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Abstract

We analyze a dynamic implication of an evolutionary process in a population where both
actions and network structures change over time.

At every period, a coordination game is played by players who are linked with each other.
An asymmetric cost of a link is incorporated. Under this setting each player myopically
adapts with its circumstance consisting of the network structure and the action profile.

In a stochastically stable state there are link cost patterns such that all players play a
pareto dominant equilibrium strategy of a coordination game. This is the most different result
from a standard stochastic evolutionary models that selects a risk dominant equilibrium.
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1 Introduction

Network structeres are observed in many socio-economic organizations. Market is one of or-
ganizations that has a netwok structure. Firms have various network structures which affect
their production technology. A coalition is interpreted as a network because networks are es-
tablished by individual incentives for linking. Financial network systems, network externalities,
friendships, cartel of firms are examples of entities that have network structures.

In these organizations it is essential that there are two distinct choices. Of course each indi-
vidual must decides whom he should link with. But for playing games with linked companions
the individual must also choices an action of a game.

A transaction in a market occurs only if two players-a buyer and a seller- meet and play a
game. Standarization of technologies or languages in a population depends on the network or
coalitional structure. But network structures or coalitional structures also depend on the action
profile in the population. We should deal with these two phenomenon simultaneously.

The reasonableness of different network structures is the basic motivation for our model. By
assuming that the network structure itself is subject to evolutionary pressure, we depart from
the conventional models of evolutionary equilibrium selection models. Endogenous interaction
structures are itself an object of study. Individually each player adds or servers links in comfor-
mity with its own interest. As related works for engogenous interactin structures, there are Bala
and Goyal (2000), Jackson and Wolinsky (1996). Both study deal with an individual incentive
to form a link using a directed graph. They study a dynamic stability of the network formation.
They show emergence of inefficient network structure.

Our model in this paper investigate a dynamic stability of an interaction scheme. But our
model is more general than Bala and Goyal, Jackson and Wolinsky because we deal with an
equilibrium selection problem in a coordination game. In a nongeneric two by two coordination
game, two strict Nash equilibria exists. When bulk of a population plays an action of the strict
Nash equilibria, it is best for an individual player to accomodate own behavior to the action.
Therefore the action of strict Nash equilibrium is called a conventionin in the population who
plays the coordination game. To select an equilibrium, Harsanyi and Selten (1988) presents
concepts such that pareto domination and risk domination. In some cases, we select a distinct
equilibrium(convention) due to each concept. Models of a dynamic equilibrium selection is called
an evolutionary game theory or a learning theory. One of strict Nash equilibria is selected as
a stable state of some adaptation process. By introducing perpetual experimental actions or
mutations into the adaptation process, Kandori, Mailath and Rob (1993) and Young (1993)
shows that such an adaptation process selects a risk dominant equilibrium of a two by two
coordination game. They express the adaptation process through irreducible Markov chains on
a finite state space.1 An asymptotic frequency distribution of the visiting states is a selection
criterion:over the long run, the process selects those states on which the asymptotic frequency
ditribution puts positive probability. Those states are called stochastically stable states (Young
(1993) ).2 Both studies assume that players are radomly matched at every period.3 Random
matching moddels do not entertain incentives for choices of adversaries. In our model allowing

1Due to perpetual mutations, the process becomes irreducible.
2Kandori et,al. call those states long run equilibria.
3Precisely Young (1993) investigate a recurrent game. A population is partitioned into n classes. At every

period one player is drawn at random from each of the n populations to play a game. Under adequate assumptions,
this process coincides with a random matching model.

2



individual choices for link formations, incentives for choices of adversaries is incorporated into
an evolutionary equilibrium selection model well. It is assumed that each player can play a
coordination game only if they are linked with a network. That is, a play of the coordination
game occurs only if there is a link by which players connect with each other. We assume that
it costs for players to establish an active link. But if one side player of a link incurs the link
cost, then both side players can play the game. This assumption peculiarises an individual
incentive for a connection. We are interested in the influence of the endogenous link formation
and the costs for establishing links on individual behavior in games of coordination. Blume
(1993) and Ellison (1993) study evolutionary equilibrium selection models with an exogenous
network structure. Addresses of players are fixed on a circle or a lattice. Because adversaries
are less than random matching models, their models are called local interaction models. Ellison
argues the time for the evolutionary system to converge to an stable state and shows that in
a local interaction structure, more rapidly the system converges. They shows also that the
stable state is the risk dominant equilibrium. But our model shows that all individuals play the
pareto dominant action in a stochastically stable state by introducing an evolutionary process
of network formations.

Overview of the Model

A two by two symmetric coordination game is repeatedly played by anonymous individuals.
Because of the anonymity, a strategic interaction like a repeated game is not allowed for. That
is, we suppose that individuals forms a large population or society. The game is played by two
players only if at least one of them must incurs the link cost. Therefore players must decide
about both actions and links, given an environment. The environment is a pair of a network
formation and an action profile of other players. This decision is called an adaptation. Best
response dynamics (Matsui(1992)) is exerted for the adaptation process4. The state space of the
dynamics is the set of all pairs of network formations and action profiles of the coordination game.
Given a pair of a network formation and an action profile of the last period( the state of the
last period), a player myopically adjusts its behavior subject to best response to the pair(state).
The myopic adjustment is justified by small degree of friction for revisions of behaviors 5 or
bounded rationality of players.

As for the adaptation, a period is divided into four steps. At the first step a pair of players is
randomly choosen and one side player decides to establishes(maintains) or severs an active link
with the other player given a state of the last t−1 period. After this decision, an experimentation
of a link formation occurs with a small probability γ. If a link is established at the first step,
then the link is severed with the probability γ. At the end of this second step, the network
formation of the t period is determined. At the third step, a player is randomly choosen and
adjusts the action of the two by two coordination game, given the network formed at the second
step. After this decision, an experimentation of an action choice occurs with a small probability
ε. If an action is chosen at the third step, the other action is tried to choose with the probability
ε. At the end of this fourth step, an action profile of the period t is determined. After these four
steps, the coordination games are played by players who are linked with the other players in the
network established at the period. This sequential adaptation rule is similar to Jackson,M and
A.Watts (2001).

4Precisely our dinamics is called better reply dynamics.
5A perfect foresight dynamics coincides with best response dynamics as the friction rate becomes small. See

Matusi and Matsuyama (1995).
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A homogenous Markov process on the state space is defined due to the above adaptation
process. Since this process is irreducible and aperiodic, there is a unique stationary distribution
and has an ergodic property. As the probability of both experimentations vanishes, states with
the strict positive probability of the stationary ditributation, that is, the stochastically stable
states, are investigated.

The most different assumption from other models of this reserach field is that we itroduce an
asymmetricity of link costs. The population is partitioned into two types of link costs-high type
or low type. Aggresive firms for standarization of a technology are applicable to the low type.
A person who follows the philosophy of isolationism may be the high type. This asymmetricity
generates the pareto dominant equilibrium action in the stochastically stable state.

