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1 Introduction

The vast majority of growth models in the economic literature assume smooth
technologies. In most cases, smoothness, or differentiability, is assumed
purely for analytical convenience even though aggregate technologies in real-
ity are most likely nonsmooth and even discontinuous. Upward discontinu-
ities can be regarded as technological breakthroughs, and are often associated
with threshold effects (e.g., Azariadis and Drazen [2]).

Discontinuities are special cases of nonconvexities, the implications of
which have been studied rather extensively in the literature on one-sector
optimal growth models with nonconvex technologies. A fairly complete char-
acterization of optimal paths is available for the case of an S-shaped pro-
duction function (e.g., Clark [3], Skiba [28], Majumdar and Mitra [18, 19],
Dechert and Nishimura [4]), while various results have been shown on models
with more general production functions (e.g., Majumdar and Nermuth [20],
Mitra and Ray [24], Amir et al. [1]). To our knowledge, however, there has
been no formal analysis of an optimal model with a discontinuous production
function.1 Furthermore, the literature on nonconvex optimal growth models
has ruled out unbounded growth by assuming the existence of a maximum
sustainable capital stock.

This paper provides a comprehensive analysis of a nonconvex one-sector
growth model in which unbounded growth is possible and the production
function is allowed to be discontinuous. Aside from technical conditions
required to rule out trivial cases or to ensure the existence of optimal paths,
we only assume that the utility function is strictly increasing and strictly
concave,2 that the production function is strictly increasing, and that the
lower bound on next period’s capital is nondecreasing in current capital. The
last assumption, which is trivially satisfied in the standard case of reversible
investment, allows for a general form of irreversible investment. In terms of
generality, the stationary framework used by Mitra and Ray [24] and Amir
et al. [1] is the closest to ours. In their framework, however, discontinuities,
irreversible investment, and unbounded growth are ruled out.

The generality of our model poses several technical challenges. The ab-
sence of differentiability makes the standard Euler equation invalid. The

1See Dutta and Mitra [6] for an example of a convex model in which the feasible
correspondence is not continuous. The discrete-choice problems studied by Kamihigashi
[13, 14] have discontinuous features.

2The case of linear utility is studied in Kamihigashi and Roy [17].
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discontinuity of the technology implies that the value function is generally
discontinuous, and that the optimal policy correspondence is generally not
upper hemi-continuous. The irreversibility of investment implies that the
value function is not necessarily increasing. These difficulties make various
familiar techniques inapplicable, but for this very reason help gain a deeper
insight into the fundamental mechanisms of economic dynamics.

We develop four essential tools for overcoming these difficulties. The
first is an extension of the monotonicity arguments used by Dechert and
Nishimura [4] and Mitra and Ray [24]. In fact, we impose only the very
minimum set of assumptions under which their arguments go through. The
second tool is an argument based on what we call the gain function, which
measures discounted net returns on investment. The same function has been
used in the literature to study the properties of steady states (Majumdar
and Nermuth [20], Dechert and Nishimura [4], Mitra and Ray [24]). We show
that optimal paths never move in a direction in which higher discounted net
returns on investment, or higher “gains,” will never be available. This result
helps determine the directions in which an optimal path possibly moves. The
third tool is our finding that a bounded optimal path converges to an optimal
steady state despite the discontinuity of the technology. The fourth tool is
Euler inequalities derived using generalized one-sided derivatives (called Dini
derivatives) that are well-defined even for nondifferentiable or discontinuous
functions.3 We use the Euler inequalities to obtain necessary conditions for
a steady state.

With these four tools, we provide sufficient conditions for optimal paths
to be bounded, to converge to zero, to be bounded away from zero, and
to grow unboundedly. These conditions unify and generalize various condi-
tions known in the literature for special cases of our model. Our analysis
reveals that extinction (i.e., convergence to zero) and unbounded growth are
symmetrical phenomena, so are boundedness and avoidance of extinction.

We also show that under certain conditions, the model exhibits the neigh-
borhood turnpike property, which is well-known for convex models (e.g.,
McKenzie [21, 22], Yano [30], Montrucchio [25, 26], Guerrero-Lechtenberg
[9]). It is the property that as the discount factor approaches one, any
optimal path from a given initial capital stock “converges” to a small neigh-
borhood of the golden rule capital stock,4 at which sustainable consumption

3Dini derivatives were used in Kamihigashi [15] to obtain transversality conditions for
general stochastic problems.

4This is in fact slightly more general than the standard statement of the neighborhood
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is maximized. If it is maximized at infinity, then as the discount factor ap-
proaches one, any optimal path either grows unboundedly or converges to
an arbitrarily large capital stock. Our turnpike results build on some of the
arguments used by Scheinkman [27] and Majumdar and Nermuth [20] as well
as the tools developed in this paper.

The rest of the paper is organized as follows. Section 2 presents the
model along with the assumptions that are maintained throughout the paper.
Section 3 develops the essential tools discussed above and shows some results
of independent interest. Section 4 offers sufficient conditions for various
dynamic properties. Section 5 establishes neighborhood turnpike results.
Longer proofs are relegated to the appendices.

2 The model

Consider the following maximization problem:

max
{ct,xt}∞t=0

∞∑
t=0

δtu(ct) (2.1)

s.t. ∀t ∈ Z+, ct + xt+1 = f(xt), (2.2)

ct ≥ 0, (2.3)

xt+1 ≥ r(xt), (2.4)

x0 given, (2.5)

where ct is consumption in period t, xt is the capital stock at the beginning
of period t, δ is the discount factor, u is the utility function, f is the pro-
duction function, and r(xt) is the lower bound on xt+1. Every infinite sum
is understood as a Lebesgue integral in this paper.

Except for (2.4), the structure of the model is that of a standard one-
sector growth model. In the standard case, r(x) = 0 for all x ≥ 0, and f(x)
can be written as

f(x) = f̃(x) + (1− d)x (2.6)

for some function f̃ and constant d, where f̃ is the net production func-
tion and d is the depreciation rate (possibly equal to one). In models with
irreversible investment, it is typically assumed that r(x) = (1 − d)x and

turnpike theorem.
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f satisfies (2.6). Our formulation allows for nonlinear depreciation, which
seems natural but has not received attention in the literature.5

Aside from technical conditions required to rule out trivial cases or to
ensure the existence of optimal paths, we only assume that u is strictly
increasing and strictly concave, that f is strictly increasing with f(0) =
0, and that r is nondecreasing. The precise assumptions are stated and
discussed in what follows. They are maintained throughout this paper.

Assumption 2.1. (i) u : R+ → [−∞,∞) is continuous, strictly increasing,
and strictly concave. (ii) δ ∈ (0, 1).

The utility function u is not required to be differentiable. Since the case
u(0) = −∞ is permitted,6 u can be logarithmic or, more generally, of the
CRRA class.

Assumption 2.2. (i) f : R+ → R+ is strictly increasing and upper semi-
continuous. (ii) f(0) = 0.

The production function f is required to be neither continuous nor dif-
ferentiable. Part (ii) has two roles. The first is to ensure that k = 0 is
a steady state. This implication is used to claim that if an optimal path
converges to zero, it converges to a steady state (in the proof of Proposition
3.1). The second role is to ensure that consumption is small when capital is
small. This relation between capital and consumption is used to show our
local extinction result (Proposition 4.2).

