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Abstract

This note studies a general nonstationary infinite-horizon optimization
problem in discrete time. We allow the state space in each period to
be an arbitrary set, and the return function in each period to be
unbounded. We do not require discounting, and do not require the
constraint correspondence in each period to be nonempty-valued. The
objective function is defined as the limit superior or inferior of the
finite sums of return functions. We show that the sequence of time-
indexed value functions satisfies the Bellman equation if and only if
its right-hand side is well defined, i.e., it does not involve −∞ + ∞.
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1 Introduction

The principle of optimality is a common tool in discrete-time optimization
problems in economics. Bellman’s (1957, p. 83) original version of the princi-
ple states that “an optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must constitute an op-
timal policy with regard to the state resulting from the first decision.” An
extended version of the principle says that the sequence of time-indexed value
functions satisfies the Bellman equation.1 We call this version the extended
principle of optimality in order to distinguish it from Bellman’s original ver-
sion.2 The extended principle follows from Bellman’s principle if an optimal
path is known to exist from every state in every period. However, if the
existence of an optimal path is not guaranteed, the validity of the extended
principle is less trivial.

Stokey and Lucas (1989, Chapter 4) dealt with this issue at the beginning
of their analysis of the following problem:

sup
{xt}∞t=1

lim
T↑∞

T∑
t=0

βtu(xt, xt+1)(1.1)

s.t. ∀t ∈ Z+, xt+1 ∈ Γ(xt),(1.2)

x0 ∈ X given,(1.3)

where β ≥ 0, X is a set, and Γ is a nonempty-valued correspondence from
X to itself. They also assumed that u is finite valued and the limit in
(1.1) exists in R for any x0 ∈ X and any path {xt} satisfying (1.2). Under
these assumptions, they (Theorem 4.2) verified the extended principle of
optimality, i.e., that the value function v satisfies the Bellman equation:

(1.4) ∀x ∈ X, v(x) = sup
y∈Γ(x)

{u(x, y) + βv(y)}.

What is not clear from this well known result is the borderline between
when the extended principle holds and when it fails. To our knowledge, the
answer has not been documented in the literature even though the extended

1More precisely, it is often claimed in economics that value functions satisfy the Bellman
equation by the “principle of optimality.” This property of value functions is known as the
“optimality equation” in the dynamic programming literature.

2See, e.g., Sniedovich (1978, 1992) for other versions of the principle of optimality.
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principle has been taken for granted or routinely verified for various problems
that do not satisfy Stokey and Lucas’s assumptions. The assumptions often
violated are the stationarity of the problem (e.g., Hinderer, 1970; McKenzi,
1986; Michel, 1990), the existence of the limit in (1.1) for all feasible paths
(McKenzi, 1986; Michel, 1990; Dana and Le Van, 1990),3 and the finiteness
of u (Alvarez and Stokey, 1998; Le Van and Morhain, 2002; Rincón-Zapatero
and Rodŕıguez-Palmero, 2003). On the other hand, the validity of the “prin-
ciple of optimality” has been questioned in various non-time-additive settings
(e.g., Morin, 1982; Henig, 1985; Sniedovich, 1986; Tarvainen, 1995).

This note seeks to find the exact condition under which the extended
principle holds, or fails, in the time additive case. For this purpose we make
no assumption beyond the common framework of deterministic discrete-time
optimization problems with time additive objective functions. In particular,
we allow X, u, and Γ to depend on time, allow ut to equal −∞, do not
require discounting, and do not require Γt to be a nonempty-valued corre-
spondence. We also replace lim in (1.1) by lim sup or lim inf, so that the
objective function is always well defined.

We show two results. First, the sequence of the value functions always
satisfies a slightly modified version of the Bellman equation. The required
modification is to remove the states y in Γt(x) such that ut(x, y) = −∞.
The proof of this result uses our preliminary lemma that the supremum over
two variables can be split into two suprema.4 Given this result, our proof is
similar to the classical argument (e.g., Bellman and Dreyfus, 1962, p. 15).
Second, the value functions satisfy the Bellman equation if and only if its
right-hand side is well defined or, more precisely, if it never happens that
ut(x, y) = −∞ and vt(y) = ∞ (where vt is the period t value function). This
is the precise condition under which the extended principle of optimality is
valid. The purpose of this note is to clarify this point. Since we use lim sup
or lim inf, instead of lim, to define the objective function, our results apply to
models with the overtaking criterion (Gale, 1967) or weak maximality (Brock,
1970), provided that the return functions are appropriately normalized (e.g.,

3Strictly speaking, the paper by Dana and Le Van (1990) is not a good example here
since they verified the existence of the limit in (1.1) for a normalized problem before
establishing the extended principle; see Dana and Le Van (1993, 2006) for further results
using this approach. Note however that their arguments can be simplified if the extended
principle is known to be valid without the assumption that the limit exists.

