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1 Introduction

Since Shell (1969) and Halkin (1974), necessity of transversality conditions (TVCs) has been

an uneasy matter to economic theorists who use infinite-horizon optimization problems.

While various results on necessity of TVCs for deterministic continuous-time problems are

established in Kamihigashi (2000b), the existing literature does not provide widely applicable

results on necessity of TVCs for stochastic problems.

The most standard type of TVC, which we call the standard TVC (STVC), is the

condition that the value of optimal stocks at infinity must be zero. The literature on necessity

of the STVC dates back at least to Peleg (1970) and Weitzman (1973). For a deterministic

concave problem, Weitzman shows that the STVC is necessary if the return functions are

nonnegative and if the objective function is always finite. Peleg shows the same result for

a special case.1 For a concave optimal control problem, Michel (1990) studies more general

TVCs that an optimal path has to satisfy against a feasible path that does not cause an

infinite loss. Michel’s results, however, do not directly deal with the STVC.2

While the above results in fact provide characterizations of optimal paths for concave

problems, Ekeland and Scheinkman (1986) focus on necessity of the STVC for a possibly

non-concave problem. They show that the STVC is necessary if the utility functions satisfy

a certain condition and if there exists a summable nonnegative sequence that majorizes the

utility functions for all feasible paths.

All the aforementioned results, however, are concerned with deterministic problems.

When it comes to stochastic problems, the knowledge on this issue is severely limited.

Stochastic versions of Weitzman’s theorem are shown by Zilcha (1976) and Takekuma (1992),

but they require additional restrictive assumptions.3 Stochastic versions of the results of

Michel (1990) and Ekeland and Scheinkman (1986) are not available in the literature.

Among the main results of this paper are a stochastic version of the necessity part of

Michel (1990, Theorem 1) and a stochastic version of a generalization of the TVC results of

1See also Peleg and Ryder (1972) for a similar result.
2See Kamihigashi (2000b) for discussions of related results for continuous-time models.
3See Zilcha (1978) for results specific to an undiscounted stationary model.
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Weitzman (1973) and Ekeland and Scheinkman (1986).

This paper extends the main results of Kamihigashi (2000b) to discrete-time problems.

Both deterministic and stochastic cases are considered. Our model in the deterministic case

is an extremely general reduced-form model. The model is general in that it does not assume

differentiability, continuity, or concavity, and in that the state spaces are arbitrary vector

spaces instead of finite-dimensional spaces. Because of this generality, our model in the

stochastic case, which is a natural extension of the deterministic model, is in fact a special

case of the deterministic model.4

For the deterministic case, we extend Michel’s necessity result to our abstract reduced-

form model. We also establish a result that simultaneously generalizes the TVC results

of Weitzman (1973) and Ekeland and Scheinkman (1986). This generalization is significant

especially because it does not require Ekeland and Scheinkman’s assumption that there exists

a summable nonnegative sequence that majorizes the utility functions for all feasible paths.

In addition we obtain a new result that is useful particularly in the case of homogeneous

returns. While similar results are shown in Kamihigashi (2000b) for deterministic continuous-

time models, the results in this paper are shown in a substantially more general setting.5

Furthermore our deterministic results are extended to the stochastic case. The stochastic

extensions are easily accomplished since, as mentioned above, the stochastic model is a

special case of the deterministic model.

We follow Ekeland and Scheinkman (1986) in using directional derivatives instead of

support prices. Since the aforementioned results except for their result use support prices,

those results rely heavily on the separation theorem. As is well-known, the separation theo-

rem for infinite-dimensional spaces requires severe restrictions. This is one of the reasons why

the results of Zilcha (1976) and Takekuma (1992) are not easily applicable. By contrast our

results do not require such restrictions since we use directional derivatives instead of support

prices. In fact we use a generalized type of directional derivative that is well-defined for any

4The idea that a stochastic model can be viewed as a deterministic model is used by Yano (1989) to study
the comparative statics of the stationary state of a stochastic growth model.

5While Kamihigashi (2000b) assumes that the return functions are differentiable, that the optimal path
is interior, and that the state spaces are time-invariant and finite-dimensional, none of these assumptions is
used in this paper.
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real-valued function whose domain lies in a vector space. This allows us to concentrate on

conditions directly related to TVCs.

Another feature of our approach is that multidimensional problems are transformed into

one dimensional problems. Since a problem with any state spaces is reduced to a problem

with a one-dimensional state space, our results are established in extremely general settings

without introducing additional complexities.