Results of Part One (Direct Link Case)
All cases of costs parameters are investigated. For each link cost level, all recurrent(or ab-

sorbing) states of our adaptation process without experiments are shown. We call the adaptation
process without experiments the unperturbed process. From these states, we select the stochas-
tically stable network formations and conventions according to an algorithm shown at Kandori
et,al (1993) and Young (1993,1998).

At almost every cases, two strict Nash equilibria(conventions) emerge in recurrent states
of the unperturbed process. If the low link cost parameter is sufficiently small, the only low
type players support the whole network. At almost every cases, fully connected networks are
stoichastically stable.

For some cost parameter cases, the pareto dominant convention emerges. If each cost level
is enough different, then high cost players free ride on low types for network formation. Then a
density of links is coarser than full connected networks. Risk dominant convention maintains at
this coarser network because a gain from risk dominant action is smaller than pareto dominant
one. This state is less robust to perpetual mutations if the number of low cost type players is
small. Since only a few players support the network, the convention of the society depends more
strongly on the few players’ behavior than random matching models.

Precedences of this field of research

In this paper links are costly for establishing and maintaining. As for evolutionary network
formations and coordination games, there are several precedences. Droste,E. R. Gilles, and
C.Jhonson (2000), Goyal,S and F.Vega-Redondo (2000), Skyrms,B. and R.Pemantle (2000),
Jackson,M. and A.Watts (2001). All these works introduce a link cost which leads us to study
the incentives of players to establish a network. Droste et al. fix players on a circle assigning its
address. Cost considerations of social interaction are incorporated by considering endogenous
neighborhoods on the circle. That is, players can create their own costly communication network
in some neighborhood. As a stochastically stable point, only the risk dominance strategy is
sustainable on the circle. Goyal and Vega-Redondo shows if a link cost is sufficiently high then
pareto dominant equilibrium becomes stochastically stable. They study the case also that two
distinct players linked with each other through a path of links can play a coordination game. In
this case a center-sponsered network emerges in the long run. Their work generates some near
conclusions. Jacson and Watts assumes the adaopation process to be sequential-in the first step
a link is adapted and in the second step actions-and introduce a convex link cost function on the
number of linked players. The latter assumption stops the growth of the network size at some
levels. They show also that there are cases that generates the pareto dominant convention.
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This paper is construct as follows. In section 2 networks and a social game(coordination
game)used in our model are defined. An adaptation rule and corresponding Markov chain are
explaied in section 3. In section 4 recurrent states of our unperturbed process and stochastically
stable states are investigated. Section 5 concludes this Part One (Direct Link Case).

2 Networks and social game

2.1 Networks

We consider a population which consists of finite players. The set of the players is N =
{1, 2, . . . , n}. It is assumed that n ≥ 3 since we are interested in emergence of convention
and evolutionary stable network formation patterns in a large population. Two players are con-
nected with each other by so called links. Potential links which a player i can add or servers are
denoted by gi = (gi1, gi2, . . . , gii−1, gii+1, . . . , gn) where gij ∈ {0, 1}. If the player i incurs the
cost of maintaining/establishing the link between i and j, gij becomes 1. If the player i does not
incurs the cost of maintaining/establishing the link between i and j, then gij becomes 0. Note
that even if gij is 0, gji may be 1. This case (gij = 0 and gji = 1) means that there is only one
link which connects player i and j, and the cost of this connection is incured only by player j.
A link gij is called an active link for i and a passive link for j.

Definition 1. Player i establishes an active link with player j if gij = 1.
Player i severs an active link with player j if gij = 0.

We call a (n−1)×n dimensional vector g consisting of 0 and 1 such that g = (g1, g2, . . . , gn)
a network. The set of all networks is denoted by G. That is, G = {{0, 1}n−1}n.

A player can play a coordination game descrived at next Section 3 and get his(her) payoff
only if he(she) must be connected/linked with other players. There are two ways of connection
which are called as direct links and indirect links.

Definition 2. Distinct players i, j ∈ N are directly linked if max{gij , gji} = 1.

Let ḡij ≡ max{gij , gji}. If player i and j are directly linked, then ḡij = 1. A player plays a
game and gets a positive payoff only if there must be an other player j such that ḡij = 1.

To define indirect connection, we use a concept of a path between player i and j.

Definition 3. There is a path in g between player i and player j if ḡij = 1 or there exist
some players j1, j2, . . . , jm ∈ N such that ḡij1 = ḡj1j2 = . . . = ḡjm−1jm = ḡjmj = 1.

When there is a path between i and j we represent it as i
ḡ←→ j. Without confusion, player

i and j is indirectly linked if there exist some paths between them. In section 5, we investigate
the case where player i can play a coordination game with player j if they are linked indirectly.

Here we prepare some notations to define payoffs concluding a cost for establishing a link (
at Subsection 2.3 below). Nd(i; g) denotes the set of all players in network g with whom player i
has established links. Precisely Nd(i; g) ≡ {j ∈ N | gij = 1}. The cardinality of the set Nd(i; g)
is νd(i; g) ≡ |Nd(i; g)|. The set of all players directly linked with player i is Nd(i; ḡ). Precisely
Nd(i; ḡ) ≡ {j ∈ N | ḡij = 1}. The cardinality of the set Nd(i; ḡ) is νd(i; ḡ) ≡ |Nd(i; ḡ)|. The set
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of all players indirectly linked with a player i is denoted by N(i; ḡ) ≡ {j ∈ N | i
ḡ←→ j}. We

also define ν(i; ḡ) ≡ |N(i; ḡ)|.
To confirm above definitions and notations, we use an example as Figure 1 below. Network

formations are characterized by graph theory. A network g is a directed graph. Its node is a
player and its directed edge is a link between two distinct players. A player at a root of an edge
incurs the cost for the link.

In this example, N = {1, 2, 3, 4}. g = ((g12, g13, g14), (g21, g23, g24), (g31, g32, g34), (g41, g42, g43)) =
((1, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 1)), Nd(1; g) = {2}, Nd(1; ḡ) = {2, 4}, N(1; ḡ) = {1, 2, 3, 4}.

1 2

34

Figure 1.

Thus we can regard a network g as a graph. We identify the set of networks G as the set of
graphs.

Definition 4. Subgraph6 g′ ⊂ g is a component of g if for any nodes(players) i, j of a graph
g′ there exists some paths between the node(player) i and the node(player) j such that if i is a
node of g′, j is a node of g and gij = 1 then g′ij = 1.

Definition 5. A network with only one component is called connected. A connected network
g is said to be minimally connected if the network obtained by deleting any single link is not
connected.

Our model predicts emergence of following fully connected networks in many cases.

Definition 6. A network g is fully connected if ḡij = 1 for any i,j ∈ N .

One sided link is more efficient than two sided one. It will be shown that our evolutionary
model often selects following efficient networks.

