0 < p∗. Then since there is no steady state between 0 and p∗, by
(2.30), limt↑∞ pt = 0. But this contradicts the strict positivity of {pt} by
(2.31). Hence there is no equilibrium with p0 < p∗ by Lemma 2.1.
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0
pt

pt+1 = pt

pt+1 = R(pt)pt − d

p∗ p0

Figure 1: Equilibrium price dynamics
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If p0 = p∗, then the unique sequence {pt} satisfying (2.29) is given by
pt = p∗ for all t ≥ 0. If p0 > p∗, then the unique sequence {pt} satisfying
(2.29) is strictly increasing with limt↑∞ pt = ∞ since R(p) ≥ R(p∗) > 1 for
p ≥ p∗ by (2.14) and (2.27). Now the proposition follows by Lemma 2.1.

See Figure 1 for an example of an equilibrium price path. One can also
see from the figure that the path satisfying (2.29) from p0 < p∗ cannot remain
strictly positive forever and thus cannot be an equilibrium.

Recall that the steady state price p∗ contains no bubble by Proposition
2.2. How about other equilibrium price paths? To answer this question,
suppose p0 > p∗. Then pt grows unboundedly by Proposition 2.3. On the
other hand, the fundamental value pf

t is bounded above by p∗. To see this,
note from (2.15) that

(2.32) qt+1 =
1

R(pt)
≤ 1

R(p∗)
= q∗ < 1,

where the last inequality holds by (2.27). In view of (2.22) and (2.28), we
see that pf

t ≤ p∗.11 Since pt ≥ p0 > p∗ for all t ≥ 0, we must have pb
t > 0 for

all t ≥ 0. The following proposition summarizes the preceding argument.

Proposition 2.4. For any equilibrium price path {pt} with p0 > p∗, we have
pb

t > 0 and pf
t ≤ p∗ for all t ≥ 0.

Therefore, all strictly increasing equilibrium price paths contain strictly
positive bubbles, which reduce the fundamental value while increasing the
stock price in each period.

2.4 Sunspot Equilibria

Now consider an economy in which the equilibrium price path {pt} is allowed
to be a stochastic process. In this case, the objective function in (2.1) must
be replaced with

(2.33) E0

∞∑
t=0

βt[u(ct) + v(wt)],

where Et denotes expectation conditional on the information available in
period t. Since {pt} is stochastic, {ct}, {wt}, and {st} are all allowed to be

11This inequality becomes strict if we assume that v is strictly concave.
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stochastic for individual consumers, though {ct} and {st} are deterministic
in equilibrium.

The Euler equation and the transversality condition are given by

[u′(ct)− v′(wt)]pt = βEtu
′(ct)(pt+1 + d),(2.34)

lim
t→∞

βtE0[u
′(ct)− v′(wt)]ptst = 0.(2.35)

As in the deterministic case, these conditions are sufficient for optimality.
Since there is no fundamental uncertainty, the market-clearing conditions
(2.8) and (2.9) remain the same.

By (2.8) and Assumption 2.2, the stochastic Euler equation (2.34) reduces
in equilibrium to

(2.36) Etpt+1 = R(pt)pt − d,

where R(·) is as defined in (2.14). It can be shown as in the deterministic
case that any strictly positive stochastic process {pt} satisfying (2.36) for all
t ≥ 0 is an equilibrium.

We now wish to simulate (2.36) in order to understand the behavior of
stochastic bubbles. For this purpose it would be natural to rewrite the Euler
equation (2.36) as

(2.37) pt+1 = R(pt)pt − d + εt+1,

where εt+1 is an expectational error satisfying Etεt+1 = 0. However it is easy
to see that in order to ensure pt ≥ 0 for all t ≥ 0, we must have pt ≥ p∗ for
all t ≥ 0. This means that εt+1 cannot be an i.i.d. shock; in particular, the
support of εt+1 must be adjusted according to the distance between p∗ and
R(pt)pt − d.