4This is a simple extension of the “principle of conditional optimization” (Sniedovich,
1992).
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McKenzi, 1986; Michel, 1990).
The next section shows our preliminary lemma. Section 3 shows our main

results.

2 Splitting the Supremum over Two Variables

This section shows a simple result that allows one to split the supremum
over two variables into two suprema. Though the validity of this procedure
is often taken for granted, it may not always be clear under what conditions
it can be taken for granted. Our purpose here is to make it clear that the
procedure is indeed valid without qualification. We do not claim originality.

We follow the convention that

(2.1) sup ∅ = −∞.

Hence sup A is always defined for any A ⊂ R. None of the sets in the following
lemma is required to be nonempty.

Lemma 2.1. Let X and Y be sets, Π ⊂ X × Y , and f : Π → R. For x ∈ X
and y ∈ Y , define

Πx = {y ∈ Y | (x, y) ∈ Π},(2.2)

Πy = {x ∈ X | (x, y) ∈ Π}.(2.3)

Then

(2.4) sup
(x,y)∈Π

f(x, y) = sup
x∈X

sup
y∈Πx

f(x, y) = sup
y∈Y

sup
x∈Πy

f(x, y).

Proof. Let us show the first equality in (2.4). Note that

(2.5) ∀(x′, y′) ∈ Π, f(x′, y′) ≤ sup
y∈Πx′

f(x′, y) ≤ sup
x∈X

sup
y∈Πx

f(x, y).

Thus

(2.6) sup
(x,y)∈Π

f(x, y) ≤ sup
x∈X

sup
y∈Πx

f(x, y).

To see the reverse inequality, note that

(2.7) ∀(x′, y′) ∈ Π, sup
(x,y)∈Π

f(x, y) ≥ f(x′, y′).
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Hence

(2.8) ∀x′ ∈ X, sup
(x,y)∈Π

f(x, y) ≥ sup
y∈Πx′

f(x′, y)

Therefore

(2.9) sup
(x,y)∈Π

f(x, y) ≥ sup
x∈X

sup
y∈Πx

f(x, y).

Now the first equality in (2.4) follows from (2.6) and (2.9). The same ar-
gument shows the equality between the leftmost and the rightmost side of
(2.4). Thus we obtain (2.4).

Since none of the sets above is required to be nonempty, the above result
can be used whenever one has the supremum over two variables. Sniedovich
(1992, p. 12) showed essentially the same result with max replacing sup. It
is useful to note that the lemma enables one to interchange the order of
“supremization” though this property is not used in this note.

3 Main Results

This section shows two results on the extended principle of optimality. Let
us start with some notation.

For t ∈ Z+, let Xt be a set, Γt be a correspondence from Xt to Xt+1, and

(3.1) Dt = {(xt, xt+1) ∈ Xt × Xt+1 |xt+1 ∈ Γt(xt)}.
For t ∈ Z+, let ut : Dt → R∪ {−∞}. The set Xt is the state space in period
t, Γt is the constraint correspondence in period t, ut is the return function in
period t, and Dt is the domain of ut.

For t ∈ Z+ and xt ∈ Xt, the set of paths feasible from xt is given by

(3.2) Πt(xt) =
{
{xi}∞i=t+1 ∈ Xt+1 × Xt+2 × · · ·

∣∣∣ ∀i ≥ t, xi+1 ∈ Γi(xi)
}

.

Let L be lim inf or lim sup. (The definition of L is fixed from here on.) We
consider the following problem:

sup
{xt}∞t=1∈Π0(x0)

L
T↑∞

T∑
t=0

ut(xt, xt+1)(3.3)

s.t. ∀t ∈ Z+, xt+1 ∈ Γt(xt),(3.4)

x0 ∈ X0 given.(3.5)
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Since ut(x, y) < ∞ for all (x, y) ∈ Dt, the objective function is always well
defined.

For t ∈ Z+ and xt ∈ Xt, define the value function by

(3.6) vt(xt) = sup
{xi}∞i=t+1∈Πt(xt)

L
T↑∞

T∑
i=t

ui(xi, xi+1).

The associated Bellman equation is

(3.7) vt(xt) = sup
xt+1∈Γt(xt)

{ut(xt, xt+1) + vt+1(xt)}.