The rest of the paper is organized as follows. Section 2 establishes our deterministic

results. Section 3 extends them to the stochastic case. Section 4 applies our stochastic

results to a stochastic reduced-form model with homogeneous returns and to a general type

of stochastic growth model with CRRA utility. Section 5 concludes the paper. All the proofs

are collected in Appendix A. Section A.1 establishes the most general versions of our results

in a one-dimensional setting. The main results of the paper are proved by simple applications

of the one-dimensional results.

2 The Deterministic Case

Consider the following problem.“ max
{xt}∞t=0

∞∑
t=0

Vt(xt, xt+1)”

s.t. x0 = x0, ∀t ∈ Z+, (xt, xt+1) ∈ Xt.

(2.1)

This section assumes the following assumptions.

Assumption 2.1. There exists a sequence of real vector spaces {Dt}∞t=0 such that x0 ∈ D0

and ∀t ∈ Z+, Xt ⊂ Dt ×Dt+1.

Assumption 2.2. ∀t ∈ Z+, Vt : Xt → [−∞,∞).

Assumptions 2.1 and 2.2 impose virtually no restriction on the model. Since each Dt

is allowed to be an arbitrary vector space, it may even be a space of random variables.

Therefore, though we consider (2.1) as a deterministic problem here, it in fact includes

stochastic problems as special cases. We can work with this abstract setting since the only

operations we need on Dt are addition and scalar multiplication.
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We say that a sequence {xt}∞t=0 is a feasible path if x0 = x0 and ∀t ∈ Z+, (xt, xt+1) ∈ Xt.

Since in applications the objective function is often not guaranteed to be finite or well-defined

for all feasible paths, we use Brock’s (1970) notion of weak maximality as our optimality

criterion. We say that a feasible path {x∗t} is optimal if for any feasible path {xt},

lim
T↑∞

T∑
t=0

[Vt(xt, xt+1)− Vt(x
∗
t , x

∗
t+1)] ≤ 0.6(2.2)

Remark 2.1. Suppose
∑∞

t=0 Vt(xt, xt+1) exists in [−∞,∞) for all feasible paths {xt}.7 Sup-

pose sup
∑∞

t=0 Vt(xt, xt+1) is finite, where the sup is taken over all feasible paths {xt}. Then

a feasible path {x∗t} is optimal iff for any feasible path {xt},
∞∑

t=0

Vt(xt, xt+1) ≤
∞∑

t=0

Vt(x
∗
t , x

∗
t+1).(2.3)

Therefore, our optimality criterion coincides with the usual maximization criterion whenever

the latter makes sense.

Our optimality criterion applies even when the usual maximization criterion fails. In

addition, it is weaker than the similar criterion with lim replacing lim in (2.2). Thus, though

weak maximality is rarely directly used in applications, our results apply to virtually any

discrete-time problem. The rest of this section assumes the following.

Assumption 2.3. There exists an optimal path {x∗t}.

Since we are only interested in necessary conditions for optimality, this assumption

imposes no restriction on the model.

For t ∈ Z+ and d ∈ Dt+1 such that (x∗t , x
∗
t+1 + εd) ∈ Xt for ε > 0 sufficiently small,

define

Vt,2(x
∗
t , x

∗
t+1; d) = lim

ε↓0

Vt(x
∗
t , x

∗
t+1 + εd)− Vt(x

∗
t , x

∗
t+1)

ε
.(2.4)

6To be precise, this inequality requires that the left-hand side is well-defined. This means that the left-
hand side does not involve expressions like “∞−∞” and ”−∞+∞.” An implication of this requirement is
that ∀t ∈ Z+, Vt(x∗t , x

∗
t+1) is finite; for otherwise the left-hand side of (2.2) is undefined for {xt} = {x∗t }.