A more convenient representation of (2.36) for simulation purposes is

(2.38) pt+1 − p∗ = [R(pt)pt − d− p∗](1 + εt+1),

where once again Etεt+1 = 0. Applying Et to (2.38), one can see that (2.38)
is equivalent to (2.36); furthermore, pt+1 ≥ p∗ as long as pt ≥ p∗ and the
support of εt+1 is a subset of [−1,∞). For example, if {et} is an i.i.d. process
with mean zero and support (−1, 1), then εt+1 may be of the form

(2.39) εt+1 = µet+1
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for any µ ∈ [0, 1). In what follows we use this specification of sunspot
shocks. To distinguish between εt and et, we call εt the sunspot shock and et

the primitive sunspot shock in period t.
Figure 2 shows an example of an i.i.d. sequence of primitive sunspot

shocks. In the figure, the et are approximately normally distributed but with
support (−1, 1). Figure 3 shows examples of equilibrium price paths with the
same primitive sunspot shocks but with different values of µ. These examples
assume β = 0.98, v(w) = 10w0.9 + 0.01w, and p0 = p∗ + 1.12

Figure 3(a) shows that if there is no sunspot shock, pt grows exponentially.
Figure 3(b) suggests that if the price process is subject to small sunspot
shocks, a realized price path more or less resembles the deterministic path.
However, Figure 3(c) suggests that if the sunspot shocks are not small in
magnitude, a realized path does not resemble the deterministic path, and
it appears that the bubble disappears asymptotically. Figure 3(d) suggests
that if the sunspot shocks are even larger, the bubble decays more quickly.

Figures 3(c) and 3(d) seem to suggest that bubbles decay exponentially
if the sunspot shocks are sufficiently large. Figure 4 shows the details of
the path in Figure 3(d) for t = 800, . . . , 1000. It appears there also that
the bubble decays exponentially. As a matter of fact, the exponential decay
of bubbles can be proved formally using the results in Kamihigashi (2006).13

Figures 3 and 4 illustrate the implication of the results in Kamihigashi (2006)
that “explosive” bubbles do not always appear explosive: they decay to zero
if the sunspot shocks are sufficiently large in magnitude.14

3 A Production Economy with Decreasing Re-

turns

Now we consider a production economy to study how bubbles affect real
activity. The model here is similar to a decentralized version of the Ramsey

12In this case, p∗ is approximately equal to 273. These parameter values are not intended
to be empirically plausible. We are only interested in qualitative characteristics here.

13In fact the results in Kamihigashi (2006) were initially motivated by the numerical
examples here.

14Salge (1997, p. 155) noted a similar phenomenon for a special parametric model.
Nevertheless the exponential decay of bubbles seems to be worth pointing out since it is
still widely believed that “in most models bubbles burst, while in reality bubbles seem to
deflate over several weeks or even months” (Brunnermeier, 2007).
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Figure 2: Primitive sunspot shocks et

model, except that utility depends on wealth in addition to consumption,
and that the shares in firms are traded in the stock market as in Section 2.
Each consumer in this economy faces the following maximization problem:

max
{ct,wt,st,xt}∞t=0

∞∑
t=0

βt[u(ct) + v(wt)](3.1)

s.t. ct + wt = (pt + dt)st−1 + Rtxt−1,(3.2)

wt = ptst + xt,(3.3)

ct, st, xt ≥ 0,(3.4)

s−1 = 1, x−1 > 0 given,(3.5)

where xt is the capital stock at the end of period t, and Rt is the gross rental
rate on capital in period t. Equation (3.3) means that wealth consists of
stock holdings and physical capital. Other notation is as in Section 2.

There are many homogeneous firms in this economy. In each period t,
they maximize their profits, i.e., solve the following maximization problem:

(3.6) max
kt≥0

[f(kt)−Rtkt],

13
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Figure 4: Details of Figure 3(d) for t = 800, . . . , 1000

where f is the production function, and kt is capital rented from consumers.
The profits of firms are paid out to share holders as dividends:

(3.7) dt = f(kt)−Rtkt.

We maintain Assumption 2.1. In addition we assume standard properties
on the production function.

Assumption 3.1. f : R+ → R+ is continuously differentiable on R++,
continuous, strictly increasing, and strictly concave.

An equilibrium of this economy is a set of paths {pt, Rt, ct, wt, st, xt}∞t=0

such that (i) given {pt, Rt} and (3.7), {ct, wt, st, xt} solves the consumers’
problem (3.1)–(3.5); (ii) given Rt, the solution to the firms’ problem (3.6) is
given by

(3.8) kt = xt−1,

i.e., the capital market clears; and (iii) the good and stock markets clear:

ct = f(kt)− xt.(3.9)

st = 1.(3.10)
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For the rest of the paper we focus on interior equilibria, i.e., the equilibria
where the nonnegativity constraints in (3.4) and (3.6) are never binding.15

The firms’ problem (3.6) and (3.8) imply

(3.11) Rt = f ′(xt−1).

Thus dt = d(xt−1), where

(3.12) d(x) = f(x)− f ′(x)x.