Definition 7. A network g is efficiently formed if for any i, j ∈ N (gij = 1 → gji = 0).

Let Ge denote the set of efficiently formed and fully connected networks.
Using examples drawn at Figure 2, we confirm these characterization. Figure 2(a) is an

example of minimally and efficiently connected graphs. It is called a star network graphs.
Figure 2(b) is not a efficiently but fully connected network. Figure 2(c) is an efficiently connected
network.

6g′ ⊂ g if all nodes of g′ belongs to g.
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Figure 2(a). Figure 2(b). Figure 2(c).

2.2 Link costs

Suppose that players must incure cost for maintaining and adding their active links. To play a
game or to transact with other players, each player may incur the cost of links. By introducing
the cost of links, it becomes possible to analyze individual incentives for playing or participanting
to a game.

Off course, if for a link between player i and j only player i incurs its cost (that is, gij is
1 and gji is 0) then without incuring the cost player j can play a game with player i. Thus
if any pair of players play a game then at least one player of the pair must incur the cost for
connection (ḡij = 1). Hereafter we call the unit cost for establishing/maintaing any active link
a link cost. The link cost does not depend on the opponent player linked with. Let ni be the
number of active links that player i establishes/maintains. Player i pays an unit cost k(ni) for
maintaining/establishing his active link, leading to a total cost of nik(ni) for player i.

Generally the unit cost function, k(ni), is depending on the number of active links for the
concerning player. But at the begining a constant cost is assumed for convenience of analysis.
That is, for any number of active links the cost of a link is k.7

The most important difference from preceeding works, Goyal and Vega-Redondo(1999) and
Jackson and Watts(2001) is that we introduce an asymmetricity of the link cost. The link cost
may depends with whether a player has invested much resource to a link technology yet. The
amount of the investment is regarded as the main factor which decides whether a player is high
type or not. For example, maintenance technology of a traffic,.... To represent this two types of
link costs players are assumed to be partitioned into two groups. High link cost type and Low
link cost type. Type h player has a high cost techbology for his active link and type l has low
one. Any player in the subset Nx of N has unit constant link cost kx for maintaing/establishing
an active link, where x is h or l. Let kh > kl. 8

Assumption 1. All players are partitioned into two types of link costs. That is, N = Nh ∪Nl,
Nh ∩Nl = φ, Nh 6= φ and Nl 6= φ.

7In section, we investigate the case that a cost of a link has convexity property depending on the number of
active links.

8The number of active links becomes more, the unit cost for maintaining its active links may grow higher.
Friendship relation is a good example for this situation. This is modeled as convexity of a cost function of the
number of activelinks. This case is compared with our model at Section 5 of Part Two(coupled paper) .
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2.3 Social games

Two players linked with each other play a symmetric coordination game called as a Social Game.
Each player has two alternatives or actions, named as α, β. Let A be the set of actions. This
symmetric coordination game is drawn at Table 1 below.

1
2

α

α β

β

d e

f b

Table 1

Note that the payoffs in the Table 1 is not necessary real payoffs of the players because of
the existence of the link cost. If a player has an active link then the player gets a net payoff
which is less than the payoff as descrived at the Table.

One of the most interesting things is the equilibrium selection problem with an endogenous
network formation.

Assumption 2. In the symmetric coordination game, payoffs satisfy

d > f, b > e, d > b and d + e < b + f.

Lemma 2.1. If the symmetric coordination game satisfies Assumption 2, two action pairs,
(α, α) and (β, β) are strict Nash equilibria9 in the coordination game.

Proof. Since d > f , α is a unique best response to itself. β is best response to itsself. Thus they
are strict Nash equilibria.

¥

If there is no confusion we call these strict Nash equilibria the conventions in the Social
Game according to Young(1993).

Since d + e < b + f , the former pair (α, α) is a pareto dominant equilibrium and the latter
pair (β, β) is a risk dominant equilibrium. Intuitively the former pair is efficient but more risky
in coordination. As for formal definitions, see Harsanyi and Selten(1988).

Lemma 2.2. If the symmetric coordination game satisfies Assumption 2 then e < f < b < d
or e < b < f < d.

Proof. Since d > f and d > b > e, d is the maximal payoff. By d + e < b + f , e − f < b − d.
Since d is the maximal payoff, e− f < b− d < 0. Therefore e < f < d and e < b.

¥
9A Nash equilibrium strategy profile x is strict if the best reply to the x is only x itself.
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We call e < f < b < d Case 1 and e < b < f < d Case 2 in Section 4.

Definition 8. 1. Direct Link Case : Distinct players, i and j play the coordination game
when ḡij = 1.

2. Indirect Link Case : Distinct players, i and j play the coordination game when i
ḡ←→ j.

This assumption is called as one sided links because it is no need for the realization of the
play that both players establish the link between them. Due to this assumption, the high link
cost players may freely ride on low cost players for playing the Social game.

Net payoffs
Let players be located on a fixed network g ∈ G. Given the network g, each player plays an

action in A. A net payoff is a value of a function on the set G×A.

Based on Assumption 1,3 and Table 1, for each (g, a) ∈ G×A,10 the net payoff for a type x
player i is defined as follows.11

1. Direct Links case. Πi(g, a) =
∑

j∈Nd(i;ḡ) vi(ai, aj)− kx · νd(i; g)

2. Indirect Links case. Π̂i(g, a) =
∑

j∈N(i;ḡ) vi(ai, aj)− kx · νd(i; g)

In these equations, kx is the cost function of player i’s unit active link. vi(ai, aj) represents
player i’s gross payoff depending on only actions chosen. By figure vi(α, α) = d, vi(β, β) = b,
vi(α, β) = e, and vi(β, α) = f . Note that in the indirect link case the gross payoffs occur at the
game with players indirectly linked. At Figure 3 Nd(1, ḡ) = {2, 5} and N(1, ḡ) = {2, 3, 4, 5}.
Nl = {4, 5} and Nh = {1, 2, 3}. a = (α, α, α, β, β). 1α

h represents that player 1 is a high link cost
player and plays α.

1h
α

2h
α

3h
α

4l
β 5l

β

Π1(g, a) = v(α, α) + v(α, β)− kh · 1
= d + e− kh · 1

P̂ i1(g, a) = 2v(α, α) + 2v(α, β)− kh · 1
= 2d + 2e− kh · 1

Figure 3.

10(g, a) represents a pair of a network form and an action profile of all players. That is, g = (g1, g2, . . . , gn) ∈
{0, 1}(n−1)n

and a = (a1, a2, . . . , an) ∈ {α, β}n.
11When the link cost is a function of the number of active link, the net payoff is defined as follows where x is

in {h, l}.
1. Direct Links case. Πi(g, a) =

P
j∈Nd(i;ḡ) vi(ai, aj)− νd(i; g) · kx(νd(i; g))

2. Indirect Links case. Π̂i(g, a) =
P

j∈N(i;ḡ) vi(ai, aj)− νd(i; g) · kx(νd(i; g)).