We wish to identify exactly when this equation holds, or fails. The following
result shows that a slightly modified version of the equation always holds.

Theorem 3.1. For all t ∈ Z+ and xt ∈ Xt,

(3.8) vt(xt) = sup
xt+1∈Γ̂t(xt)

{ut(xt, xt+1) + vt+1(xt+1)},

where

(3.9) Γ̂t(xt) = {xt+1 ∈ Γt(xt) |ut(xt, xt+1) > −∞}.

Proof. Let t ∈ Z+ and xt ∈ Xt. Define

(3.10) Π̂t(xt) = {{xi}∞i=t+1 ∈ Πt(xt) |xt+1 ∈ Γ̂(xt)}.

Since LT↑∞
∑T

i=t ui(xi, xi+1) = −∞ for {xi}∞i=t+1 �∈ Π̂t(xt), we have

(3.11) vt(xt) = sup
{xi}∞i=t+1∈Π̂t(xt)

L
T↑∞

T∑
i=t

ui(xi, xi+1).

Let Γ̂ = Γ̂t(xt) and Πxt+1 = Πt+1(xt+1). Recalling (3.9), applying Lemma 2.1
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with x = xt+1 and y = {xi}∞i=t+2,
5 we get

vt(xt) = sup
{xi}∞i=t+1∈Π̂t(xt)

{
ut(xt, xt+1) + L

T↑∞

T∑
i=t+1

ui(xi, xi+1)
}

(3.12)

= sup
xt+1∈Γ̂

sup
{xi}∞i=t+2∈Πxt+1

{
ut(xt, xt+1) + L

T↑∞

T∑
i=t+1

ui(xi, xi+1)
}

(3.13)

= sup
xt+1∈Γ̂

{
ut(xt, xt+1) + sup

{xi}∞i=t+2∈Πxt+1

L
T↑∞

T∑
i=t+1

ui(xi, xi+1)
}

(3.14)

= sup
xt+1∈Γ̂

{ut(xt, xt+1) + vt+1(xt+1)}.(3.15)

Now (3.8) follows.

The following example illustrates why Γ̂t(xt) in (3.8) cannot be replaced
by Γt(xt) in the above result. Let

(3.16) x0 = 1, Γ0(1) = {0, 1}, ∀t ∈ N, Γt(xt) = {xt}.

Hence the only choice to be made is x1 ∈ {0, 1}, and any feasible path {xt}∞t=1

is either the infinite sequence of 0 or that of 1. Suppose

u0(1, 0) = 0, u0(1, 1) = −∞,(3.17)

∀t ∈ N, ut(0, 0) = 0, ut(1, 1) = 1.(3.18)

Then for {xt}∞t=1 ∈ Π0(x0),

(3.19) L
T↑∞

T∑
t=0

ut(xt, xt+1) =

{
0 if x1 = 0,

−∞ if x1 = 1.

But by (3.18), v1(1) = ∞. Thus the right-hand side of (3.8) would not be
well defined if Γ̂t(xt) were replaced by Γt(xt).

A natural question is then whether the Bellman equation holds if its
right-hand side does not involve −∞+∞. The answer is affirmative, as the
following result shows.

5In addition, Π = Π̂t(xt), X = Γ̂, and Πx = Πxt+1 .
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Theorem 3.2. Let t ∈ Z+ and xt ∈ Xt. Then the Bellman equation (3.7)
holds6 if and only if there exists no xt+1 ∈ Γt(xt) such that

(3.20) ut(xt, xt+1) = −∞, vt+1(xt+1) = ∞.

Proof. Let t ∈ Z+ and xt ∈ Xt. The necessity part is trivial since if there
is xt+1 ∈ Γt(xt) satisfying (3.20), then the right-hand side of the Bellman
equation is not well defined. To see the sufficiency part, suppose there is no
xt+1 ∈ Γt(xt) satisfying (3.20). Then

(3.21) ∀xt+1 ∈ Γt(xt) \ Γ̂t(xt), ut(xt, xt+1) + vt+1(xt+1) = −∞.

Thus the Bellman equation (3.7) follows from (3.8).

This result shows that the extended principle of optimality holds if and
only if the right-hand side of the Bellman equation is well defined. A simple
sufficient condition for this is that vt(xt) < ∞ for all t ∈ Z+ and xt ∈ Xt.
Since L may be lim sup or lim inf, Theorem 3.2 applies to models with the
overtaking criterion (Gale, 1967) or weak maximality (Brock, 1970), provided
that the return functions are appropriately normalized (e.g., McKenzi, 1986,
p. 1287; Michel, 1990, p. 708).7
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