7Throughout this paper, ∀i ∈ Z+,
∑∞

t=i ≡ limT↑∞
∑T

t=i. Such sums are not to be interpreted as Lebesgue
integrals.
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The right-hand side is always well-defined, though possibly equal to −∞ or ∞, even if

Vt is nondifferentiable or discontinuous. Note that if Vt is partially differentiable (in an

appropriate sense) with respect to the second argument at (x∗t , x
∗
t+1) and if Vt,2(x

∗
t , x

∗
t+1)

denotes the partial derivative, then

Vt,2(x
∗
t , x

∗
t+1; d) = Vt,2(x

∗
t , x

∗
t+1)d.(2.5)

Remark 2.2. All the results in this section (Theorems 2.1–2.3) hold even if lim replaces lim

in (2.4).8

Theorem 2.1. Assume Assumptions 2.1–2.3. Suppose ∀t ∈ Z+, Xt is convex and Vt is

concave. Then

lim
t↑∞

Vt,2(x
∗
t , x

∗
t+1; xt+1 − x∗t+1) ≤ 0(2.6)

for any feasible path {xt} such that

lim
T↑∞

T∑
t=0

[Vt(xt, xt+1)− Vt(x
∗
t , x

∗
t+1)] > −∞,(2.7)

∀t ∈ Z+,∃ε > 0, (x∗t , x
∗
t+1 + ε(xt+1 − x∗t+1)) ∈ Xt.(2.8)

Theorem 2.1 is a discrete-time version of Kamihigashi (2000b, Corollary 3.1); recall

footnote 5. The necessity part of Michel (1990, Theorem 1) shows a similar result for a special

case of (2.1) that assumes, among other things, finite-dimensional state spaces. He shows

that there exists a sequence of support price vectors {pt} such that limt↑∞ pt(x
∗
t −xt) ≤ 0 for

any feasible path {xt} satisfying (2.7). In our case, Vt,2(x
∗
t , x

∗
t+1; xt+1 − x∗t+1) corresponds to

pt(x
∗
t − xt). Condition (2.8) is needed here for Vt,2(x

∗
t , x

∗
t+1; xt+1 − x∗t+1) to be well-defined.

Except for these differences, Theorem 2.1 generalizes Michel’s necessity result to our abstract

setting.

The proof of Theorem 2.1 can be summarized in one line as follows.

lim
t↑∞

Vt,2(x
∗
t , x

∗
t+1; xt+1 − x∗t+1) ≤ lim

t↑∞
lim
T↑∞

T∑
s=t+1

[Vs(x
∗
s, x

∗
s+1)− Vs(xs, xs+1)] ≤ 0.(2.9)

8See footnote 20 for why this remark is true. See (3.9) for why we use lim instead of lim in (2.4).
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The first inequality (without limt↑∞) follows from a simple perturbation argument. The

second inequality is a consequence of (2.7).9

The rest of this section assumes the following.

Assumption 2.4. ∀t ∈ Z+,∃λt ∈ [0, 1),∀λ ∈ [λt, 1), (x∗t , λx∗t+1) ∈ Xt and ∀τ ≥ t +

1, (λx∗τ , λx∗τ+1) ∈ Xτ .

Remark 2.3. Assumption 2.4 holds if ∀t ∈ Z+, Xt is convex and (x∗t , 0), (0, 0) ∈ Xt.

Assumption 2.4 means that the optimal path can be shifted proportionally downward

starting from any period. The assumption is common to the well-known results on the STVC

in the literature since the STVC basically means that no gain should be achieved by shifting

the optimal path proportionally downward.

For t ∈ N and λ ∈ R \ {1} with (λx∗t , λx∗t+1) ∈ Xt, define

wt(λ) =
Vt(x

∗
t , x

∗
t+1)− Vt(λx∗t , λx∗t+1)

1− λ
,(2.10)

ŵt(λ) = sup
λ̃∈[λ,1)

wt(λ̃),(2.11)

where ŵt(λ) is defined only for λ ∈ [λ0, 1), where λ0 is given by Assumption 2.4.

Remark 2.4. Let t ∈ N. If Vt(λx∗t , λx∗t+1) is concave in λ ∈ [λ0, 1], then ∀λ ∈ [λ0, 1), ŵt(λ) =

wt(λ).

Theorem 2.2. Assume Assumptions 2.1–2.4. Suppose

∃{bt}∞t=1 ⊂ R,∃λ ∈ [λ0, 1),∀t ∈ N, ŵt(λ) ≤ bt.(2.12)

Then (i) (2.13) ⇒ (2.14) and (ii) (2.15) ⇒ (2.16), where (2.13)–(2.16) are given by

lim
T↑∞

T∑
t=1

bt < ∞,(2.13)

lim
t↑∞

Vt,2(x
∗
t , x

∗
t+1;−x∗t+1) ≤ 0,(2.14)

∞∑
t=1

bt exists in [−∞,∞),(2.15)

lim
t↑∞

Vt,2(x
∗
t , x

∗
t+1;−x∗t+1) ≤ 0.(2.16)

9These arguments are used only indirectly in the proof in Appendix A, where Theorem 2.1 is derived
from a one-dimensional result.
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Theorem 2.2 is a discrete-time version of Kamihigashi (2000b, Theorem 3.3); recall

footnote 5. Conclusion (ii) generalizes the necessity part of Weitzman (1973) except that

TVC (2.16) is expressed in terms of generalized directional derivatives instead of support

prices. Note that (2.12) and (2.15) follow from Weitzman’s assumptions that the return

functions are concave and that the objective function is finite for all feasible paths.