Note that the link cost kx is a function over the number of directly linked players.
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3 Endogenous networks and stochastic stability

3.1 Unperturbed Adaptation Rule

Players play the above coordination game repeatedly but the network formation may change over
the time. Follwing adaptation behaviors of players cause a dynamic process. Each player adjusts
the action and the links myopically, which is interpred as one of the best response dynamics
(Matsui(1992)). Let gt−1 is the network and at−1 is the action profile at the end of a period
t − 1. Similary gt

ij represents a link ij at period t. In the next period t, an adaptation occurs
through two steps.

In conditions below, g + ij represents a graph of which gij is replaced with 1. Of course if
gt−1
ij = 1, then no replacement occurs. g − ij represents a graph of which gij replaced with 0.

If gt−1
ij = 0, then no replacement occurs. For example, if g = ((g12, g13), (g21, g23), (g31, g32)) =

((1, 1), (1, 0), (0, 1)) then g + 12 = 1, g − 12 = 0, g + 31 = 1 and g − 31 = 0.

1. One pair i,j of players is randomly drawn with probability {pij} where
∑

(i,j)∈N×N,i 6=j

pij = 1

and for any i, j ∈ N , pij > 0. This probabilities are determined exogenously.

If Πi(gt−1 + ij, at−1) > Πi(gt−1, at−1) then gt
ij = 1.

If Πi(gt−1 − ij, at−1) > Πi(gt−1, at−1) then gt
ij = 0.

If each equation holds with equality then gt−1 remains.

At this point gt is determined.

2. One player k is randomly drawn with strict positive probability {qk} where
∑

k∈N

qk = 1

and for any k ∈ N , qk > 0. If the picked up player k has been linked with at least one
another player in the network gt formed at step 1, an adaptation for actions occurs. In
the condition below, at−1

k represents an action profile except the player k at period t− 1.
Therefor (·, at−1

k ) ∈ A.:

If Πk(gt, (α, at−1
−k )) > Πk(gt, (β, at−1

−k )) then k chooses an action α.

If Πk(gt, (α, at−1
−k )) < Πk(gt, (β, at−1

−k )) then k chooses an action β.

If each equation holds with equality then at−1 remains.

If the picked up player k is not linked with no player of the netwok gt, then he choose
an action that maximizes his payoff under a condition that all the other players would
establish links with the player k.

At this point at is determined.

At the end of the period t, All players play the coordination game with directly(indirectly)
linked players if such players exist. Then they get net payoffs of the period t defined at the last
section.

At the step 1, given a network and an action profile of the last period t− 1, a randomly se-
lected player i decides whether or not he(she) maintains/establishes a randomly selected his(her)
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connection with a player j. At the step 2, given a network formed at the step 1 and an action
profile of the last period t− 1, a randomly selected player choosees the best action of the coor-
dination game.At the step 3, payoffs realizes. These steps in a period is summerized at Figure
4 below.

step 1 step 2

determination

gt
at Πi(gt, at)

network action profile payoff

(gt−1, at−1)

Figure 3. unperturbed adaptation rule

3.2 Markov chain

By this adaptation rule for each period t, we can define a discrete time Markov process P on a
finite state space S = G×A.12 This process specifies the probability of transiting to each state
in S in the next period, given that the process is currently in some given state s. For every
pair of states s, s′ ∈ S, and every time t ≥ 0, let Pss′ be the transition probability of moving to
state s′ at time t + 1 conditional on being in state s at period t. Since Pss′(t) is independent of
t due to our definition of the adaptation process, the transition probabilities are called as time
homogenous. We identify the process P with the corresponding matrix (Pss′)s∈S,s′∈S .

Lemma 3.1. Our adaptation rule defines a time homogenous Markov process.

Proof. By definition of our adaptation rule, for any states s,s′ ∈ S we can define a unique
transition probability. Thus a Markov process is defied.

Assume that there are periods t,t′ such that Pss′(t) 6= Pss′(t′). Since our adaptation rule
defines a unique transition probability from any state, this is a contradiction. ¥

See an example (n = 3) at Appendix 2.

A state s′ is accessible from s, if there is a positive probability of moving from s to s′ in a
finite number of periods. States s and s′ are communicate, written s ∼ s′, if each is accessible
from the other.

Lemma 3.2. The relation s ∼ s′ is an equivalence relation.

Proof. By the definition directly if s ∼ s′ then s′ ∼ s. If s ∼ s′ and s′ ∼ t then t is accessible
from s by finite steps.

¥

From this lemma, the state space S is partitioned into equivalent classes, called as commu-
nication classes.

12If a population size is n then the cardinality of S is (n− 1)n × 2n.
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Definition 9. A recurrent class of a Markov process is a communication class such that no
state outside the class is accessible from any state inside it. A state is recurrent if it is contained
in one of the recurrent classes. A state is absorbing if it is in a recurrent class and the class
is singleton.

Definition 10. If the process has exactly one recurrent class, which consists of the whole state
space, the process is said to be irreducible.

Let s1, s2, . . . , sM be an enumeration of the states and µ = (µ(s1), µ(s2), . . . , µ(sM )) where
M =| S |.
Definition 11. A stationary distribution µ of our process is the solution of following system
of liner equations.

µP = µ, where µ ≥ 0 and
∑

s∈S µ(s) = 1.

The first equation of this definition is called a stationary equation which represent that the
stationary distribution µ is a fixed point of the Markov process. About the existence and its
uniqueness of the stationary distribution the next lemma is well known.

Lemma 3.3. The stationary equation in above definition has a unique solution if and only if
the process is irreducible.

Lemma 3.4. The Markov process defined by our unperturbed adaptation rule needs not has a
unique stationary distribution.

Proof. Consider two states such that (g1, a1), g1 ∈ Ge and a1 = αn , (g2, a2), g2 ∈ ge and
a2 = βn. If a high type link cost is lower than b, then there emerges no players ḡij = 0 in both
state. Since both action profiles are strict Nash, no players have incentive to change actions.
Therefore each of (g1, a1) and (g2, a2) is a sigleton recurrent class. Because the process needs
not be irreducible, it may not have a unique stationary distribution.

¥

3.3 Perturbed adaptation rule

Consider our Markov process P defined on a finite state space S. A perturbation of P is a
Markov Process whose transition probabilities are slightly perturbed or distorted versions of
the transition probabilities Ps,s′ . This perturbation for our Markov Process is derived from
modification of the above adaptation rules.

Let gt−1 is the network and at−1 the action profile at the end of a period t − 1. In the
next period t, through following four steps the adaptation occurs. In conditions below, g + ij
represents a graph of which gij replaced with 1. Of course if gt−1

ij = 1, then no replacement
occurs. g− ij represents a graph of which gij replaced with 0. If gt−1

ij = 0, then no replacement
occurs.

1. One pair i,j of players is randomly drawn with probability {pij} where
∑

(i,j)∈N×N,i 6=j

pij = 1

and for any i,j ∈ N pij > 0. This probability is determined exogenously.