It is easy to see (graphically) that

(3.13) d(·) is strictly increasing.

In conjunction with (3.11) and (3.12), the Euler equations associated with
st and xt are written as

[u′(ct)− v′(wt)]pt = βu′(ct+1)[pt+1 + d(xt)],(3.14)

u′(ct)− v′(wt) = βu′(ct+1)f
′(xt).(3.15)

The corresponding transversality conditions in equilibrium are

lim
t→∞

βt[u′(ct)− v′(wt)]pt = 0,(3.16)

lim
t→∞

βt[u′(ct)− v′(wt)]xt = 0.(3.17)

It follows from from (3.14) and (3.15) that

(3.18) f ′(xt)pt = pt+1 + d(xt).

We define the fundamental value pf
t of the stock as in Subsection 2.1:

(3.19) pf
t =

∞∑
j=1

(
j∏

i=1

1

f ′(xt+i)

)
d(xt+i).

The bubble component pb
t is given by pb

t = pt − pf
t .

Since the dynamical system given by (3.14) and (3.15) is not easily
tractable, we consider two tractable cases separately to better understand
the equilibrium dynamics. The first case assumes that v is linear. The sec-
ond case assumes that u is linear.

15Our assumptions do not immediately rule out non-interior equilibria, but note that
we never assume the existence of an interior equilibrium.
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4 The Case of Linear Utility of Wealth

In addition to Assumptions 2.1 and 3.1, this section assumes the following.

Assumption 4.1. v is linear, i.e., v′(w) is constant for all w > 0. Without
loss of generality, v′(w) = 1 for all w > 0.

Under this assumption, the Euler equations (3.14) and (3.15) as well as
the transversality conditions (3.16) and (3.17) are independent of wt:

[u′(ct)− 1]pt = βu′(ct+1)[pt+1 + d(xt)],(4.1)

u′(ct)− 1 = βu′(ct+1)f
′(xt),(4.2)

lim
t→∞

βt[u′(ct)− 1]pt = 0,(4.3)

lim
t→∞

βt[u′(ct)− 1]xt = 0.(4.4)

Since (4.2) and (4.4) do not depend on the price path {pt}, we may
conclude that the capital path {xt} is determined independently of {pt}. To
see this more clearly, consider the following maximization problem:

max
{ct,xt}∞t=0

∞∑
t=0

βt[u(ct) + xt](4.5)

s.t. ct + xt = f(xt−1),(4.6)

xt ≥ 0,(4.7)

x−1 > 0 given.(4.8)

This is a special case of the discrete-time version of Kurz’s (1968) “capital-
in-the-utility-function” model. Note that (4.2) and (4.4) are exactly the
Euler equation and the transversality condition for the above maximization
problem. Hence it completely characterizes the equilibrium capital paths,
i.e., the “real” side of the economy is unaffected whether bubbles arise or
not.16 This indicates that the marginal utility of wealth plays a key role if
bubbles affect real activity. We now turn to such a special case.

16Under additional conditions one can easily show that there are equilibria with bubbles.
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5 The Case of Linear Utility of Consumption

In this section we maintain Assumptions 2.1, 2.3, 2.4, and 3.1. In addition
we assume the following.

Assumption 5.1. u is linear, i.e., u′(c) is constant for all c > 0. Without
loss of generality, u′(c) = 1 for all c > 0. Furthermore, v is strictly concave.

Assumption 5.2. limx↓0 f ′(x) > (1− ν)/β and limx↑∞ f ′(x) < 1.

The last assumption is needed to ensure the existence of a steady state.
Under the above assumptions, the Euler equations (3.14) and (3.15) and the
transversality conditions (3.16) and (3.17) reduce to

[1− v′(pt + xt)]pt = β[pt+1 + d(xt)],(5.1)

1− v′(pt + xt) = βf ′(xt),(5.2)

lim
t→∞

βt[1− v′(pt + xt)]pt = 0,(5.3)

lim
t→∞

βt[1− v′(pt + xt)]xt = 0.(5.4)

5.1 Steady States

It follows from (5.1), (5.2), and (3.9) that steady state prices and capital
stocks are characterized by the following three conditions:

1− v′(p + x) = βf ′(x),(5.5)

p =
d(x)

f ′(x)− 1
,(5.6)

f(x)− x ≥ 0.(5.7)

Since (5.5) and (5.6) do not imply positive consumption, (5.7) must be in-
cluded here. It is easy to see from (5.6) and (3.19) that there is no bubble in
any steady state. The following result establishes the existence of a unique
steady state.