To state our assumption on the lower bound function r, for h : R+ → R,
we define

h−(x) = lim
y↑x

h(y), (2.7)

h+(x) = lim
y↓x

h(y), (2.8)

5We use the following standard definitions. A path {ct, xt}∞t=0 is feasible if it satisfies
(2.2)–(2.4). A capital path {xt} is feasible if there is a consumption path {ct} such that
{ct, xt} is feasible. A path from x0 is a path {c′t, x′t} such that x′0 = x0. A capital path
from x0 is defined similarly. A feasible path {ct, xt} is optimal (from x) if it solves the
maximization problem (2.1)–(2.5) (with x0 = x). An optimal capital path {xt} is defined
similarly. A stationary (capital) path is a constant (capital) path. A pair (c, x) is a steady
state if the stationary path {ct, xt} such that ct = c and xt = x for all t ∈ Z+ is optimal.
A capital stock x ≥ 0 is a steady state if (c, x) is a steady state for some c ≥ 0.

6In this case, continuity at c = 0 means limc↓0 u(c) = −∞.
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provided that the right-hand sides are well-defined. Any nondecreasing func-
tion h clearly satisfies h−(x) ≤ h(x) ≤ h+(x).

Assumption 2.3. (i) r : R+ → R+ is nondecreasing and lower semicontin-
uous. (ii) ∀x > 0, r+(x) < x and r(x) < f(x).

Like the production function f , the lower bound function r is required to
be neither differentiable nor continuous. The inequality r+(x) < x basically
means that the irreversibility constraint (2.4) is never binding at a steady
state. It is easy to see that if r+(x) ≥ x for some x > 0, and if r is strictly
increasing, then any feasible capital path from x0 > x is bounded below by
x. Such a possibility is ruled out here. The inequality r(x) < f(x) means
that strictly positive consumption is feasible at x. This is necessary for the
maximization problem (2.1)–(2.5) to make sense in the case u(0) = −∞.
Assumption 2.3 is satisfied if r(x) = 0 for all x > 0, or if f satisfies (2.6)
with d ∈ (0, 1], r(x) = (1− d)x, and f̃(x) > 0 for all x > 0.

Assumption 2.4. ∀x > 0, there exists a feasible path {ct, xt} from x such
that

∑∞
t=0 δtu(ct) > −∞.

This assumption is satisfied, for example, if u is bounded below, or if
u(c) ≥ ln c for small c and f(x) ≥ Ax and r(x) ≤ B for small x for some
constants A, B > 0 with A > B.7 Assumption 2.4 is required for the maxi-
mization problem (2.1)–(2.5) to make sense.

Assumption 2.5. ∀x > 0,
∑∞

t=0 δtu(f t(x)) < ∞.8

The only role of this assumption is to ensure the existence of optimal
paths and the upper semicontinuity of the value function. It is satisfied, for
example, if u is bounded above, or if u(c) ≤ ln(c) for large c and f(x) ≤ Ax
for large x for some constant A > 0.

In general Assumptions 2.4 and 2.5 are joint restrictions on u, f, r, and δ,
and there are various other cases in which they are satisfied. The assumptions
made above imply the existence of an optimal path from any initial capital
stock x0 ≥ 0 by a standard argument (e.g., Ekeland and Scheinkman [7,
Proposition 4.1]).

7“For small x” means “for all x sufficiently small.” Similar remarks apply to similar
expressions.

8f2(x) ≡ f(f(x)), f3(x) ≡ f(f(f(x))), etc.
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3 Fundamental properties

This section establishes fundamental properties of optimal paths. In par-
ticular we show that an optimal capital path is monotone, that a bounded
optimal path converges to a steady state, and that an optimal capital path
never moves in a direction in which higher gains, or higher discounted net
returns on investment, will never be available. We also obtain a sufficient
condition for the existence of a nonzero steady state, and necessary condi-
tions for a steady state. Many of the results here become essential tools in
our subsequent analysis. Some of them are of independent interest.

3.1 Monotonicity and convergence

The Bellman equation for the maximization problem (2.1)–(2.5) is given by

v(xt) = max
r(xt)≤xt+1≤f(xt)

{u(f(xt)− xt+1) + δv(xt+1)}. (3.1)

Let K : R+ → 2R+ denote the policy correspondence:

K(xt) = {xt+1 ∈ [r(xt), f(xt)] | v(xt) = u(f(xt)− xt+1) + δv(xt+1)}. (3.2)

We begin by showing a monotonicity property of K.

Lemma 3.1. ∀x0 ≥ 0,∀y0 > x0,∀x1 ∈ K(x0),∀y1 ∈ K(y0), x1 ≤ y1.

Proof. Let 0 ≤ x0 < y0, x1 ∈ K(x0), and y1 ∈ K(y0). If x0 = 0, we trivially
have x1 = 0 ≤ y1. Suppose x0 > 0 and x1 > y1. Then

r(x0) ≤ r(y0) ≤ y1 < x1 ≤ f(x0) < f(y0). (3.3)

Hence y1 is feasible from x0, and x1 is feasible from y0. The rest of the proof
is the same as the first paragraph of the proof of Dechert and Nishimura [4,
Theorem 1].9

The next result shows a monotonicity property of optimal capital paths.

Lemma 3.2. Let {xt} be an optimal capital path. Then ∀t ∈ Z+, xt ≤ xt+1

or ∀t ∈ Z+, xt ≥ xt+1.

9Given (3.3), their argument goes through as long as u is strictly concave and f is
strictly increasing. Lemma 3.1 can alternatively be shown by applying Topkis [29, Theorem
6.3].
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Proof. See Mitra and Ray [24] or Kamihigashi and Roy [16].

The same result was shown by Majumdar and Nermuth [20, Theorem
3.1] and Dechert and Nishimura [4, Corollary 1] for differentiable cases, and
by Mitra and Ray [24, Lemma 5.2] for a continuous case. Lemma 3.2 follows
from an argument used in the working paper version of Mitra and Ray [24]
([23]).

It is immediate from Lemma 3.2 that every bounded optimal path con-
verges. It is not obvious, however, whether it converges to a steady state
(which in our terminology means an optimal steady state). To see why, note
that an optimal path {ct, xt} satisfies v(xt) = u(ct) + δv(xt+1) for all t ∈ Z+

by the principle of optimality. If xt → x > 0 and ct → c > 0,10 and if

lim
t↑∞

v(xt) = v(x), (3.4)

then v(x) = u(c) + δv(x) by continuity of u. This implies that (c, x) is a
steady state. But since f and r are not continuous, neither is v. Thus (3.4)
need not hold if {xt} is an arbitrary convergent sequence. Nevertheless (3.4)
can be shown if {xt} is an optimal capital path. A first step toward this is
the following.

Lemma 3.3. v is upper semicontinuous.

Proof. This can be shown by a standard argument. See Kamihigashi and
Roy [16].

Hence limt↑∞ v(xt) ≤ v(x) for any convergent capital path {xt} with
x = limt↑∞ xt, in particular, for any bounded optimal capital path. The
“reverse” inequality, limt↑∞ v(xt) ≥ v(x), can be verified by arguing that
when xt is close to x, the cost of jumping from xt to x is small, so that the
“benefit,” v(x)− v(xt), must be likewise small.

Proposition 3.1. Any optimal path that is bounded converges to a steady
state.

Proof. See Appendix A.

10If x = c = 0, then (c, x) is trivially a steady state.
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Except for immediate consequences of our assumptions, upper semicon-
tinuity is the only property of v that we use. In fact, v need not even be
monotone. If r(x) = 0 for all x ≥ 0, then a higher capital stock is always bet-
ter because it expands the set of feasible capital stocks for the next period.
But if r is not constant, then a higher capital stock, which does not always
expand the feasible set, is not necessarily better.11 The non-monotonicity of
v complicates some of our proofs, but only slightly.

The next result is immediate from Lemma 3.1. We state it here for easy
reference.

Lemma 3.4. Let y0 > 0. If every optimal capital path from y0 is nonin-
creasing, then every optimal capital path from x0 ∈ [0, y0] is bounded above
by y0. Likewise, if every optimal capital path from y0 is nondecreasing, then
every optimal capital path from x0 ≥ y0 is bounded below by y0.