If Πi(gt−1 + ij, at−1) > Πi(gt−1, at−1) then the player i establishes the link ij.

If Πi(gt−1 − ij, at−1) > Πi(gt−1, at−1) then player i severes the link ij.

If each equation holds with equality then gt−1 remains.

12



2. (Experiments, mutations for links)After this link formation by players, Nature adds the
link which was served at step 1 of this period t by player i with small probability γ > 0
and let them keep unestablished with probability 1− γ. Nature also serves the link which
was established at step 1 of this period t by players i with small probability γ > 0 and
remains with probability 1− γ.

At this point, a network of the period t, gt, is determined.

3. One player k is randomly drawn with strict positive probability {qk} where
∑

k∈N

qk = 1

and qk > 0 for any k ∈ N . If the picked up player k is linked with at least one another
player in the network gt, an adaptation for an action choice occurs.

If Πk(gt, (α, at−1
−k )) > Πk(gt, (β, at−1

−k )) then player k chooses an action α.

If Πk(gt, (α, at−1
−k )) < Πk(gt, (β, at−1

−k )) then player k chooses an action β.

If each equation holds with equality then at−1 remains.

If the picked up player k is not linked with no player of the netwok gt, then he choose
an action that maximizes his payoff under a condition that all the other players would
establish links with the player k.

4. (Experiments, mutations for actions)After this choice of the action by player k, with small
probability ε > 0 Nature makes the player k choose an action which was not choosen by
the player k at the step 3 of this period. With probability 1− ε > 0 the choice made by
the player k is unchanged by Nature.

At this point, an action profile of the period t, at, is determined.

At the end of period all players play the coordination game with directly connected players
if such players exist. Then they get net payoffs of the period defined at the last section.

Note that at the step 2 and 4 small probabilities of mutations are introduced. The former
γ may be interpred as the probability of an experimentation for link formation. The latter ε is
interpreted as the probability for action choice.

3.4 Perturbed Markov process

Lemma 3.5. Our perturbed adaptation rule at each period define a homogeneous Markov process
P (ε, µ) depending on ε, µ.

See an example at Appendix 2.

Lemma 3.6. For our perturbed Markov Process there exists an unique stationary distribution
µ(ε, γ) such that µ(ε, γ)P (ε, γ) = µ(ε, γ).

Proof. By the definition of our perturbed adaptation rule, the corresponding Markov process is
irreducible. From the lemma 3, this process has a unique stationary distribution. ¥

To simplify our analysis the perturbed adaptation and corresponding Markov process is
restricted a regular process defined below. For our Markov process to be the regular perturbed
Markov process about only ε, we suppose that a convergence of ε and γ becomes a same rate.

13



Assumption 3. There is a constant r > 0 such that ε = rγ.

γ(ε) represents that γ depends on ε due to above Assuption.

Definition 12 (Young(1993,1998)). A Markov Process P (ε, γ(ε)) is a regular perturbed
Markov process if P (ε, γ(ε)) is irreducuble for every ε ∈ [0, ε̄] and for every s,s′ ∈ S, following
two conditions hols.

lim
ε→0

Ps,s′(ε, γ) = Ps,s′,
and

if Ps,s′(ε, γ(ε)) > 0 for some ε > 0, then 0 < lim
ε→0

Ps,s′(ε, γ(ε))
εr(s,s′) < ∞ for some r(s, s′) ≥ 0.

The real number r(s, s′) is called as the resistence of the transition from s to s′. Note also
that Ps,s′ > 0 if and only if r(s, s′) = 0. For convenience, we shall adopt the convention that
r(s, s′) = ∞ if Ps,s′(ε, µ) = Ps,s′ = 0 for all ε ∈ [0, ε̄].

Lemma 3.7. Our perturbed Markov process P (ε, γ) is a regular perturbed Markov process.

Proof. From Asuumption 3, it holds true clearly.
¥

Definition 13 (Young(1993)). A state s ∈ S is a stochastically stable state if lim
ε→0

µ(ε, γ(ε))(s) >

0.

Due to Assumption 3, it is possible to define stochastically stable states by a convergence of
only ε.

3.5 Computation of stochastically stable states

Based on the appendix in Young(1993) it is summerized how to compute stochastically stable
states for any regular perturbed Markov process P (ε, γ(ε)) on the finite state space S. Let P have
recurrent classes E1, E2, . . . , EK . For each pair of distinct recurrent classes Ei and Ej , an ij-path
is a sequence of states ζ = (s1, s2, . . . , sq) that begins in Ei and ends in Ej . The resistence of this
path is the sum of the resistence of its edges, that is, r(ζ) = r(s1, s2)+r(s2, s3)+ . . .+r(sq−1, sq).
Let rij = min r(ζ) be the least resistence over all ij-paths ζ. Now construct a complete directed
graph with K vertices, one for each recurrent class. The vertex corresponding to a recurrent
class Ej will be called j. The weight on the directed edge i → j is rij . A tree rooted at vertex
j (called a j-tree) is a set of K − 1 directed edges such that, from every vertex different from j,
there is a unique directed path in the tree to j.

The resistence of a rooted tree T is the sum of the resistences rij on the K − 1 edges that
compose it. The stochastic potential pj of the recurrent class Ej is defined as the minimum
resistence over all trees rooted at j.

Theorem 3.1. (Young[1993])
Let P (ε, γ(ε)) be a regular perturbed Markov Process of P , and let µ(ε, γ(ε)) be the unique

stationary distribution of P (ε, γ(ε)) for each ε > 0, γ = rε. Then lim
ε→0

µ(ε, γ(ε)) = µ exists and
µ is a stationary distrubution of P . The stochastically stable states are precisely those states
are precisely those states that are contained in the recurrent class(es) of P having minimum
stochastic potential.

14



Proof. See Young(1993,1998).
¥

This theorem is directely used to investigate the stchastically stable convention and network
formation of our model. We will find recurrent classes which are minimum over all recurrent
classes of our Markov process P .

4 Stochastically stable convention and network formation in the
direct link case

We call a state (a∗, g∗) which is stochastically stable as stochastically stable convention and
network. Stochastcally stable conventions and network formation depends cost levels of kh and
kl. Some cases of different cost parameters are investigated. Let Nα(a) be the set of players
choosing α at the profile a. |N |,|Nl|,|Nh| represent cardinalities of each set. For any action
profile ax, ax

i is a player i’s action under ax. As an example of our analysis, we investigate Case
0 as following. After Case 0, we will investigate Case 1 and Case 2 which were assorted on
Lemma 2.2.

4.1 Case 0: d > kh >max{f, b} and kl < min {f, b}
Only states that all players take an identical action are absorbing for the unperturbed dynamics
P in this case. A uniform convention emerges. It is possible for each action α and β to become
the convention based on the process P .