Proposition 5.1. There exists a unique steady state.

Proof. By Assumptions 5.2, 2.3, and 2.4, there exist x, x > 0 such that

(5.8) f ′(x) =
1− ν

β
> 1 = f ′(x).
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By strict concavity of f , we have x < x. Note from (5.5) and (5.6) that
there is no (nonzero) steady state capital stock outside (x, x). For x ∈ (x, x),
define

(5.9) φ(x) = 1− v′
(

d(x)

f ′(x)− 1
+ x

)
− βf ′(x).

This is obtained by substituting (5.6) into (5.5). It follows that x ∈ (x, x)
is a steady state capital stock if and only if φ(x) = 0 and (5.7) holds. By
(3.13) and strict concavity of f and v, φ(x) is strictly increasing. By (5.8),

φ(x) = −v′
(

d(x)

f ′(x)− 1
+ x

)
+ ν < 0,(5.10)

lim
x↑x

φ(x) = 1− ν − β > 0,(5.11)

where the inequalities hold by Assumptions 2.3 and 2.4. It follows that there
is a unique x∗ ∈ (x, x) satisfying φ(x∗) = 0. Let p∗ = d(x∗)/(f ′(x∗) − 1).
Since x∗ < x, we have f ′(x∗) > 1. Thus f(x∗) − x∗ > 0 by strict concavity.
Hence (5.7) holds. It follows that (p∗, x∗) is the unique steady state.

5.2 Dynamics

The Euler equations (5.2) and (5.1) can be written as

1− v′(pt + xt) = βf ′(xt),(5.12)

pt+1 + d(xt)

pt

= f ′(xt).(5.13)

Equation (5.1) can also be written as

(5.14) pt+1 =
1− v′(pt + xt)

β
pt − d(xt).

As in the proof of Proposition 5.1, let p∗ and x∗ be the steady state
price and capital stock, respectively. The following result characterizes the
equilibrium paths with the initial capital stock at least as large as x∗. We
focus on such equilibria for simplicity though other equilibria can be treated
similarly.17

17In fact, since utility is linear in consumption, the initial capital stock x−1 is irrelevant
as long as f(x−1)− x0 ≥ 0, where x0 is as in the proof of Proposition 5.2.
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Proposition 5.2. Suppose x−1 ≥ x∗. There exists a continuum of equilibria.
In particular, for any p ≥ p∗, there exists a unique equilibrium {pt, xt} with
p0 = p. If p0 = p∗, then pt = p∗ and xt = x∗ for all t ≥ 0. If p0 > p∗,
then x0 < x∗, xt is strictly decreasing and converges to x (recall (5.8)), and
pt is strictly increasing and goes to infinity. There exists no equilibrium with
p0 < p∗.

Proof. The case p0 = p∗ is straightforward. To handle the other cases, we
first show the following.

Claim: Let (pt−1, xt−1) À 0 satisfy (5.12) with t − 1 replacing t. Let
pt > 0. There exists a unique (xt, pt+1) ∈ (x,∞) × R satisfying (5.12) and
(5.13). If pt > pt−1 ≥ p∗ and xt−1 ≤ x∗, then xt < xt−1 and pt+1 > pt.
Likewise, if pt < pt−1 ≤ p∗ and xt−1 ≥ x∗, then xt > xt−1 and pt+1 < pt.

To prove this claim, let (pt−1, xt−1) À 0 satisfy (5.12), and let pt > 0.
Note first that there is a unique xt > x satisfying (5.12). Clearly there is a
unique pt+1 ∈ R satisfying (5.13). Suppose pt > pt−1 ≥ p∗ and xt−1 ≤ x∗.
We have xt < xt−1 by strict concavity of v and f . Suppose pt+1 ≤ pt. Then
by (5.13), (3.13), and (5.6),

(5.15) f ′(xt) =
pt+1 + d(xt)

pt

≤ 1 +
d(xt)

pt

< 1 +
d(x∗)

p∗
= f ′(x∗) < f ′(xt),

a contradiction. Thus pt+1 > pt. The other case is similar. This completes
the proof of the claim.

