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1 Introduction

In a seminal paper, Brock and Mirman (1972) showed that the optimal paths
of a stochastic one-sector growth model converge to a unique nontrivial sta-
tionary distribution. While various cases are known in which their theorem
can be extended,1 it does not seem to be well understood when the theo-
rem fails. Most of the extensions of the Brock-Mirman theorem assume that
the production function satisfies the Inada condition at zero, i.e., that the
marginal product of capital goes to infinity as capital goes to zero.2

Although the Inada condition at zero is widely used in economics, the
only justification for its use seems to be mathematical convenience.3 In fact
it is known to have the rather unrealistic implication that each unit of capital
must be capable of producing an arbitrarily large amount of output with a
sufficient amount labor (e.g., Färe and Primont, 2002).

In this paper we consider the resource constraint commonly used in
stochastic one-sector growth models, focusing on the case in which the In-
ada condition at zero is not satisfied. Our framework encompasses stochastic
endogenous growth models as well as stochastic overlapping generations mod-
els. To accommodate nonconcave production functions, we assume that the
maximum (stochastic) average product of capital is always finite, which is
equivalent to the violation of the Inada condition at zero in the concave case.
Under this assumption we show that any feasible path converges to zero
exponentially fast almost surely if there is a negative upper bound on the
long-run sample average of the logarithm of the maximum average product
of capital. In the case of multiplicative shocks, this general condition means
that the shocks are sufficiently volatile. Convergence is faster the larger their
volatility is, and the smaller the maximum (deterministic) average product
of capital is.

To our knowledge, this relationship between almost sure convergence to
zero and the volatility of shocks has not been documented in the stochastic

1For example, see Stachurski (2002) and the references therein.
2Notable exceptions are Hopenhayn and Prescott (1992, Section 6.B(i)) and Nishimura

and Stachurski (2005, Theorem 3.1). Our results offer partial converses to their and
Boylan’s (1979, Theorem 2) results.

3According to Barro and Sala-i-Martin (1995, p. 16), the Inada conditions f ′(0) = ∞
and f ′(∞) = 0 are named after Inada (1963). But actually he used these conditions
following Uzawa (1963). Neither Inada nor Uzawa provided an economic justification for
the conditions.
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growth literature, though technically similar results have recently been ob-
tained independently by Mitra and Roy (2003) (MR henceforth) and Nishimura,
Rudnicki, and Stachurski (2004) (NRS henceforth). Both MR and NRS study
optimal stochastic growth models. The advantage of our results is twofold.
First, we do not assume i.i.d. shocks, while both MR and NRS require shocks
to be i.i.d. and to satisfy additional assumptions. Second, unlike MR and
NRS, we establish (or notice) almost sure exponential convergence to zero
and provide an approximate rate of convergence. We must admit however
that we obtain these advantages mainly because we focus on one particular
phenomenon, while MR and NRS consider various other phenomena as well.

Another closely related result was shown by Athreya (2004, Corollary 1)
for a certain class of Markov processes with i.i.d. shocks. Our general result
can be viewed as an extension of his result to a nonstationary setting with
non-i.i.d. shocks.

Two other results in the literature are particularly relevant to this pa-
per. First, for a parametric model with logarithmic utility, Danthine and
Donaldson (1981) showed that increased uncertainty negatively affects the
expected value of the long-run capital stock. Second, Rothschild and Stiglitz
(1971, Section 2.A) showed that increased uncertainty may increase the sav-
ings rate, depending on the curvature of utility.4 Our result in the case of
multiplicative shocks makes it clear that regardless of the objective function,
and regardless of the savings rate (even if it is 100%), convergence to zero
occurs almost surely if there is sufficient uncertainty, as long as the maximum
average product of capital is finite.

The rest of the paper is organized as follows. Section 2 proves a gen-
eral result for nonstationary one-sector growth models with non-i.i.d. shocks.
Section 3 focuses on the stationary case with multiplicative shocks, showing
and discussing a consequence of the general result that is easier to interpret.

4See Jones et al. (2005) for a recent treatment of related problems in the context of
endogenous growth.
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2 The General Result

Let (Ω,F , P ) be a probability space. Consider an infinite horizon economy
in which the resource constraint in period t ∈ Z+ is given by

∀ω ∈ Ω, ct(ω) + kt+1(ω) = gt(kt(ω), ω), 5 (2.1)

where ct(ω) is consumption in period t, kt(ω) is the capital stock at the
beginning of period t, and gt : R+ × Ω → R+ is the production function
in period t, which is random and may also vary over time in a deterministic
way. We say that a nonnegative stochastic process {kt}∞t=0 is a feasible path if
it satisfies (2.1) for all t ∈ Z+ for some nonnegative stochastic process {ct}.6

Special cases of (2.1) are used as resource constraints in various stochas-
tic growth models, including optimal growth models, endogenous growth
models with externalities, and overlapping generations models.7 No further
equation is required for our results, which concern only feasible paths. (Ad-
ditional assumptions on gt are introduced in Section 3.) Note that optimal or
equilibrium paths are required to be feasible no matter how they are defined.
Thus our results apply to any model in which (2.1) is required as a resource
constraint.