Conclusion (ii) also generalizes Ekeland and Scheinkman (1986, Proposition 5.1). Their

result assumes the existence of a nonnegative sequence {ft} with
∑∞

t=0 ft < ∞ such that

for all feasible paths {xt}, ∀t ∈ Z+, Vt(xt, xt+1) ≤ ft. Theorem 2.2 does not require this

restrictive assumption. Though Ekeland and Scheinkman do not directly assume (2.12) and

(2.15), it is shown in Kamihigashi (2000a) that their assumptions imply (2.12) and (2.15).

See Kamihigashi (2000a) for further discussions on Ekeland and Scheinkman’s result and

approach.

The proof of conclusion (i) is similar to that of Theorem 2.1. It can be summarized in

one line as follows.

lim
t↑∞

Vt,2(x
∗
t , x

∗
t+1;−x∗t+1) ≤ lim

t↑∞
lim
T↑∞

T∑
s=t+1

ŵs(λ) ≤ 0.(2.17)

The proof of conclusion (ii) uses a similar argument.10

Our last result in this section uses the following assumption.

Assumption 2.5. ∃µ > 1, ∀µ ∈ (1, µ], (i) (x∗0, µx∗1) ∈ X0, (ii) ∀t ∈ N, (µx∗t , µx∗t+1) ∈ Xt,

(iii) V0(x
∗
0, µx∗1) > −∞, and (iv) ∀t ∈ N, Vt(µx∗t , µx∗t+1) ≥ Vt(x

∗
t , x

∗
t+1).

This assumption means that the optimal path can be shifted proportionally upward

((i) and (ii)) and that such a shift (if sufficiently small) entails a finite loss in period 0 and

nonnegative gains in subsequent periods ((iii) and (iv)). The assumption is innocuous at

least for standard models with constant-returns-to-scale technology.

Theorem 2.3. Assume Assumptions 2.1–2.5. Suppose

∃λ ∈ [λ0, 1), ∃µ ∈ (1, µ],∃θ ≥ 0,∀t ∈ N, ŵt(λ) ≤ θwt(µ).(2.18)

Then TVC (2.16) holds.
10In the actual proof of Theorem 2.2 in Appendix A, Theorem 2.2 is derived from a one-dimensional result.
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Theorem 2.3 is similar to Kamihigashi (2000b, Theorem 3.4), but the proofs of these

results are quite different. Basically Kamihigashi (Theorem 3.4) uses limµ↓1 wt(µ) in (2.18)

instead of wt(µ) and its proof relies heavily on differentiability and the Euler equation.

The proof of Theorem 2.3, on the other hand, verifies (2.12) and (2.15) using (2.18) and

Assumption 2.5. Theorem 2.3 is useful particularly in the case of homogenous returns. See

Section 4 for applications of the stochastic version of Theorem 2.3.

3 The Stochastic Case

This section extends the results in the preceding section to the stochastic case. Let (Ω,F , P )

be a probability space. Let E denote the associated expectation operator; i.e., Ez =∫
z(ω)dP (ω) for any random variable z : Ω → R. When it is important to make explicit the

dependence of z on ω, we write Ez(ω) instead of Ez. Consider the following problem.“ max
{xt}∞t=0

∞∑
t=0

Evt(xt(ω), xt+1(ω), ω)”

s.t. x0 = x0, ∀t ∈ Z+, (xt, xt+1) ∈ Xt.

(3.1)

For any two sets Y and Z, let F (Y, Z) denote the set of all functions from Y to Z. The

following assumption means that xt is a random variable in a real vector space.

Assumption 3.1. There exists a sequence of real vector spaces {Bt}∞t=0 such that x0 ∈

F (Ω, B0) and ∀t ∈ Z+, Xt ⊂ F (Ω, Bt)× F (Ω, Bt+1).

The following assumption simply means that the expression Evt(xt(ω), xt+1(ω), ω) makes

sense.