Let p > p∗. We construct an equilibrium {pt, xt} with p0 = p. By
the above claim with p−1 = p∗ and x−1 = x∗, there is a unique (x0, p1) ∈
(x,∞)× R satisfying (5.12) and (5.13). By the claim, x0 < x∗ and p1 > p0.
Constructing the entire sequence {pt, xt} by repeated application of the claim,
we see that {pt} is strictly increasing and {xt} is strictly decreasing. Since
(p∗, x∗) is the unique steady state by Proposition 5.1, pt ↑ ∞ and xt ↓ x as
t ↑ ∞.18 The associated consumption path is strictly positive since f(x) > x
for all x ∈ (0, x∗]. The proof of Lemma 2.1 still shows that the transversality
condition (5.3) holds; (5.4) also holds since {xt} is bounded. It follows that
{pt, xt} is the unique equilibrium with p0 = p.

Let p ∈ (0, p∗). We show that there is no equilibrium {pt, xt} with p0 = p.
Suppose {pt, xt} is an equilibrium with p0 = p. Then it follows from the above

18In more detail, if pt converges to some p ∈ (p∗,∞), then xt converges to some x > x
by (5.12). Likewise, if xt converges to some x > x, then pt converges to some p ∈ (p∗,∞).
In either case, (p, x) 6= (p∗, x∗) must be a steady state, contradicting uniqueness.
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Figure 5: Equilibrium dynamics under decreasing returns

claim that pt ↓ 0 and xt ↑ ∞ since (p∗, x∗) is the unique steady state. This
contradicts (5.14) since it implies that pt+1 < 0 for pt close enough to 0.

Proposition 5.2 shows that there is a continuum of equilibria in which
the capital stock keeps declining toward x, while the stock price keeps rising
indefinitely. We see from (3.19), (3.13), and the strict concavity of f that
the fundamental value pf

t keeps declining toward d(x)/(f ′(x) − 1). Hence
a bubble lowers the fundamental value as well as the capital stock, while
increasing the stock price.

One can easily see from (5.12) why the stock price and the capital stock
move in opposite directions. The left-hand side of (5.12) is the supply curve of
capital given a stock price pt. This curve is upward sloping. The right-hand
side of (5.12) is the demand curve for capital, which is downward sloping. See
Figure 5. If the stock price rises, the marginal utility of wealth declines, so
that the incentive to hold capital as wealth decreases, i.e., the supply curve
of capital shifts to the left, or upwards, resulting in a lower capital stock.
The proof of Proposition 5.2 shows that a rise in stock price in one period
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implies another rise in the next period. Hence if p0 > p∗, the stock price
keeps increasing indefinitely, i.e., the supply curve of capital keeps shifting
upwards, and converges to the horizontal line at 1 − ν (because there is no
steady state price other than p∗). This means that the capital stock converges
to x. See Figure 5 again.

Unfortunately, this inverse relationship between the stock price and the
capital stock is contrary to conventional wisdom. However, it can be reversed
if the demand curve of capital is upward sloping. The next section studies a
model with this feature.

6 A Production Economy with Increasing So-

cial Returns

Now we assume increasing social returns and externalities. The consumers’
side of the model remains the same. The firms’ problem is modified as follows:

(6.1) max
kt≥0

f(kt, Kt)−Rtkt,

where Kt is the social capital stock, which individual firms take as given. In
equilibrium, kt and Kt coincide:

(6.2) kt = Kt (= xt−1).

We maintain Assumptions 2.1, 2.3, 2.4, and 5.1. In addition we assume
the following.

Assumption 6.1. f : R2
+ → R+ is continuously differentiable on R2

++ and
continuous, satisfying f1 > 0 and f1 + f2 > 0 on R2

++. Furthermore, f1(x, y)
is strictly decreasing in x > 0 for each y > 0, and f1(x, x) is strictly increasing
in x > 0.

This assumption says that the production function is strictly increasing
and strictly concave at the private level and strictly increasing in the overall
capital stock; furthermore the private marginal product of capital is strictly
increasing in the overall capital stock.

In order to ensure the existence of a steady state, we also assume that as
capital increases from zero, the private marginal product of capital increases
from a relatively small level to a relatively large level:
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Assumption 6.2. limx↓0 f1(x, x) < 1 and limx↑∞ f1(x, x) > (1− ν)/β.

The definition of equilibrium remains the same as in Section 3 except that
the firms’ problem is given by (6.1) and the rational expectations condition
(6.2) is imposed as an equilibrium condition.

The Euler equations (5.1) and (5.2) remain the same except that f ′(xt)
is replaced with f1(xt, xt) and that d(·) is redefined as

(6.3) d(x) = f(x, x)− f1(x, x)x.