The following result provides a sufficient set of conditions for almost sure
convergence to zero.

Theorem 2.1. Suppose

∀t ∈ Z+,∀ω ∈ Ω, gt(0, ω) = 0, (2.2)

∀t ∈ Z+,∀ω ∈ Ω, at(ω) ≡ sup
k>0

gt(k, ω)

k
< ∞, (2.3)

µ ≡ ess sup
ω∈Ω

lim sup
T↑∞

1

T

T−1∑
t=0

ln at(ω) < 0.8 (2.4)

Then any feasible path {kt} converges to zero exponentially fast a.s. More
specifically, for almost all ω ∈ Ω,∀λ ∈ (0,−µ),

∃T ∈ Z+,∀t ≥ T, kt(ω) < e−λt. (2.5)

5The quantifier “∀ω ∈ Ω” may be replaced by “for almost all ω ∈ Ω” throughout
this paper. The distinction is negligible since we are only concerned with almost sure
convergence to zero.

6By a stochastic process {xt}∞t=0, we mean a sequence of functions xt : Ω → R.
7In overlapping generations models, ct in (2.1) represents aggregate consumption.
8For a random variable x : Ω → R, ess supω∈Ω x(ω) ≡ inf{s ∈ R |x ≤ s a.s.}.
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Proof. Let {kt} be any feasible path. By (2.1), (2.2), and (2.3),

∀t ∈ Z+, ∀ω ∈ Ω, kt+1(ω) ≤ gt(kt(ω), ω) ≤ at(ω)kt(ω). (2.6)

Let

Ω1 = {ω ∈ Ω | ∀t ∈ Z+, at(ω) > 0, kt(ω) > 0}, (2.7)

Ω2 =

{
ω ∈ Ω

∣∣∣∣∣ lim sup
T↑∞

1

T

T−1∑
t=0

ln at(ω) ≤ µ

}
. (2.8)

By (2.2) and (2.6), ∀ω ∈ Ω \ Ω1, kt(ω) = 0 for sufficiently large t. By (2.4),
P (Ω2) = 1. Thus we may restrict attention to ω ∈ Ω1 ∩Ω2. Fix ω ∈ Ω1 ∩Ω2

for the rest of the proof. We write kt instead of kt(ω), etc., for notational
simplicity.

Since ω ∈ Ω1, it follows from (2.6) that

∀t ∈ Z+, ln kt+1 ≤ ln at + ln kt. (2.9)

Hence

∀T ∈ N, ln kT ≤
T−1∑
t=0

ln at + ln k0. (2.10)

Dividing through by T , we get

∀T ∈ N,
ln kT

T
≤

∑T−1
t=0 ln at

T
+

ln k0

T
. (2.11)

Let λ ∈ (0,−µ), i.e., µ < −λ < 0. Since ω ∈ Ω2, the right-hand side of (2.11)
is strictly less than −λ for sufficiently large T . Thus for sufficiently large T ,
ln(kT )/T < −λ, i.e., kT < e−λT .

Condition (2.2) is a standard restriction. Condition (2.3) says that the
maximum (stochastic) average product of capital is always finite, which im-
plies the violation of the Inada condition at zero.9 Condition (2.4) means
that there is a negative upper bound on almost every long-run sample av-
erage of the logarithm of the maximum average product of capital. Since
exp(

∑T−1
t=0 ln at) =

∏T−1
t=0 at, and since at is the maximum possible gross

9Given (2.4), (2.3) is essentially redundant as long as µ is well-defined. But (2.3) is
needed for µ to be well-defined unless at > 0 a.s.
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growth rate of capital in period t, (2.4) implies that for almost every sample
path, the gross growth rate over a long horizon is less than one, i.e., the net
growth rate over a long horizon is negative.

If {ln at} satisfies the law of large numbers, then (2.4) reduces to E ln at <
0. This condition becomes easy to interpret particularly in the case of mul-
tiplicative shocks, which we consider in the next section.

3 Multiplicative Shocks

In this section we focus on the case of multiplicative shocks. In particular
we assume the following in (2.1).