Assumption 3.2. ∀t ∈ Z+, ∀(y, z) ∈ Xt, (i) ∀ω ∈ Ω, vt(y(ω), z(ω), ω) ∈ [−∞,∞), (ii) the

mapping vt(y(·), z(·), ·) : Ω → [−∞,∞) is measurable, and (iii) Evt(y(ω), z(ω), ω) exists in

[−∞,∞).

We say that a sequence {xt} is a feasible path if x0 = x0 and ∀t ∈ Z+, (xt, xt+1) ∈ Xt.
11

11In stochastic optimization problems, feasible paths are usually required to be adapted to a filtration.
Though such a requirement could be added here, it is unnecessary to our results.
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We say that a feasible path {x∗t} is optimal if for any feasible path {xt},

lim
T↑∞

T∑
t=0

[Evt(xt(ω), xt+1(ω), ω)− Evt(x
∗
t (ω), x∗t+1(ω), ω)] ≤ 0.(3.2)

At this point, the results in Section 2 can be applied to the present model by defining

Vt : Xt → [−∞,∞) and Dt for t ∈ Z+ as follows.

Vt(xt, xt+1) = Evt(xt(ω), xt+1(ω), ω),(3.3)

Dt = F (Ω, Bt).(3.4)

Note that Assumptions 3.1 and 3.2 imply Assumptions 2.1 and 2.2. Hence the model here

can be viewed as a deterministic problem. In what follows, we establish stochastic versions

of the results in Section 2 with TVCs expressed in terms of vt instead of Vt.

Like Section 2, this section assumes the existence of an optimal path {x∗t}. For sim-

plicity, for (xt, xt+1) ∈ Xt, vt(xt, xt+1) denotes the random variable vt(xt(·), xt+1(·), ·) : Ω →

[−∞,∞). For t ∈ Z+ and d ∈ F (Ω, Bt+1) such that (x∗t , x
∗
t+1 + εd) ∈ Xt for ε > 0 sufficiently

small, we define the random variable vt,2(x
∗
t , x

∗
t+1; d) as in (2.4); to be precise,

vt,2(x
∗
t , x

∗
t+1; d) = lim

ε↓0

vt(x
∗
t , x

∗
t+1 + εd)− vt(x

∗
t , x

∗
t+1)

ε
,(3.5)

where limε↓0 is applied pointwise (i.e., for each ω ∈ Ω).

Remark 3.1. All the results in this section (Theorems 3.1–3.3) hold even if lim replaces lim

in (3.5).12

Theorem 3.1. Assume Assumptions 2.3, 3.1, and 3.2. Suppose ∀t ∈ Z+, Xt is convex and

∀ω ∈ Ω, vt(·, ·, ω) is concave. Then

lim
t↑∞

Evt,2(x
∗
t , x

∗
t+1; xt+1 − x∗t+1) ≤ 0(3.6)

for any feasible path {xt} satisfying (2.7) and the following:

∀t ∈ Z+, ∃ε > 0, ζt(ε) ≡ (x∗t , x
∗
t+1 + ε(xt+1 − x∗t+1)) ∈ Xt, Evt(ζt(ε)) > −∞.(3.7)

12See footnote 20 for why this remark is true. See (3.9) for why we use lim in (3.5).
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The proof of Theorem 3.1 uses the last inequality in (3.7) in conjunction with the

monotone convergence theorem to show

∀t ∈ Z+, Evt,2(x
∗
t , x

∗
t+1; xt+1 − x∗t+1) = Vt,2(x

∗
t , x

∗
t+1; xt+1 − x∗t+1).(3.8)

Given this result, Theorem 3.1 follows immediately from Theorem 2.1.

The rest of this section assumes Assumption 2.4. Stochastic versions of Theorems 2.2

and 2.3 can easily be shown under the following assumption.

Assumption 3.3. ∀t ∈ Z+, Evt,2(x
∗
t , x

∗
t+1;−x∗t+1) ≤ Vt,2(x

∗
t , x

∗
t+1;−x∗t+1).

The above inequality can be expressed as

E lim
ε↓0

vt(x
∗
t , x

∗
t+1 − εx∗t+1)− vt(x

∗
t , x

∗
t+1)

ε
≤ lim

ε↓0
E

vt(x
∗
t , x

∗
t+1 − εx∗t+1)− vt(x

∗
t , x

∗
t+1)

ε
.(3.9)

Of course this holds by Fatou’s lemma under the hypothesis of the lemma.13 This is why we

use lim instead of lim in (2.4) and (3.5).

