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Abstract

This paper shows that in stochastic one-sector growth models, if the pro-
duction function does not satisfy the Inada condition at zero, any feasible
path converges to zero with probability one provided that the shocks are suf-
ficiently volatile. This result seems significant since, as we argue, the Inada
condition at zero is difficult to justify on economic grounds. Our convergence
result is extended to the case of a nonconcave production function. The gen-
eralized result applies to a wide range of stochastic growth models, including
stochastic endogenous growth models, overlapping generations models, and
models with nonconcave production functions.
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1 Introduction

In a seminal paper, Brock and Mirman (1972) showed that the optimal paths
of a stochastic one-sector growth model converges to a unique nondegenerate
stationary distribution. While various cases are known in which their theo-
rem can be extended,1 it is not well understood when the theorem fails. Most
of the extensions of the Brock-Mirman theorem assume that the production
function satisfies the Inada condition at zero, i.e., that the marginal product
of capital goes to infinity as capital goes to zero.2

Although the Inada condition at zero is almost ubiquitous in economics,
the only justification for its use seems to be analytical simplicity. According
to Barro and Sala-i-Martin (1995, p. 16), the Inada conditions f ′(0) = ∞ and
f ′(∞) = 0 are named after Inada (1963), who in fact used these conditions
following Uzawa (1963). Neither Inada nor Uzawa, however, provided an
economic justification for the conditions. We argue in Section 2 that the
Inada condition at zero is difficult to justify on economic grounds since it has
an unrealistic implication. More specifically, the condition is shown to imply
that each unit of capital must be capable of producing any large amount of
output with a sufficient amount of labor.

Given this unrealistic implication of the Inada condition at zero, it seems
worthwhile to study the case in which the condition is not satisfied. We
show in Section 3 that if the Inada condition at zero is not satisfied, i.e., if
the marginal product of capital is finite at zero, then under an additional
condition, any feasible path converges to zero with probability one. This
statement itself is rather trivial since it is well-known that all feasible paths
converge to zero in the deterministic case if the marginal product of capital
at zero is less than one.

What we show, however, is that no matter how large the expected marginal
product of capital at zero is, as long as it is finite, any feasible path converges
to zero with probability one provided that the shocks are sufficiently volatile.
To our knowledge, this result has not been documented in the literature.3

The result is extended to the case of a nonconcave production function. The

1For example, see Stachurski (2002) and the references therein.
2An exception is a convergence result shown by Hopenhayn and Prescott (1992). We

discuss their result in Section 3.
3Phelps (1962, p. 736) made the relevant observation that growth is not guaranteed by

the condition that the expected marginal product of capital exceeds the reciprocal of the
discount factor.
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generalized result applies to a wide range of one-sector models, including
stochastic endogenous growth models, overlapping generations models, and
models with a nonconcave production function.

The rest of the paper is organized as follows. Section 2 argues that the
Inada condition at zero has an unrealistic implication. Section 3 shows our
main results. Section 4 concludes the paper.

2 An Unrealistic Implication of the Inada Con-

dition at Zero

This section shows that the Inada condition at zero has an unrealistic im-
plication. This well-known condition is that the marginal product of capital
goes to infinity as capital goes to zero. The natural way to examine its impli-
cations would be to consider a situation in which capital is made arbitrarily
small. However, since most capital goods in reality are more or less indi-
visible, it is not clear what an infinitestimal amount of capital represents.
Thus in this section we regard capital as the capital-labor ratio and consider
a situation in which labor is arbitrarily large.

As in most neoclassical models, suppose output is produced by a linearly
homogenous production function F (K, L) using capital K and labor L. De-
fine f(k) = F (k, 1). We assume that F and f are concave and continuously
differentiable. The Inada condition at zero is

(2.1) f ′(0) ≡ lim
k↓0

f ′(k) = ∞.

To discuss an implication of this condition, it is useful to obtain the
following equivalent expression for f ′(0):

(2.2) ∀K ≥ 0, f ′(0) = lim
L↑∞

[F (K + 1, L) − F (K, L)].

To see this, note that by linear homogeneity,

F (K + 1, L) − F (K, L) = L

[
f

(
K + 1

L

)
− f

(
K

L

)]
(2.3)

= Lf ′(k̃)
1

L
= f ′(k̃),(2.4)
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where the first equality in (2.4) holds for some k̃ ∈ [K/L, (K + 1)/L] by the
mean value theorem. As L ↑ ∞, k̃ → 0. Hence (2.2) holds.