Lemma 4.1. If the link cost parameters satisfy d > kh > max{f, b} and kl < min{f, b} then the
set of absorbing states for the unperturbed process P is classified into two groups. The first class
is the set of states such that the network is efficiently formed and fully connected, and all players
play the action α. The second class is the set of states such that the network is established by
only the low cost players and all players play the action β. Formally this statement is as follows.

The first class Eα
1 of the absorbing states is a set of pairs {(g, a)} such that g ∈ Ge and for

any i ∈ N ai = α.
The second class Eβ

0 of the absorbing states is a set of pairs {(g, a)} such that for any pair
(i, j) ∈ Nl ×Nh gij = 1 and gji = 0, for any i,j ∈ Nh gij = 0, and for any i ∈ N ai = β.

Proof. At any period t − 1, if pij > 0 and i ∈ Nl then gt
ij = 1 since kl < min{f, b}. Since∏

(i,j)∈Nl×N pij > 0 and |N | is finite, a state s where for any i ∈ Nl and for any j ∈ N , gij = 1
is accessible from any state by finite steps. If at the state s the number kα of α players in Nl

satisfies

kα <
(b− e)Nl

(d− e) + (f − b)

then any player will choose β at all following states. It is possible that with a probability
that

(
∏

k∈N

qk)(
∏

(k,i)∈N×N

pij) > 0
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a state s′ such that all players choose β, for any i ∈ Nl and j ∈ Nh (gij = 1 and gji = 0),
and for any i, j ∈ Nl (ḡij = 1 and gij = 1 → gji = 0) is accessible from the state s. Since
kh > max f, b no high cost player establish new active links from the state s′. Therefore no state
outside s′ is accessible from s′.

If at state s,

kα ≥ (b− e)Nl

(d− e) + (f − b)

then any player will choose α at all following states. It is possible that with a probability
that

(
∏

k∈N

qk)(
∏

(k,i)∈N×N

pij)(
∏

i∈Nl

pij) > 0

a state s′′ such that all plays α and g ∈ Ge is accessible from s. Since no player will establish
new active link and choose β from s′′, no outside state is accessble from s′′.

Because in an efficiently formed network only one side of any link must establishes it and
another side must severs it, it is possible |Eβ

0 | ≥ 2.
¥

To confirm this lemma see the figure below. The the set of players N is assumed to be
{1, 2, 3, 4, 5, 6}, Nl = {1, 2} and Nh = {3, 4, 5, 6}. 1α

h represents that the player 1 is high cost
player and plays α action.

1α
l

2α
l

3α
h

4α
h

6α
l

5α
h

Eα
1

1β
l

2β
l

3β
h

4β
h

5β
h

6β
h

Eβ
0

Note that each state in Ex
i can be reached each other by a chain of states in Ex

i . This chain
is constructed as following. Assume that in a state s one mutation occurs and the perturbed
process P (ε, γ) transits into a state s′. From s′, the process goes into a state s′′ due to the
unperturbed process P . Then we write s → s′. The chain between states z and z′ is a set C
which consists of states z1, z2, . . . , zm−1, zm in recurrent states such that z1 = z, zm = z′ and
z1 → z2 → . . . → zm−1 → zm. Denote a set of states which have some chains with a state s be
C(s).
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Lemma 4.2. If a state s is stochastically stable and s′ ∈ C(s) then s′ is also stochastically
stable.

This idea is shown in Noldeke and Samuelson(1993).

Proof. Consider s-tree. By assumption the s has minimam stochastic potential. In the tree,
reverse directions all edges between s and s′. This set of reversed edges is a chain from s to s′

and constitute a path of s′ of a s′ tree. By the definition of a chain, this s′ tree must have the
same weight as s-tree. Therefore s′ become also stochastically stable. (See Figure 5.)

¥

reverse one mutation

s

s′ s′

s

s′ has also the minimum stochastic potential.

Figure 5.

Lemma 4.3. For any state s and s′ ∈ Eα
1 (Eβ

0 ), there is a chain between s and s′.

Proof. Let gij = 1 in s. By one mutation such that i serves an active link ij, our perturbed
process goes into a state t where gij = 0 and other. From t our unperturbed process P can
reach a state z ∈ Ex

i such that gji = 1. Without confusion we can write gij = 1 → gji = 1. Due
to this proceedings, we can construct a chain between any states s and s′ in Ex

i .
¥

Since any states s and s′ which are connected by a chain has the same stochastic potential,
we regard a weight of a state s as a weight of a set C(s). So we expand the concept of a least
weighted tree of a state to a set Ex

i and denote it by Ex
i − tree.

Theorem 4.1. In Case 0,

|Nl| < d |(N − 1)|(d− f)
(b− e)

e

if and only if Eα
1 is the set of stochastically stable states.

Proof. By Lemma 4.1, Lemma 4.2 and Lemma 4.3, it is sufficient to compare the stochastic
potentioal of Eα

1 to that of Eβ
0 . Let each resistence be r1,α,r0,β. These correspond to the

number of mutations for the process P (ε, γ) to transit into the concerning set of absorbing sets
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from the other set of absorbing sets. To escape from Eα
1 it is needed and sufficient for the

number of mutations (β players ) to exeed a threshold over the whole players. Because at Eα
1 ,

players are fully connected, the threshold or the basin of attraction for Eα
1 is the same value as

the random matching case. Therefore

r0,β = d |(N − 1)|(d− f)
(b− f) + (d− e)

e

To escape from Eβ
0 , the needed number of mutations is

min{d |Nl|(b− e)
(b− f) + (d− e)

e, d |N |(b− e)
(b− f) + (d− e)

e}

The former condition in above min{·, ·} represents a case that mutations occurs over only the
low cost players who establish the whole network. The latter represents a case that mutations
occurs over all the players.

Clearly

d |Nl|(b− e)
(b− f) + (d− e)

e ≤ d |N |(b− e)
(b− f) + (d− e)

e

. Therefore

r1α = d |Nl|(b− e)
(b− f) + (d− e)

e

.
By comparing r0β to r1α, we get this theorem.

¥

At Figure 6 an example of Theorem 4.1 is drawn for Theorem 4.1. Bold arrows represents
transitions with mutations. Normal and dashed arrows represents transitions due to best re-
sponses. At the begining low cost players mute and switch to α. This example shows that at
most two mutationss bring its process to the pareto dominant convention.
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β, h

β, h

β, h

β, h β, h

β, h

β, h
β, h

β, h

β, h
β, h

α, l

α, l

β, h

α, l

α, h

α, h
α, h

α, hα, h

α, h

α, h

α, h

α, l

α, l

Figure 6.

This case is the one of the most interesting cases. The low link cost players who choose β are
willing to add links with any miscoordinated players . Then high cost link players can free ride
on the link established by the low cost player, and all players are connected only one network.
That is, there is no isolated players.

By free riding on link formations of high cost players, pareto domonant convention emerges.