Remark 3.2. Assumption 3.3 holds (with equality) if ∀t ∈ Z+, vt(x
∗
t , λx∗t+1) is concave in

λ ∈ [λt, 1]
14 and if ∃λ ∈ [λt, 1), Evt(x

∗
t , λx∗t+1) > −∞, where λt is given by Assumption 2.4.

Remark 3.3. Assumption 3.3 holds if ∀t ∈ Z+, vt(x
∗
t , λx∗t+1) is nonincreasing in λ ∈ [λt, 1]

(which is the case in most economic models).

Theorem 3.2. Assume Assumptions 2.3, 2.4, 3.1–3.3, and (2.12). Then (i) (2.13) ⇒ (3.10)

and (ii) (2.15) ⇒ (3.11), where (3.10) and (3.11) are given by

lim
t↑∞

Evt,2(x
∗
t , x

∗
t+1;−x∗t+1) ≤ 0,(3.10)

lim
t↑∞

Evt,2(x
∗
t , x

∗
t+1;−x∗t+1) ≤ 0.(3.11)

13More specifically, (3.9) holds by Fatou’s lemma if there exist ε̃ > 0 and a measurable function ξt : Ω → R

such that

Eξt > −∞, ∀ε ∈ (0, ε̃),
vt(x∗t , x

∗
t+1 − εx∗t+1)− vt(x∗t , x

∗
t+1)

ε
≥ ξt.

14To be precise, by “vt(x∗t , λx∗t+1) is concave in λ,” we mean that with probability one, vt(x∗t , λx∗t+1) is
a concave function of λ. Likewise any condition involving random variables is understood to hold with
probability one.
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Theorem 3.2 is a stochastic version of Theorem 2.2. Conclusion (ii) generalizes the

TVC results of Zilcha (1976) and Takekuma (1992) except that our result uses generalized

directional derivatives instead of support prices. Our last general result is a stochastic version

of Theorem 2.3.

Theorem 3.3. Under Assumptions 2.3–2.5, 3.1–3.3, and (2.18), TVC (3.11) holds.

4 Applications

This section continues to consider the stochastic model (3.1) to offer applications of Theorems

3.2 and 3.3. Assumptions 2.3, 2.4, 3.1, and 3.2 are assumed throughout.

4.1 Homogeneous Returns

In many economic models, the return functions are assumed to be homogenous (e.g., Lucas

1988; Rebelo 1991). In stochastic versions of such models, the following assumption holds.

Assumption 4.1. ∃α ∈ R \ {0},∀t ∈ N, for any λ > 0 such that (λx∗t , λx∗t+1) ∈ Xt, we have

vt(λx∗t , λx∗t+1) = λαvt(x
∗
t , x

∗
t+1).

(Proposition 4.3 below deals with the case α = 0.) Under certain growth conditions,

Alvarez and Stokey (1998) shows the basic results of dynamic programming and the necessity

of the STVC for deterministic stationary problems with homogeneous return functions. Here

we show that with homogeneous returns, the necessity of the STVC can easily be verified

without growth conditions. We use the following standard assumptions.

Assumption 4.2. ∀t ∈ Z+, Evt(λx∗t , λx∗t+1) is nondecreasing in λ ∈ [λ0, 1], where λ0 is given

by Assumption 2.4.

Assumption 4.3. ∀t ∈ Z+, vt(x
∗
t , λx∗t+1) is nonincreasing in λ ∈ [λt, 1].

Remark 4.1. Under Assumption 4.3, TVC (3.11) is written as

lim
t↑∞

Evt,2(x
∗
t , x

∗
t+1;−x∗t+1) = 0,(4.1)

which is a stochastic version of the STVC.

11



Proposition 4.1. Assume Assumptions 2.3, 2.4, 3.1, 3.2, and 4.1–4.3. Suppose

−∞ <
∞∑

t=1

Evt(x
∗
t , x

∗
t+1) < ∞.15(4.2)

Then TVC (4.1) holds.

The proof of Proposition 4.1 uses Theorem 3.2. Condition (4.2) is usually assumed or

taken for granted in applied studies. Proposition 4.1 shows that the STVC is necessary in

such cases. Condition (4.2), however, is unnecessary under Assumption 2.5, which allows us

to apply Theorem 3.3.

Proposition 4.2. Under Assumptions 2.3–2.5, 3.1, 3.2, and 4.1–4.3, TVC (4.1) holds.