By (2.2), the Inada condition at zero implies that an additional unit of
capital is capable of producing any large amount of output as long as a
sufficient amount of labor is available. Since this is true for each additional
unit, it follows that every unit of capital must be unboundedly productive.
This, however, seems unrealistic.

For example, consider a closed economy in which there is one machine
that must be operated by one worker. For simplicity we assume that this
machine is the only capital in the economy.4 For the moment, assume

(2.5) ∀L ≥ 0, F (0, L) = 0.

This means that workers with no access to the machine produce nothing. If
there are three workers in the economy, then the machine can run 24 hours
a day with each worker working eight hours a day. If there are six workers,
output may rise since each worker, working only four hours a day, may be
less tired and more efficient in handling the machine. If there are twelve
workers, output may rise for the same reason, but perhaps to a lesser degree.
Adding more workers probably will not make much difference though they
can cooperate in various ways to increase efficiency. In any case, since workers
produce nothing when they are not using the machine, it seems reasonable
to assume that output will reach its upper bound fairly soon as more and
more workers are added. But if this is the case, the Inada condition at
zero is violated since, as shown above, it together with (2.2) implies that the
machine must be capable of producing any large amount if a sufficiently large
number of workers are available.

Now suppose (2.5) is not satisfied, i.e., capital is not an essential factor of
production. In this case, total output grows unboundedly if more and more
workers become available. But the above example works with appropriate
modifications. Note that if we define G(K, L) = F (K, L) − F (0, L), then
F (K,L) = G(K,L) + F (0, L), i.e., G is the relevant part of the production
function. It is easy to see that G satisfies (2.2) and (2.5) with G replacing F .
Thus we may apply the above argument to G to draw the same conclusion.

4By linear homogeneity, it does not matter how many machines there are in the econ-
omy. Though we consider here the case in which (2.2) holds with K = 0 for simplicity,
the following argument is valid for any K ≥ 0, where K is the number of machines in the
economy less one.
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Hence, even without (2.5), the Inada condition at zero is violated as
long as the machine’s capacity is limited. In view of this result, it seems
difficult to conceive of a real-life situation in which the Inada condition at
zero is satisfied. Note that producing more machines is a part of capital
accumulation, so is repairing the existing machine.

3 Main Results

Let (Ω,F , P ) be a probability space, and {Ft}∞t=0 ⊂ F be a filtration. From
here on, any sequence of the form {xt}∞t=0 is assumed to be a stochastic
process adapted to this filtration. Consider an infinite horizon economy in
which the resource constraint in period t ∈ Z+ is given by

(3.1) ct + kt+1 = stf(kt),

where ct is consumption in period t, kt is the capital stock at the beginning
of period t, and st is the productivity shock in period t. We say that a
nonnegative stochastic process {kt}∞t=0 is a feasible path if it satisfies (3.1) for
all t ∈ Z+ for some nonnegative stochastic process {ct}.

Since our results apply to any feasible path, no further structure is re-
quired. No matter what objective function is specified, optimal paths are
required to be feasible. Therefore our results apply to optimal paths as well.

We state our results after discussing our assumptions.

Assumption 3.1. (i) f : R+ → R+ is C1 on R++, concave, and strictly
increasing. (ii) f(0) = 0. (iii) m ≡ limk↓0 f ′(k) < ∞.

Parts (i) and (ii) are standard. Part (iii) means that f does not satisfy
the Inada condition at zero. Though m is required to be finite, it is allowed
to be arbitrarily large. Part (iii) seems reasonable given our discussion in
Section 2.

Assumption 3.2. ∀t ∈ Z+, (i) st > 0 a.s. and (ii) Est = 1.

Part (i) is standard. Part (ii) is only a normalization, implying that m as
given in Assumption 3.1 is the expected marginal product of capital at zero.

Assumption 3.3. ∃ν ∈ (−∞,∞],∀t ∈ Z+, E ln st = −ν.
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This assumption means only that E ln st does not depend on t. By
Jensen’s inequality and Assumption 3.2,

(3.2) −ν = E ln st ≤ ln Est = 0.

Thus ν is in fact nonnegative.

Assumption 3.4. We have

(3.3) lim
T↑∞

1

T

T−1∑
t=0

ln st = −ν a.s.,

where ν is given by Assumption 3.3.

Assumptions 3.3 and 3.4 mean that {ln st} has constant mean and satisfies
the law of large numbers. These assumptions hold if {ln st} is stationary and
ergodic with E| ln st| < ∞ (e.g., White, 2000, Theorem 3.34). For example,
{ln st} may be an i.i.d. process, as typically assumed in the stochastic growth
literature; more generally, it may be a stationary ARMA process.