3.2 The gain function

For x ≥ 0, define
Γ(x) = δf(x)− x. (3.5)

We call this function the gain function for the following reason. If x units of
capital are invested today, it generates f(x) units of output tomorrow. Thus
the discounted net return, or “gain,” is δf(x)− x.

The gain function plays a central role in our analysis. The same function
was used by Majumdar and Nermuth [20, p. 358], Dechert and Nishimura [4,
Lemmas 2, 3], and Mitra and Ray [24, p. 160, 164] to examine the properties
of steady states. We use it to determine the directions in which an optimal
path possibly moves.

11For example, suppose r(x) = 0 for x ∈ [0, z] and r(x) = f(x)−ε for x > z, where z > 0
and ε ∈ (0, f(z)). Assume u(0) = 0, and δ = 0 for the moment. Then v(x) = u(f(x)) for
x ≤ z, but v(x) = u(ε) < v(f(z)) for x > z. It is easy to see that v has a similar structure
for δ > 0 close to zero.
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It is useful to note that for any feasible path {ct, xt} and T ∈ N,

T∑
t=0

δtct =
T∑

t=0

δt[f(xt)− xt+1] (3.6)

= f(x0)− x1 + δ[f(x1)− x2] + · · ·+ δT [f(xT )− xT+1] (3.7)

= f(x0) +
T−1∑
t=0

δtΓ(xt+1)− δT xT+1. (3.8)

Thus Γ(xt+1) is the contribution of xt+1 to the present discounted value of
consumption. The following lemma is shown by generalizing an argument
used by Majumdar and Nermuth [20, p. 358] and Dechert and Nishimura [4,
Lemma 2].

Lemma 3.5. Let {xt} be an optimal capital path that is nonstationary. Then
∃t ∈ N, Γ(x0) < Γ(xt).

Proof. See Appendix A.

Therefore a nonstationary optimal capital path must always achieve a
higher gain at some point in the future. In other words, an optimal capital
path moves in a direction in which higher gains will eventually be available.
If the highest gain is available at the current capital stock, then it is optimal
to stay there forever. Thus the following result is an immediate consequence
of Lemma 3.5.

Proposition 3.2. Suppose ∃x̂ > 0, Γ(x̂) = supx≥0 Γ(x). Then x̂ is a steady
state.

As a consequence, we obtain a sufficient set of conditions for the existence
of a nonzero steady state.

Proposition 3.3. Suppose (i) ∃x̃ > 0, Γ(x̃) ≥ 0 and (ii) limx↑∞ Γ(x) <
supx>0 Γ(x). Then there exists a nonzero steady state.

Proof. Since f is upper semicontinuous, so is Γ. This together with (ii)
implies that ∃x̂ ≥ 0, Γ(x̂) = supx≥0 Γ(x) ≡ s. If s > 0, then x̂ > 0 since
Γ(0) = 0. If s = 0, then x̂ can be chosen to be strictly positive by (i). Thus
the conclusion follows by Proposition 3.2.
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If f satisfies (i), then it is called δ-productive in Mitra and Ray’s [24,
p. 164] terminology. Condition (ii) holds if there is a maximum sustainable
capital stock, i.e.,

∃x > 0,∀x > x, f(x) < x. (3.9)

For then Γ(x) = δf(x) − x < f(x) − x < 0 for x > x. Hence Proposition
3.3 extends Mitra and Ray [24, Theorem 4.2] to our general model.12 Our
argument is similar to theirs, but more direct since we do not consider support
prices.

3.3 Euler inequalities

Even in the absence of differentiability, generalized versions of derivatives are
available. For h : (a, b) → R with a < b, define

h′−(x) = lim
ε↓0

h(x)− h(x− ε)

ε
, (3.10)

h′+(x) = lim
ε↓0

h(x + ε)− h(x)

ε
. (3.11)

These generalized derivatives are called the lower left and the upper right Dini
derivative of h evaluated at x. They allow us to obtain “Euler inequalities”
instead of an Euler equation.

Lemma 3.6. Let {ct, xt} be an optimal path. Let t ∈ Z+. If ct > 0 and
xt+2 > r+(xt+1), then

u′−(ct) ≥ δu′+(ct+1)f
′
+(xt+1). (3.12)

If xt+1 > r(xt) and ct+1 > 0, then

u′+(ct) ≤ δu′−(ct+1)f
′
−(xt+1). (3.13)

Proof. See Appendix A.

12Strictly speaking, since they did not assume the strict concavity of u for their corre-
sponding result, Proposition 3.3 does not generalize their result. But in fact Proposition
3.3 holds even if u is only concave. This is because x̂ as given in the proof of Proposition
3.3 is a steady state by (A.11) even if u is only concave.
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If u and f are differentiable, (3.12) and (3.13) imply the Euler equation
u′(ct) = δu′(ct+1)f

′(xt+1). The cost of not assuming differentiability is that
the Euler equation must be replaced by the two Euler inequalities above.
This cost is rather small here since we use them only to obtain necessary
conditions for a steady state. For this purpose, for x ≥ 0, define

g(x) = f(x)− x, (3.14)

which is the stationary consumption level associated with capital stock x.
For x > 0 with g(x) > 0, define

Φ(x) = δ
u′+(g(x))

u′−(g(x))
f ′+(x), Ψ(x) = δ

u′−(g(x))

u′+(g(x))
f ′−(x). (3.15)

If one divides (3.12) through by u′−(ct) and sets xt+1 = x and ct = ct+1 = g(x),
then the resulting right-hand side is Φ(x). One obtains Ψ(x) similarly. Hence
the Euler inequalities (3.12) and (3.13) evaluated at a steady state imply
(3.16) below.

Lemma 3.7. If x > 0 is a steady state, then g(x) > 0 and

Φ(x) ≤ 1 ≤ Ψ(x). (3.16)

Proof. See Appendix A.

Since u is concave, u′− ≥ u′+; thus

∀x > 0, Φ(x) ≤ δf ′+(x), δf ′−(x) ≤ Ψ(x). (3.17)

If u is differentiable, Φ(x) = δf ′+(x) and Ψ(x) = δf ′−(x). If u and f are
differentiable, Φ(x) = Ψ(x) = δf ′(x). In this case, (3.16) implies δf ′(x) =
1, a well-known necessary condition for a steady state in the differentiable
case. The following result gives useful relationships among the functions
Φ, Ψ, f ′−, f ′+, and Γ.

Lemma 3.8. Let x > 0 and 0 ≤ a < b.
(i) If Φ(x) > 1, then δf ′+(x) > 1.
(ii) δf ′+ ≥ 1 on [a, b) iff Γ is nondecreasing on [a, b].
(iii) If Ψ(x) < 1, then δf ′−(x) < 1.
(iv) δf ′− ≤ 1 on (a, b] iff Γ is nonincreasing on [a, b].

Proof. See Appendix A.
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4 Conditional properties of optimal paths

This section provides sufficient conditions for optimal paths to be bounded, to
converge to zero, to be bounded away from zero, and to grow unboundedly.
Let us begin by giving a condition under which optimal paths from small
capital stocks are bounded.

Proposition 4.1. Suppose

∃x > 0,∀x > x, Γ(x) ≥ Γ(x). (4.1)

Then every optimal capital path from x0 ∈ [0, x] is bounded above by x.

Proof. By (4.1) and Lemma 3.5, any optimal capital path from x is nonin-
creasing. Hence the conclusion follows by Lemma 3.4.