Propositions 4.1 and 4.2 indicate that for models with homogeneous returns, there is

essentially no issue about necessity of the STVC.

4.2 A Stochastic Growth Model

Consider the following problem.“ max
{xt}∞t=0

∞∑
t=0

Eβtu(gt(xt(ω), xt+1(ω), ω))”

s.t. x0 = x0, ∀t ∈ Z+, (xt, xt+1) ∈ Xt.

(4.3)

As in Section 3, gt(xt, xt+1) denotes the random variable gt(xt(·), xt+1(·), ·). Various stochas-

tic growth models (e.g., Brock and Mirman (1972)) take the form of (4.3). One may call xt

the capital stock (or the vector of capital stocks) at the beginning of period t and gt(xt, xt+1)

consumption in period t.16 For simplicity, we assume the following.

Assumption 4.4. (i) β ∈ (0, 1), (ii) u : R+ → [−∞,∞), and (iii) ∃α ∈ (−∞, 1],

u(·) =


(·)α

α
if α 6= 0,

ln(·) if α = 0.
(4.4)

15The infinite sum exists since ∀t ∈ N, αEvt(x∗t , x
∗
t+1) ≥ 0. See (A.30).

16One can apply the results in this section to models with endogenous labor supply such as RBC models
(e.g., King, Rebelo, and Plosser, 1988). To do so, one may take the optimal labor path as given and consider
the maximization problem over consumption and capital paths.
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Assumption 4.5. ∀t ∈ Z+, (i) Xt is convex, (ii) (x∗t , 0), (0, 0) ∈ Xt, (iii) gt(0, 0) ≥ 0, (iv)

gt(x
∗
t , x

∗
t+1) > 0, and (v) ∀ω ∈ Ω, gt(·, ·, ω) is concave.

Assumption 4.6. ∀t ∈ Z+, gt(x
∗
t , λx∗t+1) is nonincreasing and continuous in λ ∈ (0, 1].

Remark 4.2. Under Assumptions 4.4–4.6, TVC (3.11) is written as

lim
t↑∞

βtE[u′(gt(x
∗
t , x

∗
t+1))gt,2(x

∗
t , x

∗
t+1;−x∗t+1)] = 0,(4.5)

where gt,2(x
∗
t , x

∗
t+1;−x∗t+1) is defined as in (3.5).17

Proposition 4.3. Assume Assumptions 2.3, 3.1, 3.2, and 4.4–4.6. Suppose α = 0. Then

TVC (4.5) holds.

Proposition 4.4. Assume Assumptions 2.3, 3.1, 3.2, and 4.4–4.6. Suppose α 6= 0 and

−∞ <
∞∑

t=1

βtEu(gt(x
∗
t , x

∗
t+1)) < ∞.(4.6)

Then TVC (4.5) holds.18

The proofs of Propositions 4.3 and 4.4 use Theorem 3.2. Proposition 4.3 shows that

the STVC is always necessary in the logarithmic case. Even in the non-logarithmic case,

Proposition 4.4 shows that the STVC is guaranteed to be necessary unless one is willing to

allow lifetime utility to be infinite at the optimum. Such cases are rare in practice since (4.6)

is usually assumed or taken for granted in applied studies.

Even without (4.6), however, Theorem 3.3 can be invoked under Assumption 2.5. In-

deed, if ∀t ∈ N, gt is homogenous, then Proposition 4.2 (a consequence of Theorem 3.3)

directly applies. We also have a useful result that does not assume homogeneity. The result,

whose statement is slightly complicated, is stated in Appendix B.

17This remark can easily be verified by showing vt,2(x∗t , x
∗
t+1;−x∗t+1) = u′(gt(x∗t , x

∗
t+1))gt,2(x∗t , x

∗
t+1;−x∗t+1)

using the mean value theorem.
18Proposition 4.4 can easily be generalized to more general utility functions. See footnote 22 for details.
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5 Concluding Remarks

In this paper we showed (i) an extension of Michel’s (1990, Theorem 1) necessity result to our

abstract reduced-form model, (ii) a generalization of the TVC results of Weitzman (1973) and

Ekeland and Scheinkman (1986), and (iii) a new result that is useful particularly in the case

of homogeneous returns. These results were shown for an extremely general deterministic

reduced-form model that does not assume differentiability, continuity, or concavity, and that

imposes virtually no restriction on the state spaces. The three results were further extended

to a stochastic reduced-form model. The stochastic extensions were easily accomplished

since our deterministic model is so general that the stochastic model is in fact a special case

of the deterministic model.