We are now ready to state the following.

Theorem 3.1. Suppose Assumptions 3.1–3.4 hold. Suppose

(3.4) ln m < ν.

Then any feasible path converges to zero a.s.

Proof. Let {kt} be any feasible path. Let

Ω1 = {ω ∈ Ω | ∀t ∈ Z+, st(ω) > 0, kt(ω) > 0},(3.5)

Ω2 =

{
ω ∈ Ω

∣∣∣∣∣ lim
T↑∞

1

T

T−1∑
t=0

ln st(ω) = −ν

}
.(3.6)

Note that ∀ω ∈ Ω\Ω1, kt(ω) = 0 for t sufficiently large by (3.1) and Assump-
tion 3.1(ii). By Assumption 3.4, P (Ω2) = 1. Thus to show the conclusion,
it suffices to verify that ∀ω ∈ Ω1 ∩ Ω2, limt↑∞ kt(ω) = 0. For the rest of
the proof, we fix ω ∈ Ω1 ∩ Ω2. But we write kt instead of kt(ω), etc., for
notational simplicity.

By Assumption 3.1, ∀k ≥ 0, f(k) ≤ mk. Thus

(3.7) ∀t ∈ Z+, kt+1 ≤ stf(kt) ≤ stmkt.
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Since ω ∈ Ω1, it follows that

(3.8) ∀t ∈ Z+, ln kt+1 ≤ ln st + ln m + ln kt.

Hence

(3.9) ∀T ∈ N, ln kT ≤
T−1∑
t=0

ln st + T ln m + ln k0.

Dividing through by T , we get

(3.10) ∀T ∈ N,
ln kT

T
≤

∑T−1
t=0 ln st

T
+ ln m +

ln k0

T
.

The right-hand side converges to ln(m) − ν as T ↑ ∞ since ω ∈ Ω2. By
(3.4), ln(m) − ν < 0. Let b ∈ (ln(m) − ν, 0). Then for T sufficiently large,
ln(kT )/T ≤ b, i.e., ln kT ≤ bT . Thus limT↑∞ ln kT ≤ limT↑∞ bT = −∞; i.e.,
limT↑∞ kT = 0.

The basic idea of the above proof is that (3.4) and (3.8) imply that kt

converges to zero a.s. A similar argument was used by Kelly (1992, Proposi-
tion 1) to show the convergence of output paths with different initial capital
stocks in an endogenous growth model. Another similar argument was used
by De Hek and Roy (2001, Lemma 1) to obtain a sufficient condition for
sustained growth in a stochastic growth model. Our contribution here is to
point out that without the Inada condition at zero, it is possible that every
feasible path converges to zero a.s. even if the marginal product of capital at
zero is arbitrarily large.

If ν = 0, i.e., if st is non-random, then (3.4) reduces to

(3.11) m < 1,

which is exactly the condition under which all feasible paths converge to zero
in the deterministic case (for an arbitrary production function satisfying
Assumption 3.1). Since ν ≥ 0 by (3.2), (3.11) implies (3.4) even in the
stochastic case. In the stochastic case, however, (3.4) holds even if m is
arbitrarily large, provided that ν is sufficiently large. Roughly speaking, the
more volatile st is, the larger ν (= ln Est − E ln st) is. Thus without the
Inada condition at zero, almost sure convergence to zero occurs if the shocks
are sufficiently volatile. A simple example illustrates this point.
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Suppose st is unconditionally log-normal.5 Then by Assumption 3.2(i)
and log-normality,

(3.12) 1 = Est = E exp(ln st) = exp

(
E ln st +

V ar(ln st)

2

)
.

Recalling that ν = −E ln st, we obtain

(3.13) ν =
V ar(ln st)

2
.

Hence (3.4) holds as long as V ar(ln st) is sufficiently large. In other words,
as long as the production function violates the Inada condition at zero, any
feasible path converges to zero a.s. provided that the shocks are log-normal
with sufficiently large variance.

It is easy to see that such shocks can be constructed even if their support
is required to be bounded and bounded away from zero, as in the original
Brock-Mirman (1972) model. One way to do this is by approximating a
sufficiently volatile log-normal shock by a random variable whose support is
bounded and bounded away from zero. As a simpler example, suppose {st}
is i.i.d., and st = 1 − r with probability 1/2, and 1 + r with probability 1/2,
where r ∈ (0, 1). Then Est = 1 and

(3.14) −ν = E ln st =
1

2
[ln(1 − r) + ln(1 + r)].