The transversality conditions (5.3) and (5.4) remain identical. The equations
corresponding to (5.12) and (5.13) are

1− v′(pt + xt) = βf1(xt, xt),(6.4)

pt+1 + d(xt)

pt

= f1(xt, xt).(6.5)

Since f(x, y) is strictly concave in x, we have f(x, x) > f1(x, x)x, i.e., d(x) >
0 for x > 0.

We define the fundamental value pf
t of the stock as in the case of decreas-

ing returns:

(6.6) pf
t =

∞∑
j=1

(
j∏

i=1

1

f1(xt+i, xt+i)

)
d(xt+i).

The bubble component pb
t is given by pb

t = pt − pf
t once again.

6.1 Steady States

The following three conditions, which correspond to (5.5)–(5.7), characterize
the steady state prices and capital stocks:

1− v′(p + x) = βf1(x, x)(6.7)

p =
d(x)

f1(x, x)− 1
,(6.8)

f(x, x)− x ≥ 0.(6.9)

It is easy to see from (6.8) and (6.6) that there is no bubble in any steady
state, as in the case of decreasing returns. The following result establishes
the existence of a steady state without asserting uniqueness.
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Proposition 6.1. There exists a steady state.

Proof. By Assumption 6.2, there exist x, x > 0 such that

(6.10) f1(x) = 1 <
1− ν

β
= f1(x),

where f1(x) = f1(x, x) for simplicity. By Assumption 6.1, x < x. By (6.7)
and (6.8), there is no steady state capital stock outside (x, x). For x ∈ (x, x),
define

(6.11) φ(x) = 1− v′
(

d(x)

f1(x)− 1
+ x

)
− βf1(x).

Note that x ∈ (x, x) is a steady state capital stock if and only if φ(x) = 0
and (6.9) holds. We have

lim
x↓x

φ(x) = 1− ν − β > 0,(6.12)

φ(x) = −v′
(

d(x)

f1(x)− 1
+ x

)
+ ν < 0.(6.13)

Thus there is x̂ ∈ (x, x) (not necessarily unique) satisfying φ(x̂) = 0. Let
p̂ = d(x̂)/[f1(x̂) − 1]. It remains to verify (6.9). Since f(x, y) is strictly
concave in x, we have f(x̂, x̂) > f1(x̂, x̂)x̂ > x̂, where the last inequality
holds since x̂ > x. Now (6.9) follows.

6.2 Dynamics

Let x∗ be the largest steady state capital stock and p∗ the corresponding
stock price. For the rest of this section, we focus on equilibria with the
initial capital stock at least as large as x∗. We assume the following.

Assumption 6.3. x ≤ f(x∗, x∗).

This assumption means that x is technologically feasible from x∗ in one
step. While (6.4) and (6.5) do not prevent consumption from becoming neg-
ative, Assumption 6.3 ensures that consumption is strictly positive whenever
the capital stock moves within [x∗, x). This extra assumption is needed here
since contrary to the case of decreasing returns, the capital stock may in-
crease over time in equilibria with bubbles.
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Proposition 6.2. Suppose x−1 ≥ x∗. For any p ≥ p∗, there exists an
equilibrium {pt, xt} with p0 = p. In particular, the constant sequence with
(p0, x0) = (p∗, x∗) is an equilibrium, and for p > p∗, there exists an equilib-
rium with p0 = p such that x0 > x∗, xt is strictly increasing and converges
to x (recall (6.10)), and pt is strictly increasing and goes to ∞.

Proof. The case p0 = p∗ is straightforward. To handle the other case, we
show the following.

Claim: Let pt−1 ≥ p∗ and xt−1 ≥ x∗ satisfy (6.4) with t − 1 replacing t.
Let pt > pt−1. Then there is (xt, pt+1) ∈ (xt−1, x) × (pt,∞) satisfying (6.4)
and (6.5) such that xt > xt−1, f(xt−1, xt−1)− xt > 0, and pt+1 > pt.

To prove this claim, let pt−1 ≥ p∗ and xt−1 ≥ x∗ satisfy (6.4). Let
pt > pt−1. Note that

1− v′(pt + xt−1) > 1− v′(pt−1 + xt−1) = βf1(xt−1),(6.14)

1− v′(pt + x) < 1− ν = βf1(x).(6.15)

Thus there exists xt ∈ (xt−1, x) satisfying (6.4). We have f(xt−1, xt−1) ≥
f(x∗, x∗) > xt by Assumption 6.3. Let pt+1 ∈ R be given by (6.5). Suppose
pt+1 ≤ pt. Then by (6.5),

(6.16) pt =
d(xt)

f1(xt)− pt+1

pt

≤ d(xt)

f1(xt)− 1
,

where f1(xt) > 1 since xt > xt−1 ≥ x∗ > x (recall (6.10)). By (6.4) and
(6.16),

0 = 1− v′(pt + xt)− βf1(xt)(6.17)

≤ 1− v′
(

d(xt)

f1(xt)− 1
+ xt

)
− βf1(xt) = φ(xt),(6.18)

where φ is as defined in (6.11). This together with (6.13) implies that there
is a steady state capital stock x ∈ [xt, x), which is a contradiction since x∗ is
the largest steady state capital stock. Hence pt+1 > pt. This completes the
proof of the claim.