A sufficient condition for (4.1) is that Γ is nonincreasing on [x,∞), or
equivalently δf ′− ≤ 1 on (x,∞), for some x > 0 (recall Lemma 3.8). In this
case, every optimal capital path is bounded by Proposition 4.1. If Ψ < 1 on
(0, x] in addition to (4.1), there is no steady state in (0, x] by Lemma 3.7, so
every optimal capital path from x0 ∈ (0, x] converges to zero by Propositions
4.1 and 3.1. The same conclusion can be obtained without (4.1) if u satisfies
the Inada condition at zero.

Proposition 4.2. Suppose

u′+(0) = ∞, (4.2)

∃z > 0, ∀x ∈ (0, z], Ψ(x) < 1. (4.3)

Then ∃x ∈ (0, z], every optimal capital path from x0 ∈ (0, x] converges to
zero.

Proof. See Appendix B.

Proposition 4.2 generalizes Dechert and Nishimura [4, Lemma 3]. Unlike
their proof, which relies extensively on the Euler equation, our argument uses
the Euler inequalities (through Lemma 3.7) only to rule out steady states in
(0, z]. The following result gives a condition for extinction to occur globally.

Proposition 4.3. Suppose

∀x > 0, Ψ(x) < 1. (4.4)

Then every optimal capital path converges to zero.
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Proof. By (4.4) and Lemma 3.8, Γ is nonincreasing on R++. Thus every op-
timal capital path is nonincreasing by Lemma 3.5. Since there is no nonzero
steady state by (4.4) and Lemma 3.7, every optimal capital path converges
to zero by Proposition 3.1.

If u and f are differentiable, (4.4) reduces to the condition that δf ′(x) < 1
for all x > 0. This condition was obtained by Majumdar and Mitra [18, p.
122] and Dechert and Nishimura [4, p. 346] for the S-shaped case. Proposition
4.3 is a direct generalization of their result.

The following result gives a condition under which optimal paths from
large capital stocks are bounded away from zero.

Proposition 4.4. Suppose

∃x > 0, ∀x ∈ [0, x), Γ(x) ≤ Γ(x). (4.5)

Then every optimal capital path from x0 ≥ x is bounded below by x.

Proof. Similar to the proof of Proposition 4.1

A sufficient condition for (4.5) is that Γ is nondecreasing on [0, x], or
equivalently δf ′+ ≥ 1 on [0, x), for some x > 0. In this case, every optimal
capital path is bounded away from zero by Proposition 4.4. If Φ > 1 on
[x,∞) in addition to (4.5), there is no steady state in [x,∞) by Lemma
3.7, so every optimal capital path from x0 ≥ x goes to infinity. The same
conclusion can be obtained without (4.5) under an additional condition on
u.

Proposition 4.5. Suppose

lim
c↑∞

u′+(c)c < ∞, (4.6)

∃z > 0,∀x ≥ z, Φ(x) > 1. (4.7)

Then ∃x ≥ z, every optimal capital path from x0 ≥ x goes to infinity.

Proof. See Appendix B.

Condition (4.6) holds if u is bounded above, as shown in the proof. An-
other important case in which (4.6) holds is when u(c) = ln c, which implies
u′(c)c = 1 for all c > 0. Condition (4.6) means that marginal utility declines
relatively fast as consumption increases. Hence, when the stationary level of
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consumption is already high (as implied by (4.7) and Lemma B.4 for large
capital stocks), it is not attractive to choose a decreasing path, which entails
even higher current consumption and lower future consumption.

The following result gives a condition for unbounded growth to occur
globally.

Proposition 4.6. Suppose

∀x > 0, Φ(x) > 1. (4.8)

Then every optimal capital path goes to infinity.

Proof. Similar to the proof of Proposition 4.3.

For a differentiable convex model, Jones and Manuelli [10, p. 1014] showed
that unbounded growth occurs if δf ′ is bounded below away from 1.13 If u and
f are differentiable, (4.8) reduces to the condition that δf ′(x) > 1 for all x >
0. By a standard argument this condition is necessary for unbounded growth
in the differentiable convex case (Jones and Manuelli [11, p. 78]). Proposition
4.6 shows that the condition is also sufficient for global unbounded growth
even without convexity.14

5 The neighborhood turnpike property

Propositions 4.2 and 4.5 indicate the possibility that extinction occurs from
small stocks, while unbounded growth occurs from large stocks. This is be-
cause (4.2), (4.3), (4.6), and (4.7) can all be satisfied simultaneously. Likewise
various other path-dependent phenomena are also possible.

Despite such nonclassical features, as δ approaches one, the model essen-
tially returns to the classical world. More specifically, this section shows that
in many cases, for δ close to one, any optimal capital path from a given initial
stock “converges” to a small neighborhood of what we define as the golden
rule capital stock. We begin with the assumption that maximum sustainable
consumption, the largest possible value of g(x) = f(x)−x, is strictly positive.

13The sufficient conditions for unbounded growth used by Dolmas [5, Assumption (P)]
and Kaganovich [12, Assumption 7] reduce to Jones and Manuelli’s [10] condition in the
one-sector case with a single capital good.

14The following statement can be added to Propositions 4.5–4.6: the associated con-
sumption path also goes to infinity. This can easily be shown by using (3.12), Lemma B.4,
and the fact that v(x) ≥ u(g(x))/(1− δ) whenever g(x) ≥ 0.
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Assumption 5.1. g∗ ≡ supx≥0 g(x) ∈ (0,∞].

It is easy to see that if g∗ ≤ 0, every optimal capital path converges to
zero.15 The role of Assumption 5.1 is to rule out this trivial case. Note that
we do not require g∗ to be finite.

We define the golden rule capital stock x∗ as follows.

x∗ =

{
min{x ≥ 0 | g(x) = g∗} if ∃x ≥ 0, g(x) = g∗,

∞ otherwise.
(5.1)

By Assumption 5.1, x∗ > 0. The case x∗ = ∞ means that sustainable
consumption is maximized at infinity.

This section maintains all the assumptions stated in Section 2 for each
δ ∈ (0, 1). The following is our last assumption.

Assumption 5.2. ∀x ∈ (0, x∗] ∩ (0,∞), g−(x) > 0.16

It is easy to see that if g−(x) ≤ 0, i.e., f−(x) ≤ x, for some x ∈ (0, x∗],
then no feasible capital path from x0 < x can reach x. Hence Assumption 5.2
is a minimum requirement for the neighborhood turnpike property to hold
globally.

For the rest of this section, we take an arbitrary initial capital stock
x0 ∈ R++ as given. For each δ ∈ (0, 1), let {xδ

t} be an optimal capital path
from x0 with the discount factor equal to δ. The neighborhood turnpike
property is now expressed as follows.

lim
δ↑1

lim
t↑∞

xδ
t = x∗.17 (5.2)

This equation means that for δ close to one, {xδ
t} converges to a small neigh-

borhood of x∗.
The first step to establishing (5.2) is the following result, which is similar

to Scheinkman’s [27] “visit lemma.”

15To see this, suppose ∀x > 0, g(x) ≤ 0. Let {xt} be an optimal capital path from
x0 > 0. Then {xt} is nonincreasing since ∀t ∈ Z+, xt+1− xt ≤ f(xt)− xt = g(xt) ≤ 0. By
Lemma 3.7, there is no nonzero steady state. Since {xt} converges to a steady state by
Proposition 3.1, it converges to zero.

16If x∗ < ∞, then x ≤ x∗; if x∗ = ∞, then x < x∗. Recall (2.7) for the definition of g−.
17Of course, we do not assume that the expression on the left-hand side is well-defined

a priori. The same remark applies to Lemma 5.1.
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Lemma 5.1. limδ↑1 supt∈Z+
g(xδ

t+1) = g∗.

Proof. See Appendix C.