Thus ν → ∞ as r ↑ 1, so that (3.4) holds for r sufficiently close to one.
Hopenhayn and Prescott (1992, Sec. 6.B(i)) extended the Brock-Mirman

theorem to the case in which the Inada condition at zero need not hold. Let
us clarify the relationship between their result and ours. They assumed that
the production function f̃ satisfies βf̃ ′(0) > 1 for some β ∈ (0, 1) and that the
shocks s̃t are i.i.d. with s̃t ∈ [1, α] for some α > 1. Under our normalization,
i.e., Assumption 3.2(ii), their assumptions are expressed as follows:

(3.15) (i) f ′(0) > θ/β, (ii) st ∈ [1/θ, α/θ],

where α > 1, θ ∈ (1, α), and β ∈ (0, 1).6 Since m = f ′(0) and ν = − ln Est,
by (3.15),

(3.16) ln(m) − ν > ln(θ/β) + ln(1/θ) ≥ − ln β > 0.

5This is true, for example, if {ln st} is i.i.d. normal or a stationary AR process with
normal innovations.

6Hopenhayn and Prescott’s assumptions can be recovered by setting s̃t = θst and
f̃ = f/θ. Note that θ = Es̃t.
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Thus in this case, (3.4) does not hold.
The critical assumption here is that st ≥ 1/θ. Without this lower bound,

Hopenhayn and Prescott’s result may fail. For example, let α ∈ (0, 1) and
suppose st ∈ [α/θ, α/θ] instead of (3.15)(ii). Suppose st = α/θ with probabil-
ity p(α), and α/θ with probability with 1−p(α), where p(α) = (α−θ)/(α−α).
Then Est = 1 and

(3.17) −ν = E ln st = p(α) ln(α/θ) + (1 − p(α)) ln(α/θ).

Since p(0) > 0, we have ν → ∞ as α ↓ 0. Hence (3.4) holds for α sufficiently
close to zero, in which case every feasible path converges to zero a.s. by
Theorem 3.1.

Theorem 3.1 can easily be extended to the case of a nonconcave produc-
tion function. In the proof of Theorem 3.1, the production function f(x)
is estimated above by mk. Hence the proof goes through as long as this
estimation is valid. The following result does not assume Assumption 3.1.

Theorem 3.2. Suppose Assumptions 3.2–3.4 hold. Suppose there exists m >
0 satisfying (3.4) such that

(3.18) ∀k ≥ 0, f(k) ≤ mk.

Then every feasible path converges to zero a.s.

Proof. Identical to the proof of Theorem 3.1 except that (3.18) replaces As-
sumption 3.1 here.

Theorem 3.2 covers various cases. For example, if f(k) = mk for some
m > 0, then the hypotheses of Theorem 3.2 obviously hold except for (3.4).
Hence in a stochastic “AK” model, under (3.4), every feasible path converges
to zero a.s. regardless of the objective function.7 More generally, Theorem
3.2 applies to any one-sector stochastic growth model with bounded marginal
product. It applies to nonconvex stochastic growth models of the type studied
by Majumdar, Mitra, and Nyarko (1989) as well as stochastic overlapping
generations models of the type studied by Wang (1993).8

7Phelps (1962) was the first to study a stochastic “AK” model. The analysis was
extended by Levhari and Srinivasan (1969). These articles studied mainly the properties
of the consumption policy function rather than the asymptotic properties of optimal paths.

8In overlapping generations models, ct in (3.1) represents aggregate consumption.
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4 Conclusion

This paper has shown that in one-sector stochastic growth models, if the
production function does not satisfy the Inada condition at zero, then any
feasible path converges to zero with probability one provided that the shocks
are sufficiently volatile. This result seems significant since, as we have argued,
the Inada condition at zero is difficult to justify on economic grounds. Our
convergence result has been extended to the case of a nonconcave production
function. The generalized result applies to a wide range of one-sector mod-
els, including stochastic endogenous growth models, overlapping generations
models, and models with a nonconcave production function.

Dealing with feasible paths, our results of course apply to optimal mod-
els. Optimal paths, however, converge to zero with probability one under a
weaker condition.9 For example, if there is an upper bound on the marginal
propensity to save, then it can be used to estimate optimal paths (rather than
feasible paths) from above as in the proof of Theorem 3.1. If optimal paths
are characterized by a stationary policy function, then our argument can be
applied to the policy function instead of the production function. Likewise
it can be applied to equilibrium models in which there is an upper bound
on the aggregate marginal propensity to save, or in which the equilibria are
characterized by a stationary function. Such extensions are left for future
research.
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