Let p > p∗. We construct an equilibrium {pt, xt} with p0 = p. By the
above claim with p−1 = p∗ and x−1 = x∗, there is (x0, p1) ∈ (x∗, x)× (p0,∞)
satisfying (6.4) and (6.5) such that x0 > x∗, f(x∗, x∗)− x0 > 0, and p1 > p0.
Constructing the entire sequence {pt, xt} by repeated application of the claim,
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Figure 6: Equilibrium dynamics under increasing returns

we see that both {pt} and {xt} are strictly increasing and that the associated
consumption path is strictly positive. Since there is no steady state (p, x)
such that (p, x) À (p∗, x∗), we have limt↑∞ pt = ∞ and limt↑∞ xt = x. As
in the proof of Proposition 5.2, {pt, xt} satisfies the transversality conditions
(5.3) and (5.4). Hence it is an equilibrium.

Proposition 6.2 shows that there is a continuum of equilibria in which
both the stock price and the capital stock grow over time. Contrary to the
case of decreasing returns, the dynamic behavior of the fundamental value
is not immediately clear. On the other hand, it follows from (6.6) that for
the equilibria described in Proposition 6.2, the fundamental value is bounded
above:

(6.19) pf
t ≤

maxx∗≤x≤x d(x)

f1(x∗, x∗)− 1
.

This implies that the bubble component pb
t is always strictly positive when-

ever the stock price pt grows unboundedly.
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As in the case of decreasing returns, the left-hand side of (6.4) is the
supply curve of capital given a stock price pt, while the right-hand side is
the demand curve for capital. If the stock price rises, the marginal utility
of wealth declines, so that the incentive to hold capital as wealth decreases,
i.e., the supply curve of capital shifts to the left, or upwards, as in the case of
decreasing returns. Here, however, the demand curve for capital is upward
sloping and crosses the supply curve from below.19 See Figure 6. Therefore,
a higher stock price implies a higher capital stock. In other words, bubbles
affect output positively.

The proof of Proposition 6.2 shows that a rise in stock price in one period
implies another rise in the next period. Hence if p0 > p∗, the stock price
grows indefinitely, i.e., the supply curve of capital keeps shifting upwards
and converges to the horizontal line at 1−ν (because there is no steady state
price strictly greater than p∗). This means that the capital stock converges
to x. See Figure 6 again.

Unlike Proposition 5.2, however, Proposition 6.2 does not characterize all
equilibria. In particular, it says nothing about equilibria with p0 < p∗. Such
equilibria may or may not exist depending on the number of steady states
and the shapes of the functions involved in (6.4) and (6.5).

6.3 Sunspot Equilibria

Sunspot equilibria can be constructed as in the exchange economy. In par-
ticular, the stochastic version of (6.5) can be written as

(6.20) Etpt+1 = f1(xt, xt)pt − d(xt).

As in (2.38), this can be expressed equivalently as

(6.21) pt+1 − p∗ = [f1(xt, xt)pt − d(xt)− p∗](1 + εt+1),

where εt+1 is a sunspot shock satisfying Etεt+1 = 0.
Figure 8 shows examples of sunspot equilibria with common primitive

sunspot shocks, which are plotted in Figure 7. The primitive sunspot shocks
et here are different from those in Figure 2, but they are drawn from the same

19The demand curve crosses the supply curve from below if there is only one intersection,
or at least at the rightmost intersection if there are multiple intersections. This is because
1− v′(p + x) < 1− ν = βf1(x, x) for any p > 0. It follows that if the supply curve shifts
to the left, we can always find a higher capital stock equating demand and supply.

27



distribution. The sunspot shocks εt are given by (2.39) for each value of µ.
The examples in Figure 8 assume β = 0.98, v(w) = 207984w0.1 + 0.01w, and
f(k, K) = 0.01k0.7K0.4 + 0.96k. These parameter values are chosen in such
a way that all the relevant assumptions are satisfied; these values are not
intended to be empirically plausible. Output is given by yt = 0.01k0.7K0.4.