This lemma implies that if x∗ is a unique maximizer of g(x) (or, more
precisely, under (5.6) and (5.7) below), then for δ close to one, {xδ

t} “vis-
its” a small neighborhood of x∗ at least once. This implication was shown
by Scheinkman [27] for a convex multi-sector model. In our case, {xδ

t} ap-
proaches some maximizer of g(x) at least once for δ close to one. The fol-
lowing result shows that if r(x0) ≤ x∗, then {xδ

t} in fact converges to a small
neighborhood of x∗ for δ close to one.

Proposition 5.1. Suppose
r(x0) ≤ x∗. (5.3)

Then (5.2) holds.

Proof. See Appendix C.

An obvious sufficient condition for (5.3) is

∀x ≥ 0, r(x) = 0, (5.4)

i.e., the irreversibility constraint (2.4) is effectively absent. In this case,
(5.3) holds regardless of x0, so does (5.2). Another immediate implication
of Proposition 5.1 is an “unbounded growth” version of the neighborhood
turnpike theorem.

Corollary 5.1. Suppose x∗ = ∞. Then

lim
δ↑∞

lim
t↑∞

xδ
t = ∞. (5.5)

Proof. Immediate from Proposition 5.1.

Equation (5.5) means that for δ close to one, {xδ
t} either goes to infinity

or converges to an arbitrarily large steady state.
The only situation that is not covered by Proposition 5.1 is when x∗ < ∞

and r(x0) > x∗. In this case, (5.2) need not hold since {xδ
t} could converge to

a neighborhood of some x ∈ (x∗,∞] with g(x) = g∗. However this ambiguity
disappears when x∗ is the “unique maximizer” of g.

16



Proposition 5.2. Suppose x∗ < ∞. Suppose

∀x ∈ (0,∞) \ {x∗}, g(x) < g∗, (5.6)

lim
x↑∞

g(x) < g∗. (5.7)

Then (5.2) holds.

Proof. See Appendix C.

Proposition 5.2 can be thought of as a generalization of Majumdar and
Nermuth [20, Theorem 3.4]. To be specific, assume (5.6). Suppose (i) there
is a maximum sustainable capital stock, (ii) there is a neighborhood of zero
on which Φ > 1 for δ close to one, and (iii) there is a neighborhood of x∗ that
contains only one steady state x(δ) for δ close to one. In this case, (5.7) holds
by (i) (recall (3.9)), and Proposition 5.2 along with Propositions 3.1 and 4.4
implies that for δ close to one, all optimal capital paths from all initial stocks
converge to x(δ). This result was shown by Majumdar and Nermuth [20] for
a differentiable case using the argument of Scheinkman’s [27] visit lemma.

Appendix A Proofs of Section 3 results

A.1 Proof of Proposition 3.1

Lemma A.1. Let {xt} be a convergent feasible capital path such that x ≡
limt↑∞ xt ∈ (0,∞). Then ∃ν ∈ R, for large t,

u(0)

1− δ
< ν < v(xt). (A.1)

Proof. Let z ∈ (r+(x), x). This interval is nonempty by Assumption 2.3. Let
c ∈ (0, x− z). Since limt↑∞ xt = x, for large t,

r(xt) < z < z + c < xt+1 ≤ f(xt). (A.2)

Let t ∈ Z+ be large enough to satisfy (A.2). By Assumption 2.4, there is
a feasible path {ĉs, x̂s} from z with

∑∞
s=0 δsu(ĉs) > −∞. Define {c̃s, x̃s} as

follows.

x̃0 = xt, x̃1 = z, c̃0 = f(xt)− z, ∀s ∈ N, x̃s+1 = x̂s, c̃s = ĉs−1. (A.3)

17



Then by (A.2), x̃1 ∈ (r(xt), f(xt)) and c̃0 > c. Hence by feasibility of {ĉs, x̂s}
from x̃1 (= z), {c̃s, x̃s} is feasible from xt. Thus

v(xt) ≥
∞∑

s=0

δsu(c̃s) > u(c) + δ

∞∑
s=0

δsu(ĉs) ≡ ν. (A.4)

Since the last sum is finite and c > 0, (A.1) follows.

Lemma A.2. Let {xt} be an optimal capital path such that x ≡ limt↑∞ xt ∈
(0,∞). Then limt↑∞ v(xt) = v(x).

Proof. Let {ct} be the corresponding consumption path. We claim

c ≡ lim
t↑∞

ct > 0. (A.5)

Note that limt↑∞ ct exists since {f(xt)} is monotone in t and thus

lim
t↑∞

ct = lim
t↑∞

[f(xt)− xt+1] = lim
t↑∞

f(xt)− x. (A.6)

Suppose limt↑∞ ct = 0. Then

lim
t↑∞

v(xt) = lim
t↑∞

∞∑
i=0

δiu(ct+i) ≤ u(0)

1− δ
, (A.7)

where the inequality holds by Fatou’s lemma since {ct} is bounded. But
(A.7) contradicts Lemma A.1. We have verified (A.5).

To prove the lemma, it suffices to show

v(x) ≤ lim
t↑∞

v(xt), (A.8)

since limt↑∞ v(xt) ≤ v(x) by Lemma 3.3. By Assumption 2.3, (A.5), and
(A.6), r+(x) < x < limt↑∞ f(xt). Hence for large t, r(xt) < x < f(xt). Thus

u(f(xt)− x) + δv(x) ≤ u(ct) + δv(xt+1). (A.9)

Since limt↑∞ u(ct) = limt↑∞ u(f(xt) − x) = u(c) by (A.6) and continuity,
applying limt↑∞ to (A.9) yields (A.8).
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Let us now prove Proposition 3.1. Let {ct, xt} be an optimal path that is
bounded. Let x = limt↑∞ xt and c = limt↑∞ ct. By upper semicontinuity of
f ,

c + x ≤ f(x). (A.10)

If x = 0, then c = 0, so (c, x) is trivially a steady state. Suppose x > 0. For
t ∈ Z+, we have v(xt) = u(ct)+δv(xt+1). By Lemma A.2 and continuity of u,
v(x) = u(c) + δv(x). Since x > r(x) by Assumption 2.3, it remains to verify
c+x = f(x). Recall (A.10). If c+x < f(x), then v(x) ≥ u(f(x)−x)+δv(x) >
u(c) + δv(x) = v(x), a contradiction.

A.2 Proof of Lemma 3.5

Lemma A.3. For any feasible path {ct, xt} with x0 > 0,

∞∑
t=0

δtu(ct) ≤ u((1− δ)f(x0) + Γ)

1− δ
, (A.11)

where Γ = supt∈Z+
Γ(xt+1). The inequality is strict if {ct} is not constant.

Proof. If
∑∞

t=0 δtu(ct) = −∞ or Γ = ∞, then (A.11) trivially holds with
strict inequality. Suppose

∑∞
t=0 δtu(ct) > −∞ and Γ < ∞. It follows from

(3.6)–(3.8) that ∀T ∈ N,

T∑
t=0

δtct ≤ f(x0) +
T−1∑
t=0

δtΓ. (A.12)

Hence ∞∑
t=0

δtct ≤ f(x0) +
Γ

1− δ
. (A.13)

Multiplying through by 1− δ and recalling that u is increasing, we get

u

(
(1− δ)

∞∑
t=0

δtct

)
≤ u

(
(1− δ)f(x0) + Γ

)
. (A.14)

Applying Jensen’s inequality to the left-hand side yields (A.11). Since u is
strictly concave, (A.11) holds with strict inequality if {ct} is not constant.
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Lemma A.4. Let {ct, xt} be a nonstationary optimal path with x0 > 0 such
that

∀t ∈ Z+, Γ(xt+1) ≤ Γ(x0). (A.15)

Then {ct} is not constant.18

Proof. Suppose {ct} is constant. By Lemma A.3 and (A.15),

u(c0) ≤ u((1− δ)f(x0) + Γ(x0)) = u(g(x0)), (A.16)

where g is defined by (3.14). It follows that c0 ≤ g(x0). If c0 < g(x0), then
this contradicts optimality since the stationary path from x0 is feasible (recall
Assumption 2.3(ii)). Suppose c0 = g(x0). Then x1 = f(x0) − g(x0) = x0.
Since {ct} is constant, it follows that ∀t ∈ N, xt = x0, contradicting the
nonstationarity of {ct, xt}.