Assumption 3.1. There exist f : R+ → R+ and a stochastic process {st}
such that

∀t ∈ Z+, ∀ω ∈ Ω,∀k ≥ 0, gt(k, ω) = st(ω)f(k). (3.1)

Hence (2.1) can now be written as ct + kt+1 = stf(kt). Let us state and
discuss our other assumptions.

Assumption 3.2. ∀t ∈ Z+, (i) ∀ω ∈ Ω, 0 ≤ st(ω) < ∞, and (ii) Est = 1.

Assumption 3.3. f(0) = 0, and

m ≡ sup
k>0

f(k)

k
< ∞. (3.2)

Assumption 3.2(ii) is merely a normalization. If f is concave and differ-
entiable, then (3.2) is equivalent to f ′(0) < ∞, the violation of the Inada
condition at zero. More generally, (3.2) means that the maximum (determin-
istic) average product of capital is finite. Though m is required to be finite,
it is allowed to be arbitrarily large.

Assumption 3.4. ∃ν ∈ (−∞,∞],∀t ∈ Z+, E ln st = −ν.

This assumption means only that E ln st does not depend on t. By
Jensen’s inequality and Assumption 3.2,

−ν = E ln st ≤ ln Est = 0. (3.3)

Thus ν is in fact nonnegative. Since it is the difference between ln Est (= 0)
and E ln st due to the strict concavity of the log function, ν can be interpreted
as a measure of volatility.
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Assumption 3.5. We have

lim
T↑∞

1

T

T−1∑
t=0

ln st = −ν a.s., (3.4)

where ν is given by Assumption 3.4.

Assumptions 3.4 and 3.5 mean that {ln st} has a constant mean and satis-
fies the law of large numbers. These assumptions hold if {ln st} is stationary
and ergodic with E| ln st| < ∞ (e.g., White, 2000, Theorem 3.34). For ex-
ample, {ln st} may be an i.i.d. process, as typically assumed in the stochastic
growth literature. More generally, it may be a stationary ARMA process.

The following result is a consequence of Theorem 2.1.

Theorem 3.1. Let Assumptions 3.1–3.5 hold. Suppose

ln m < ν. (3.5)

Then any feasible path {kt} converges to zero exponentially fast a.s. More
specifically, for almost all ω ∈ Ω,∀λ ∈ (0, ν − ln m), (2.5) holds.

Proof. Assumptions 3.1–3.3 imply (2.2) and (2.3). Condition (3.5) together
with Assumptions 3.4 and 3.5 implies (2.4) with µ = ln m − ν. Hence the
conclusion holds by Theorem 2.1.

If ν = 0, i.e., if there is no uncertainty, then (3.5) reduces to

m < 1. (3.6)

This means that the graph of f lies entirely below the 45◦ line, implying that
all feasible paths converge to zero. Since ν ≥ 0 by (3.3), (3.6) implies (3.5)
even in the stochastic case. However, (3.5) holds even if the graph of f lies
entirely above the 45◦ line, provided that ν is sufficiently large. Thus almost
sure convergence to zero occurs if shocks are sufficiently volatile. A simple
example illustrates this point.

Suppose st is unconditionally log-normal.10 Then by Assumption 3.2 and
log-normality,

1 = Est = E exp(ln st) = exp

(
E ln st +

V ar(ln st)

2

)
. (3.7)

10This is true, for example, if {ln st} is i.i.d. normal or a stationary AR process with
normal innovations.
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Since ν = −E ln st by definition (recall Assumption 3.4), from (3.7),

ν =
V ar(ln st)

2
. (3.8)

Hence (3.5) holds if and only if V ar(ln st) > 2 ln m. Thus if V ar(ln st) is
large enough, any feasible path converges to zero exponentially fast a.s. A
similar example can easily be constructed in which the support of shocks
is bounded and bounded away from zero, as in the original Brock-Mirman
(1972) model.

Theorem 3.1 shows not only that (3.5) implies almost sure convergence to
zero, but also that an approximate rate of convergence is given by ν − ln m.
Hence convergence is faster the large the volatility of shocks is, and the
smaller the maximum average product of capital is.

As mentioned above, Assumption 3.3 holds if f is concave and violates
the Inada condition at zero. A special case of this is when f is linear. Hence
in a stochastic “AK” model, under (3.5), any feasible path converges to zero
exponentially fast a.s. regardless of the objective function.11

Though Assumption 3.1 rules out the case in which the resource constraint
is given by ct + kt+1 = stf(kt) + (1 − δ)kt for some δ ∈ (0, 1), this case can
be dealt with using Theorem 2.1. Other cases that can be dealt with using
the general result include nonconvex stochastic growth models of the type
studied by Majumdar et al. (1989) and Nishimura et al. (2004) as well as
stochastic overlapping generations models.
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