4.2 Case 1: e < f < b < d

We assume e < f < b < d. Except a pattern such that d > kh >max{f, b} and kl < min {f, b},
there are following nine cases.

Lemma 4.4. (Case 1.0)
If kl, kh < e, then there are two classes of absorbing states Eα

1 and Eβ
2 .

Eα
1 is a set {(g1, a1)} such that g1 ∈ Ge and for any i ∈ N , a1

i = α.
Eβ

2 is a set {(g2, a2)} such that g2 ∈ Ge and for any i ∈ N , a2
i = β.

Lemma 4.5. (Case 1.1)
If kl < e and e < kh < f then there are two classes of absorbing states Eα

1 and Eβ
2 .

Eα
1 is a set {(g1, a1)} such that g1 ∈ Ge and for any i ∈ N , a1

i = α.
Eβ

2 is a set {(g2, a2)} such that g2 ∈ Ge and for any i ∈ N , a2
i = β.

Lemma 4.6. (Case 1.2)
If kl < e and f < kh < b then there are two classes of absorbing states Eα

1 and Eβ
2 .

Eα
1 is a set {(g1, a1)} such that g1 ∈ Ge and for any i ∈ N , a1

i = α.
Eβ

2 is a set {(g2, a2)} such that g2 ∈ Ge and for any i ∈ N , a2
i = β.

Proof. (Case 1.0, Case 1.1, Case 1.2) In these three cases, at any period t − 1 if i ∈ Nl and
pij > 0 then gt

ij = 1 for any jinN . That is, if a low cost player is picked up at step 1, the player
must establish an active link with any player. Therefore from any initial state, a fully connected
network wii be approached by finite steps. (From any state, with a positive probability that
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(
∏

(i,j)∈Nl×N

pij)(
∏

k∈Ns,|Ns|=|Nl×N |
qk) > 0

a fully connected network is approached.)
Once our process P transits into a state such that the network is fully connected, each player

must coordinate on an action. With a positive probability of finite steps

(
∏

(i,j)∈N×N

pij)(
∏

k∈Ns,|Ns|=|N×N |
qk) > 0

all players necessarily coordinate on an action. ¥

Lemma 4.7. (Case 1.3)
If e < kl, kh < f then there are two classes of absorbing states Eα

1 and Eβ
2 .

Eα
1 is a set {(g1, a1)} such that g1 ∈ Ge and for any i ∈ N , a1

i = α.
Eβ

2 is a set {(g2, a2)} such that g2 ∈ Ge and for any i ∈ N , a2
i = β.

Proof. (Case 1.3)
Assume a

(t−1)
i = α, a

(t−1)
j = β, and i ∈ Nl j ∈ Nh. Since pji > 0, gt

ji = 1 occurs with the

positive probability pji > 0 on the condition that a
(t−1)
i = α, a

(t−1)
j = β. Assume a

(t−1)
i = α,

a
(t−1)
j = β, and i ∈ Nh j ∈ Nl. Since pji > 0, gt

ji = 1 occurs with the positive probability pji > 0

on the condition that a
(t−1)
i = α, a

(t−1)
j = β. Anyway even if there is a miscoordination, one

side player choosing β will linked with any player. Therefore from any state a fullly connected
network will be approached with a positive probability by finite steps. Once the fully connected
network is formed, if gij = 1 and gji = 1, pij > 0 then the player servers the link ij. Therefore
efficiently network must be reached.

Once efficiently connected network is reached, all player necessarily coordinate on an action
by finite steps. ¥

Theorem 4.2. In Case 1.0, Case 1.1, Case 1.2, Case 1.3, Eα
1 is the set of stochastically stable

states.

Proof. Note that rss′ is the least resistence over all ss′ − paths.
Let

rm
12 = min

s∈Eα
1 ,s′∈Eβ

2

rij

and

rm
21 = min

s∈Eβ
2 ,s′∈Eα

1

rij .

We call rm
ij the resistence from Ei to Ej .
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By Table 1,

rm
12 = d (|N | − 1)(d− f)

(b− f) + (d− e)
e

and

rm
21 = d (|N | − 1)(b− e)

(b− f) + (d− e)
e

where d·e represents the least integer larger than ·.
By Assumption 2, rm

21 > rm
12. Therefore by Lemma any state in Eβ

2 minimize a stochastic
potential.

¥

Lemma 4.8. (Case 1.4)
If e < kl < f and f < kh < b, then there are three classes of absorbing states Eα

1 , Eβ
2 and

Eα,β
3 .

Eα
1 is a set {(g1, a1)} such that g1 ∈ Ge and for any i ∈ N , a1

i = α.
Eβ

2 is a set {(g2, a2)} such that g2 ∈ Ge and for any i ∈ N , a2
i = β.

Eα,β
3 is a set {(g3, a3)} such that for any pair (i, j) ∈ Nh × Nh ḡij = 1, gij = 1 → gji = 0,

and ai = aj = β, and for any pair (k, l) ∈ Nl ×Nl ḡkl = 1, gkl = 1 → glk = 0, and ak = al = α.

Proof. Since kl, kh < b < d, if the action is coordinated between a pair (i, j) ∈ N × N , then
ḡij = 1. But if i ∈ Nl, j ∈ Nh ai = α and aj = β then ḡij = 0.

¥

Theorem 4.3. In Case 1.4, |Nl| < |Nh| if and only if Eα
1 is the set of stochastically stable

states.

Proof. By simple calculation each Ei − tree has an weight as follows.(See Figure 6.)
Eα

1 : rm
12 or (|N | − 1)− |Nh|

Eβ
2 : rm

21 or (|N | − 1)− |Nl|
E3: rm

12 + |Nl| or rm
21 + |Nh| or |N |.

By comparing these weights we complete the proof.
¥

Lemma 4.9. (Case 1.5)
If f < kl, kh < b then there are five classes of absorbing states Eα

1 , Eβ
2 , Eα,β

3 , Eβ,α
4 and Eiso

5 .
Eα

1 is a set {(g1, a1)} such that g1 ∈ Ge and for any i ∈ N , a1
i = α.

Eβ
2 is a set {(g2, a2)} such that g2 ∈ Ge and for any i ∈ N , a2

i = β.
Eα,β

3 is a set {(g3, a3)} such that for any pair (i, j) ∈ Nh × Nh ḡij = 1, gij = 1 → gji = 0,
and ai = aj = β, and for any pair (k, l) ∈ Nl ×Nl ḡkl = 1, gkl = 1 → glk = 0, and ak = al = α.

Eβ,α
4 is a set {(g4, a4)} such that for any pair (i, j) ∈ Nh × Nh ḡij = 1, gij = 1 → gji = 0,

and ai = aj = α, and for any pair (k, l) ∈ Nl ×Nl ḡkl = 1, gkl = 1 → glk = 0, and ak = al = β.
Eiso

5 is a set {(g5, a5)} such that there are some isolated players choosing x and other players
are connected and coordinated on another action y.
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Proof. The cases to note are only Eβ,α
4 , Eβ

5 . All players can not link with others when they
coordinate on the action β. Thus initially players choosing β of high link costs will change their
action.