Let us now prove Lemma 3.5. Let {ct} be the associated consumption
path. Assume (A.15). Since {xt} is nonstationary, {ct} is not constant by
Lemma A.4. Thus by Lemma A.3 and (A.15),

∞∑
t=0

δtu(ct) <
u((1− δ)f(x0) + Γ(x0))

1− δ
=

u(g(x0))

1− δ
. (A.17)

This requires g(x0) > 0, which together with Assumption 2.3(ii) implies that
the stationary path from x0 is feasible. But this contradicts the optimality
of {ct, xt} by (A.17) again.

A.3 Proof of Lemma 3.6

Proof. We only prove (3.13). The proof of (3.12) is similar. Suppose

xt+1 > r(xt), ct+1 > 0. (A.18)

If f is not left continuous at xt+1, then f ′−(xt+1) = ∞, so (3.13) trivially
follows. Suppose f is left continuous at xt+1. Consider increasing ct by ε,
decreasing xt+1 by ε, and decreasing ct+1 by µ(ε) ≡ f(xt+1) − f(xt+1 − ε),

18The nonstationarity of {ct, xt} only implies that {xt} is not constant. It is possible
that {ct} is constant while {xt} is not constant. On the other hand, if {xt} is constant,
{ct} is obviously constant.
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while keeping the rest of the path unchanged. By (A.18), this perturbation
is feasible for small ε > 0. For small ε > 0, by optimality,

u(ct + ε) + δu(ct+1 − µ(ε)) ≤ u(ct) + δu(ct+1). (A.19)

Rearranging and dividing through by ε, we get

u(ct + ε)− u(ct)

ε
≤ δ

u(ct+1)− u(ct+1 − µ(ε))

µ(ε)

µ(ε)

ε
. (A.20)

By concavity the left-hand side is monotone in ε, so is [u(ct+1) − u(ct+1 −
µ(ε))]/µ(ε). Since limε↓0 µ(ε) = 0 by left continuity of f at xt+1, applying
limε↓0 to both sides of (A.20) yields (3.13).

A.4 Proof of Lemma 3.7

If g(x) < 0, the stationary path from x is not feasible. Thus g(x) ≥ 0. To
verify g(x) > 0, it suffices to show that there is a feasible path {c′t, x′t} from
x such that c′0 > 0 and

∑∞
t=0 δtu(c′t) > −∞; for this implies that a feasible

path along which consumption is zero every period cannot be optimal.
Let c′0 = (f(x)− r(x))/2 > 0 and x′1 = f(x)− c′0 > r(x), where the first

inequality holds by Assumption 2.3. By Assumption 2.4, there is a feasible
path {ĉi, x̂i} from x′1 with

∑∞
i=0 δiu(ĉi) > −∞. For t ∈ N, let c′t = ĉt−1 and

x′t+1 = x̂t. Then {c′t, x′t} is feasible and has the desired property. It follows
that g(x) > 0.

From this and Assumption 2.3, r+(x) < x < f(x). Hence (3.12) and
(3.13) hold with ct = ct+1 = g(x) and xt+1 = x. Both inequalities in (3.16)
now follow.

A.5 Proof of Lemma 3.8

Lemma A.5. Let h : [a, b] → R be upper semicontinuous, where −∞ < a <
b < ∞.

(i) If h is nondecreasing (nonincreasing), then h′− ≥ (≤) 0 on (a, b] and
h′+ ≥ (≤) 0 on [a, b).19

(ii) If h′+ ≥ 0 on [a, b), then h is nondecreasing on [a, b].
(iii) If h′− ≤ 0 on (a, b], then h is nonincreasing on [a, b].

19This part does not require upper semicontinuity.
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Proof. See Giorgi and Komlósi [8, pp. 13–14].

Let us prove Lemma 3.8. Parts (i) and (iii) are immediate from (3.17).
Parts (ii) and (iv) hold by Lemma A.5 because Γ is upper semicontinuous,
Γ′+ = δf ′+ − 1, and Γ′− = δf ′− − 1.

Appendix B Proofs of Section 4 results

B.1 Proof of Proposition 4.2

Lemma B.1. Let {ct, xt} be an optimal path satisfying

(i) g(x0) > 0, (ii) ∃T ∈ N,∀t ≤ T − 1, Γ(xt+1) ≤ Γ(x0). (B.1)

Then
δ[v(xT+1)− v(x0)] ≥ u′+(g(x0))(xT+1 − x0). (B.2)

Proof. By (3.6)–(3.8) and (B.1)(ii),

T∑
t=0

δtct ≤ f(x0) +
T−1∑
t=0

δtΓ(x0)− δT xT+1 (B.3)

=
T∑

t=0

δt[f(x0)− x0] + δT x0 − δT xT+1. (B.4)

Since g(x0) = f(x0)− x0 (recall (3.14)), it follows that

T∑
t=0

δt(ct − g(x0)) ≤ −δT (xT+1 − x0). (B.5)

Define {x̃t} as follows: x̃t = x0 for t ≤ T + 1 and x̃t = xt−T−1 for
t ≥ T + 2. By (B.1)(i), {x̃t} is feasible and {x̃T+1+i}∞i=0 (= {xt}) is optimal
from x0. Thus

T∑
t=0

δtu(g(x0)) + δT+1v(x0) ≤
T∑

t=0

δtu(ct) + δT+1v(xT+1). (B.6)
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This rearranges to

−δT+1[v(xT+1)− v(x0)] ≤
T∑

t=0

δt[u(ct)− u(g(x0))] (B.7)

≤
T∑

t=0

δtu′+(g(x0))(ct − g(x0)) (B.8)

≤ −u′+(g(x0))δ
T (xT+1 − x0), (B.9)

where (B.8) holds by concavity, and (B.9) by (B.5). Now (B.2) follows.

Lemma B.2. Assume (4.2). Suppose ∃z > 0, there exists a sequence {zi}∞i=1

in (0, z) such that

(i) lim
i↑∞

zi = 0, (ii) ∀i ∈ N,∀x ∈ (zi, z], Γ(zi) ≥ Γ(x). (B.10)

Then ∃i ∈ N, any optimal capital path from zi is bounded above by z.

Proof. Suppose the conclusion is false. Then ∀i ∈ N, there is an optimal
path {ci

t, x
i
t} with xi

0 = zi such that limt↑∞ xi
t > z. Let z > 0 be such that

f(z) < z,
z

1− δ
< z. (B.11)

Without loss of generality, assume ∀i ∈ N, xi
0 < z (recall xi

0 = zi). Note that

lim
i↑∞

g(xi
0) = 0, (B.12)

∀i ∈ N, g(xi
0) = f(xi

0)− xi
0 > f(xi

0)− xi
ti
≥ 0, (B.13)

where ti is the first t with xi
t > xi

0.
Let i ∈ N. Let Ti be the first t ∈ Z+ with xi

t+1 > z. Note that

xi
0 < z < xi

Ti
≤ z < xi

Ti+1 ≤ f(xi
Ti

) ≤ f(z). (B.14)

By Lemma B.1, (B.10)(ii), and (B.13),

δv(xi
Ti+1) ≥ u′+(g(xi

0))(x
i
Ti+1 − xi

0) + δv(xi
0). (B.15)

Recalling (B.14) and (B.13), we get

m ≡ δ max
y∈[z,f(z)]

v(y) ≥ u′+(gi)(z − z) +
δu(gi)

1− δ
, (B.16)
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where gi = g(xi
0). By concavity, u(gi) ≥ u(z)−u′+(gi)(z−gi) ≥ u(z)−u′+(gi)z.