Figure 8 shows four pairs of (pt − p∗)/(p1 − p∗) and (yt − y∗)/(y1 − y∗),
where y∗ is the steady state level of output. We normalize pt and yt this
way so that the relationship between pt and yt can easily be seen.20 Figure
8(a) illustrates how pt and yt grow deterministically if there is no sunspot
shock. By contrast, in Figures 8(b), 8(c), and 8(d), the bubble collapses
around period 25 due to a series of negative sunspot shocks. It is important
to notice that a change in stock price is followed by a similar change in
output one period later. This is because a current change in stock price
affects investment for the next period. Hence in our model, the bursting of a
bubble is necessarily followed by a sharp decline in output one period later.

Though the first halves of Figures 8(b), 8(c), and 8(d) are quite similar,
the second halves are strikingly different. In particular, in Figure 8(b), both
pt and yt follow an upward trend after period 40, while such a trend is not
visible in Figures 8(c) and 8(d). Note also that the “post-bubble recession”
is more severe the larger the sunspot shocks are in magnitude.21 This is
because as discussed in Section 2.4, bubbles decay to zero asymptotically
if the sunspot shocks are sufficiently large (or µ is sufficiently large), while
a stochastic equilibrium resembles its deterministic counterpart when the
sunspot shocks are sufficiently small (or µ is sufficiently small).

Though the bubbles in these examples collapse due to a series of nega-
tive sunspot shocks, such bad luck is not necessary for bubbles to disappear
asymptotically. Once again, this is because bubbles decay to zero asymptot-
ically if the sunspot shocks are sufficiently large. Figures 3(c) and 3(d) show
such examples. Similar patterns will be observed for both pt and yt if the
primitive sunspot shocks in Figure 2 are used here.

20However, the variabilities of pt and yt differ considerably. In all four cases, p∗ ≈
7.45×108, x∗ ≈ 3.49×108, y∗ ≈ 2.50×107, p0 = 2p∗, x0 = x∗, and y1 ≈ 2.53×107, which is
known in period 0 given p0 and x0. We have p1 ≈ 1.50×109, 1.52×109, 1.54×109, 1.55×109

in cases (a)–(d), respectively.
21In standard macroeconomic models, fluctuations occur around a steady state, so that

a recession occurs below a steady state. In our examples, by contrast, all fluctuations occur
above the steady state, which is the worst possible state of the economy here. Hence we
interpret as a recession a period in which output is close to the steady state level.
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Figure 7: Primitive sunspot shocks et for t = 1, . . . , 80

7 Concluding Remarks

In this paper we have constructed a representative agent model in which
stock market bubbles affect real activity, giving rise to output fluctuations.
Following the literature on the spirit of capitalism, we have assumed that
utility depends directly on wealth. We have shown that stock market bubbles
arise if the marginal utility of wealth does not decline to zero as wealth goes
to infinity. We have also shown that bubbles may affect output positively or
negatively depending on whether the production function exhibits increasing
or decreasing returns to scale. In our mode, a rise in stock price reduces the
incentive to hold capital as wealth; thus the supply curve of capital, which
is upward sloping, shifts to the left. In the case of decreasing returns, the
demand curve for capital is downward sloping, so that the capital stock falls
in response to a fall in stock price. In the case of increasing returns, on
the other hand, the demand curve for capital is upward sloping, so that the
capital stock may rise in response to a fall in stock price. Since a current
change in stock price affects investment for the next period, the bursting of
a bubble is followed by a sharp decline in output one period later. Using
numerical examples of sunspot equilibria, we have shown that bubbles decay
to zero asymptotically if the sunspot shocks are sufficiently large, and that
fluctuations in stock price are followed closely by fluctuations in output one
period later.

We have established various analytical results at the cost of some restric-
tive assumptions. For example, we have assumed throughout the paper that
utility is additively separable in consumption and wealth. We have also as-
sumed that utility is linear in consumption in the main part of our analysis.
We have shown however that bubbles do not affect real activity at all if utility
is strictly concave in consumption but is linear in wealth. This suggests that
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Figure 8: (pt− p∗)/(p1− p∗) (dashed line) and (yt− y∗)/(y1− y∗) (solid line)
for t = 1, . . . , 80
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the real effects of bubbles may depend on the relative degree of concavity
in terms of consumption and wealth. An investigation of this issue and an
examination of the effects of bubbles induced by other mechanisms are left
for future research.
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