And link cost is high enough for low type players to link with miscoordinated players. There-
fore there may be separeted two populations which are coordinated ondifferent actions each
other.

¥

To show its stochastic stability, it is sufficient to compare the numbers Eα
1 and Eβ

2 .

Theorem 4.4. In Case 1.5, Eβ
2 is only stochastcally stable.

Proof. Since the link cost kh is less than b, we can use a standard argument of Kandori et,al(1993)
and Young(1993).

¥

Lemma 4.10. (Case 1.6)
If f < kl < b, b < kh < d then there are three classes of absorbing states Eα

1 , Eβ
6 and Eiso

5 .
Eα

1 is a set {(g1, a1)} such that g1 ∈ Ge and for any i ∈ N , a1
i = α.

Eβ
6 is a set {(g6, a6)} such that for any i, j ∈ Nl ḡij = 1, gij = 1 → gji = 0, for any k, l ∈ Nh

ḡij = 0, for any i ∈ Nl k ∈ Nh gik = 1 and gki = 0, and for any i ∈ N i a6
i = β.

Eiso
5 is a set {(g5, a5)} such that there are some isolated players choosing x and other players

are connected and coordinated on another action y.

Proof. Eβ
6 is only the case different above lemmas. In this case, since high cost players cannot

link with others when coordinated on β. Thus only low cost players can establish links with all
players by finite steps.

¥

Theorem 4.5. In Case 1.6, if

|Nl| < d(|N | − 1)(d− f)
(b− e)

e

then
Eα

1 and Eiso
5 are the sets of stchastically stable states.

Otherwise Eβ
6 is the state of stchastically stable states.

Proof. Similar to Theorem 4.1. Thus it is omitted.
¥

Lemma 4.11. (Case 1.7) If b < kl < d and d < kh then the classes of absorbing states are Eα
1

and Eiso,β
5 .

Eα
1 is a set {(g1, a1)} such that g1 ∈ Ge and for any i ∈ N , a1

i = α.
Eiso,β

5 is a set {(g5, a5,β)} such that there are some isolated players choosing β and other
players are connected and coordinated on another action α.
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Proof. Only players coordinating on α have an incentive to establish an active link. Since a
miscoordinated player chooseing β does not have establish an active link, he will be isolated.

¥

Theorem 4.6. In Case 1.8 Eα
1 is a unique set of the stochastically stable states.

Proof. This case is investigated by Goyal and Vega-Redondo(1999). Thus omitted.
¥

Lemma 4.12. (Case 1.9)
If d < kh, kl, then the sets of absorbing states are Eα

0 and Eβ
0 .

Proof. This case is the same one of Kandori,et,al(1993) and Young(1993). Thus omitted.
¥

5 Concluding Remarks of the direct link case and An Applica-
tion

5.1 Concluding Remarks

We have analyzed mainly the direct link case. Roughly speaking the performance of the indirect
link case model is very similar to our main result Theorem 4. According to Goyal and Vega-
Redondo, indirect link case derive the Star network as unique strict Nash equilibrium of a
network formation game.13 This fact is easily checked by definitions in our Section 2,3. Since in
indirect link case each player can play the coordination game with all other players through at
most one link, they have no incentives to add more links. At this Star network since the unique
support(center) player has ultimately strong power to upset the convention, the stochastically
stable action may be α. The role of the center player is very similar to the role of the low cost
players in our model. These precise relations are one of the interesting future researchs.

We suppose link cost as a constant value, but as say at section 2, the link cost may be convex
function of active links in the real communication. As Jackson and Watts shows, this link cost
restricts the number of full connected players in a network. If asymmetricity of cost is introduced
too, distinct convention regions may emerge. This will be more exiting futur research.

13Note their adaptation process is different from our model about steps in a period.
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7 Appendix

7.1 Case 2: e < b < f < d

We use the same notations as case 1 for the set of absorbing states. Proofsand Studying stochas-
tically stabilities are similar to Case 1 for each case. Thus this cases are written at an Appendix
and proofs are omitted.
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Lemma 7.1. (Case 2.0)
If kh, kl < e, then the sets of absorbing states are Eα

1 and Eβ
2 .

Lemma 7.2. (Case 2.1)
If kl < e and e < kh < b, then the sets of absorbing states are Eα

1 and Eβ
2 .

Proof. Low link cost players establish active links with any player. Proof is same as Case 1.0,
1.1, 1.2.

¥

Lemma 7.3. (Case 2.2)
If kl < e and b < kh < f , then the sets of absorbing states are Eα

1 and
Eβ

6 is a set {(g6, a6)} such that for anyi, j ∈ Nl ḡij = 1, gij = 1 → gji = 0, for any k, l ∈ Nh

ḡij = 0, for any i ∈ Nl k ∈ Nh gik = 1 and gki = 0, and for any ∈ N i a6
i = β.

Proof. Since b < kh < f , in a coordination on β any high cost player serves any active link.
Precise proof is shown at Case 0.

¥

Lemma 7.4. (Case 2.3)
If e < kh, kl < b, then the sets of absorbing states are Eα

1 and Eβ
2 .

Proof. Proof is same as Case 1.3.
¥

Lemma 7.5. (Case 2.4)
If e < kl < b b < kh < f then the sets of absorbing states are Eα

1 and Eβ
6 .

Proof. Since b < kh < f , in a coordination on β any high cost player serves any active link.
Precise proof is shown at Case 0.

¥

Lemma 7.6. (Case 2.5)
If b < kl, kh < f then the sets of absorbing states are Eα

1 and Eiso,β
7 .

Eiso,β
7 is a set {(g7, a7)} such that for any i ∈ N a7

i = β and for any i,j ∈ N ḡij = 0.

Proof. Since b < kh, kl < f , in a coordination on β no player serves any active link. But at any
miscoordination state any β player establish active link with α player.

¥

Lemma 7.7. (Case 2.6)
If b < kl < f , f < kh < d then the sets of absorbing states are Eα

1 and Eiso,β
5 .

Eiso,β
5 is a set {(g5, a5,β)} such that there are some isolated players choosing β and other

players are connected and coordinated on another action α.

Lemma 7.8. (Case 2.7)
If f < kl < kh < d then the sets of absorbing states are Eα

1 and Eiso,β
5 .

Eiso,β
5 is a set {(g5, a5,β)} such that there are some isolated players choosing β and other

players are connected and coordinated on another action α.
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Lemma 7.9. (Case 2.8)
If f < kl < d d < kh then the sets of absorbing states are Eα

8 and Eiso,complex
8 .

Eiso,complex
8 is a set such that there are some isolated players choosing β and other players

are connected and coordinated on another action α.Where players who are connected care low
cost players.

Lemma 7.10. (Case 2.9)
If d < kl, kh, then the sets of absorbing states are Eα

0 and Eβ
0 .
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