Thus

∞ > m ≥ u′+(gi)(z − z) +
δ

1− δ
[u(z)− u′+(gi)z] (B.17)

= u′+(gi)

[
z − z

1− δ

]
+

δu(z)

1− δ
. (B.18)

Since the expression in square brackets is strictly positive by (B.11), and
since limi↑∞ u′+(gi) = ∞ by (B.12) and (4.2), the right-hand side of (B.18)
goes to ∞ as i ↑ ∞, a contradiction.

To complete the proof of Proposition 4.2, let {zi}∞i=1 be a sequence in
(0, z) satisfying (B.10)(i). By (4.3) and Lemma 3.8, Γ is nonincreasing on
(0, z]. Thus {zi} also satisfies (B.10)(ii). By Lemma B.2, ∃i ∈ N, any optimal
capital path from zi is bounded above by z. Let x = zi. By (4.3) and Lemma
3.7, there is no steady state in (0, z]. Thus any optimal capital path from x
converges to zero by Proposition 3.1. Hence every optimal capital path from
x0 ∈ (0, x] converges to zero by Lemma 3.4 and Proposition 3.1.

B.2 Proof of Proposition 4.5

Lemma B.3. If u is bounded above, then limc↑∞ u′+(c)c = 0.

Proof. By concavity, ∀c, ĉ > 0, u(c) ≤ u(ĉ) + u′+(ĉ)(c− ĉ). Thus

∀c, ĉ > 0, u′+(ĉ)ĉ ≤ u(ĉ)− u(c) + u′+(ĉ)c. (B.19)

Since u is bounded above, limĉ↑∞ u′+(ĉ) = 0. It follows that

∀c > 0, lim
ĉ↑∞

u′+(ĉ)ĉ ≤ lim
ĉ↑∞

u(ĉ)− u(c). (B.20)

Applying limc↑∞ yields limĉ↑∞ u′+(ĉ)ĉ = 0.

Lemma B.4. Suppose ∃z > 0, there exists a sequence {zi}∞i=1 in (z,∞) such
that

(i) lim
i↑∞

zi = ∞, (ii) ∀i ∈ N,∀x ∈ [z, zi), Γ(x) ≤ Γ(zi). (B.21)

Then ∃θ > 0, ∃i ∈ N,∀i ≥ i, zi ≤ θg(zi).
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Proof. By (B.21), ∀i ∈ N, δf(zi)− zi ≥ δf(z)− z; equivalently,

∀i ∈ N, f(zi)− zi ≥ f(z)− z

δ
+ µzi, (B.22)

where µ = 1/δ − 1. From (B.22), ∀i ∈ N, g(zi)/zi ≥ [f(z)− z/δ]/zi + µ. Let
θ > 1/µ. Then since limi↑∞ zi = ∞, g(zi)/zi ≥ 1/θ for large i.

Lemma B.5. Assume (4.6). Suppose ∃z > 0, there exists a sequence {zi}∞i=1

in (z,∞) satisfying (B.21). Then ∃i ∈ N, any optimal capital path from zi

is bounded below by z.

Proof. Suppose the conclusion is false. Then ∀i ∈ N, there is an optimal
path {ci

t, x
i
t} with xi

0 = zi such that limt↑∞ xi
t < z. Let θ > 0 and i ∈ N be

as given by Lemma B.4. Without loss of generality, assume i = 1. Then

∀i ∈ N, xi
0 ≤ θg(xi

0). (B.23)

(Recall xi
0 = zi.) By (B.21)(i) and (B.23),

lim
i↑∞

g(xi
0) = ∞. (B.24)

Let i ∈ N. Let Ti be the first t ∈ Z+ with xi
t+1 < z. By Lemma B.1 and

(B.23),

δ[v(xi
0)− v(xi

Ti+1)] ≤ u′+(gi)(xi
0 − xi

Ti+1) ≤ u′+(gi)θgi, (B.25)

where gi = g(xi
0). Since the stationary path from xi

0 is feasible by (B.23),

u(gi)

1− δ
≤ v(xi

0). (B.26)

Since xi
Ti+1 < z,

v(xi
Ti+1) ≤ max

y∈[0,z]
v(y). (B.27)

It follows from (B.25)–(B.27) that

δ

[
u(gi)

1− δ
− max

y∈[0,z]
v(y)

]
≤ θu′+(gi)gi. (B.28)

Suppose u is bounded above. Then by (B.24), the left-hand side of (B.28)
tends to

δ

[
supc≥0 u(c)

1− δ
− max

y∈[0,z]
v(y)

]
> 0 (B.29)
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as i ↑ ∞. On the other hand, by (B.23) and Lemma B.3, the right-hand side
of (B.28) goes to zero as i ↑ ∞, a contradiction.

Now suppose u is unbounded above. Then by (B.23), the left-hand side
of (B.28) goes to ∞ as i ↑ ∞, while by (4.6) the right-hand side is uniformly
bounded above for large i, again a contradiction.

The proof of Proposition 4.5 can now be completed by an argument sim-
ilar to the last paragraph of the proof of Proposition 4.2.

Appendix C Proofs of Section 5 results

C.1 Proof of Lemma 5.1

Lemma C.1. (i) ∀x > 0,∀x ≥ x, infx∈[x,x](x − r(x)) > 0. (ii) ∀x ∈
(0, x∗),∀x ∈ [x, x∗] ∩ [x,∞),20 infx∈[x,x] g(x) > 0.

Proof. We prove (ii) first. Suppose infx∈[x,x] g(x) = 0. Then there exists a
sequence {xi} ⊂ [x, x] such that limi↑∞ g(xi) = 0. Taking a subsequence,
we may assume that {xi} converges to some y ∈ [x, x]. Now we obtain
the following contradiction: 0 = limi↑∞ g(xi) ≥ g−(y) > 0, where the last
inequality holds by Assumption 5.2. To prove (i), replace g(x) by (x− r(x))
and note from Assumption 2.3(ii) that y − r+(y) > 0.

Lemma C.2. Let y ∈ (0, x∗] ∩ (0,∞). Then ∀x > 0, there exists a feasible
path {ct, xt} from x such that

∃T ∈ Z+, ∀t ≤ T, ct > 0, ∀t ≥ T + 1, ct = g(y), xt = y. (C.1)

Proof. Suppose x ≥ y first. We construct {ct, xt} recursively as follows:

x0 = x, ∀t ∈ Z+, xt+1 = max{r(xt), y}, ct = f(xt)− xt+1. (C.2)

It is easy to see that {xt} is nonincreasing. Let a = infz∈[y,x](z − r(z)). By
Lemma C.1, a > 0. If ∃t ∈ Z+, r(xt) > y, then xt+1 − xt = r(xt) − xt ≤
−a. Thus the inequality r(xt) > y holds only finitely many times or never
holds. Let T be the first t ∈ Z+ such that r(xt) ≤ y. If T ≥ 1, then for
t ≤ T − 1, ct = f(xt)− r(xt) > 0 by Assumption 2.3. We have xT+1 = y and
cT = f(xT ) − y > f(y) − y = g(y) ≥ g−(y) > 0, where the last inequality

20Recall Footnote 16.
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holds by Assumption 5.2. For t ≥ T + 1, ct = g(y). It follows that {ct, xt} is
feasible and satisfies (C.1).

Now suppose x < y. Let c ≡ infz∈[x,y] g(z). By Lemma C.1, c > 0. Let
c ∈ (0, c). We construct {ct, xt} recursively as follows:

x0 = x, ∀t ∈ Z+, xt+1 = min{f(xt)− c, y}, ct = f(xt)− xt+1. (C.3)

It is easy to see that {xt} is nondecreasing. Note that

∀t ∈ Z+, ct = max{c, f(xt)− y} ≥ c. (C.4)

If ∃t ∈ Z+, f(xt)−c < y, then xt+1−xt = f(xt)−c−xt = g(xt)−c ≥ c−c > 0.
Thus the inequality f(xt) − c < y holds only finitely many times or never
holds. Since {xt} is nondecreasing, the irreversibility constraint (2.4) always
holds. It follows that {ct, xt} is feasible and satisfies (C.1).

Lemma C.3. Let y ∈ (0, x∗] ∩ (0,∞). Then

lim
δ↑1

sup
t∈Z+

g(xδ
t+1) ≥ g(y). (C.5)

Proof. Let η > 0. We show that for δ close to one, any feasible path {c̃t, x̃t}
from x0 is nonoptimal if

sup
t∈Z+

g(x̃t+1) ≤ g(y)− η. (C.6)

Since ∀x ≥ 0, Γ(x) = δf(x)− x ≤ f(x)− x = g(x), it follows by Lemma A.3
that

∀δ ∈ (0, 1), (1− δ) sup
∞∑

t=0

δtu(c̃t) ≤ u((1− δ)f(x0) + g(y)− η), (C.7)

where the supremum is taken over all feasible paths {c̃t, x̃t} satisfying (C.6).
By Lemma C.2, there is a feasible path {ct, xt} from x0 satisfying (C.1).
Hence

∀δ ∈ (0, 1), (1− δ)
T∑

t=0

δtu(ct) + δT+1u(g(y)) ≤ (1− δ)v(x0). (C.8)

Note that T does not depend on δ and that v implicitly depends on δ. As
δ ↑ 1, the left-hand side of (C.8) goes to u(g(y)), while the right-hand side
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of (C.7) goes to u(g(y)− η) < u(g(y)). It follows that for δ close to one, any
feasible path {c̃t, x̃t} satisfying (C.6) is nonoptimal.

Since {xδ
t} is optimal for each δ ∈ (0, 1), we must have supt∈Z+

g(xδ
t+1) >

g(y)− η for δ close to one. Since this is true for any η > 0, (C.5) follows.

Now we prove Lemma 5.1. By definition of g∗, limδ↑1 supt∈Z+
g(xδ

t+1) ≤ g∗.
Thus it suffices to show

lim
δ↑1

sup
t∈Z+

g(xδ
t+1) ≥ g∗. (C.9)

If x∗ < ∞, (C.9) follows from Lemma C.3 with y = x∗. If x∗ = ∞, applying
supy∈R++

to (C.5) yields (C.9).

C.2 Proof of Proposition 5.1

Lemma C.4. Suppose ∃x̂ > 0, g(x̂) = g∗. Then for any δ ∈ (0, 1), any
optimal capital path from x̂ is nonincreasing.

Proof. Note that ∀x ≥ x̂, Γ(x) = δf(x) − x = δ(f(x) − x) − (1 − δ)x ≤
δg(x̂)− (1− δ)x̂ = Γ(x̂). Thus the conclusion holds by Lemma 3.5.

Lemma C.5. If x0 ≤ x∗, then limδ↑1 limt↑∞ xδ
t ≤ x∗.

Proof. The inequality is trivial if x∗ = ∞. If x∗ < ∞, it holds by Lemmas
3.4 and C.4 with x̂ = x∗.

Lemma C.6. If x0 < x∗, then (5.2) holds.

Proof. By Lemma C.5, it suffices to show limδ↑1 limt↑∞ xδ
t ≥ x∗. Suppose

this inequality does not hold; i.e., ∃x ∈ (x0, x
∗), there is a sequence {δi}∞i=1

in (0, 1) with limi↑∞ δi = 1 such that ∀i ∈ N, limt↑∞ xδi
t ≤ x. By monotonicity,

∀i ∈ N,∀t ∈ Z+, xδi
t+1 ≤ x. Thus ∀i ∈ N, supt∈Z+

g(xδi
t+1) ≤ maxy∈[0,x] g(y) <

g∗, contradicting Lemma 5.1.

Lemma C.7. Let y ∈ (0, x∗). Then for δ close to one, every optimal capital
path from y is nondecreasing.

Proof. Note that Lemma C.6 holds for any x0 ∈ (0, x∗) and any set of optimal
capital paths {{xδ

t}}δ∈(0,1) from x0 such that each {xδ
t} is optimal when the

discount factor equals δ. Thus the conclusion follows from monotonicity and
Lemma C.6 with x0 = y.
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Lemma C.8. If x∗ ≤ x0, then x∗ ≤ limδ↑1 limt↑∞ xδ
t .

Proof. By Lemmas C.7 and 3.4, ∀y ∈ (0, x∗), y ≤ limδ↑1 limt↑∞ xδ
t . Letting

y ↑ x∗ gives the desired inequality.

Lemma C.9. If x0 = x∗, then (5.2) holds.

Proof. By Lemmas 3.4 and C.4 with x̂ = x∗, limδ↑1 limt↑∞ xδ
t ≤ x∗. This

together with Lemma C.8 shows (5.2).

Lemma C.10. Suppose x∗ < ∞ and x∗ < x0. Assume (5.3). Let z ∈
(x∗, x0]. Then for any δ ∈ (0, 1), there exists no optimal capital path from z
that is nondecreasing.

Proof. Suppose there is an optimal path {c′t, x′t} from z such that {x′t} is
nondecreasing. Then

∀t ∈ Z+, c′t = f(x′t)− x′t+1 ≤ f(x′t)− x′t = g(x′t). (C.10)

Define {x̃t, c̃t} as follows.

x̃0 = z, c̃0 = f(z)− x∗, ∀t ≥ 1, x̃t = x∗, c̃t = g(x∗). (C.11)

Since x′1 > x∗,
c̃0 > f(z)− x′1 = c′0 ≥ 0. (C.12)

This together with (5.3) implies that {c̃t, x̃t} is feasible. By (C.10) and
(C.11), ∀t ∈ N, c̃t ≥ c′t. This together with (C.12) contradicts the optimality
of {c′t, x′t}.

Let us now complete the proof of Proposition 5.1. Lemmas C.6 and C.9
cover the case x0 ≤ x∗. Suppose x∗ < ∞ and x∗ < x0. By Lemma C.10,
∀δ ∈ (0, 1), limt↑∞ xδ

t ≤ x∗. Thus limδ↑1 limt↑∞ xδ
t ≤ x∗. This together with

Lemma C.8 shows (5.2).

C.3 Proof of Proposition 5.2

If x0 ≤ x∗, (5.2) holds by Proposition 5.1. Suppose x0 > x∗. By Lemma
C.8, it suffices to verify limδ↑1 limt↑∞ xδ

t ≤ x∗. Suppose limδ↑1 limt↑∞ xδ
t > x∗.

Then ∃x ∈ (x∗, x0), there is a sequence {δi}∞i=1 in (0, 1) with limi↑∞ δi = 1
such that ∀i ∈ N, limt↑∞ xδi

t ≥ x. By monotonicity, ∀i ∈ N,∀t ∈ Z+, xδi
t ≥ x.

Hence ∀i ∈ N, supt∈Z+
g(xδi

t+1) ≤ supx≥x g(x) < g∗, where the last inequality
holds by (5.6) and (5.7). But this contradicts Lemma 5.1.
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