As examples of applications, we studied two special cases of the stochastic model. The

first was a stochastic reduced-form model with homogeneous returns. For that model, we

showed that the STVC is necessary under standard assumptions, even when the objective

function is not guaranteed to be finite at the optimum. The second special case was a

general type of stochastic growth model with CRRA utility. For that model, we showed that

the STVC is necessary if utility is logarithmic or if the objective function is finite at the

optimum.19

As those special cases illustrate, our general stochastic results are highly useful. They

are significant as well not only because the existing literature does not provide widely appli-

cable results on necessity of TVCs for stochastic problems, but also because our stochastic

results were established at the same level of generality as that of our very general determin-

istic results. The results of this paper suggest that as far as necessity of TVCs is concerned,

there is little difference between deterministic and stochastic cases.

A Proofs

This appendix proves the results stated in the main text. Section A.1 considers a one-

dimensional version of the reduced-form model studied in Section 2. Sections A.2–A.11

19Appendix B shows a result that does not require the finiteness of the objective function.
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prove the results stated in the main text. All the theorems in Section 2 are derived from the

results in Section A.1.

A.1 General Results

Consider the following problem.“ max
{yt}∞t=0

∞∑
t=0

rt(yt, yt+1)”

s.t. y0 = y0, ∀t ∈ Z+, (yt, yt+1) ∈ Yt.

(A.1)

Assumption A.1. y0 ∈ R and ∀t ∈ Z+, Yt ⊂ R× R.

Assumption A.2. rt : Yt → [−∞,∞).

Assumption A.1 says that yt is one-dimensional. Feasible paths and optimal paths are

defined as in Section 2.

Assumption A.3. There exists an optimal path {y∗t }.

Assumption A.4. ∀t ∈ Z+, ∃εt > 0, ∀ε ∈ (0, εt], (y
∗
t , y

∗
t+1 − ε) ∈ Yt and ∀τ ≥ t + 1, (y∗τ −

ε, y∗τ+1 − ε) ∈ Yτ .

Assumption A.4 means that the optimal path can be shifted uniformly downward start-

ing from any period. For t ∈ Z+ and d ∈ R, define rt,2(y
∗
t , y

∗
t+1; d) as in (2.4).

Remark A.1. Theorems A.1 and A.2 below hold even if lim replaces lim in (2.4).20

For t ∈ Z+, define

qt = rt,2(y
∗
t , y

∗
t+1;−1).(A.2)

For t ∈ N and ε ∈ R \ {0} with (y∗t − ε, y∗t+1 − ε) ∈ Yt, define

mt(ε) =
rt(y

∗
t , y

∗
t+1)− rt(y

∗
t − ε, y∗t+1 − ε)

ε
,(A.3)

m̂t(ε) = sup
ε̃∈(0,ε]

mt(ε̃),(A.4)

where m̂t(ε) is defined only for ε ∈ (0, ε0], where ε0 is given by Assumption A.4.

20This can be seen by replacing lim with lim in the last sentence of the proof of Lemma A.1 and (A.5).
Lemma A.1 is the only place where (2.4) is used.
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Lemma A.1. Under Assumptions A.1–A.4,

∀s ∈ Z+, qs ≤ lim
ε↓0

lim
T↑∞

T∑
t=s+1

mt(ε).(A.5)

Proof. Let s ∈ Z+ and ε ∈ (0, εs]. By the optimality of {y∗t } and Assumption A.4,

lim
T↑∞

[
rs(y

∗
s , y

∗
s+1 − ε)− rs(y

∗
s , y

∗
s+1) +

T∑
t=s+1

[rt(y
∗
t − ε, y∗t+1 − ε)− rt(y

∗
t , y

∗
t+1)]

]
≤ 0.(A.6)

Dividing through by ε and rearranging, we get

rs(y
∗
s , y

∗
s+1 − ε)− rs(y

∗
s , y

∗
s+1)

ε
≤ lim

T↑∞

T∑
t=s+1

rt(y
∗
t , y

∗
t+1)− rt(y

∗
t − ε, y∗t+1 − ε)

ε
.(A.7)

Recalling (A.3) and applying limε↓0 yields (A.5).

Define

Ψ = {{ft}∞t=1 ⊂ R | limT↑∞
∑T

t=1 ft ∈ [−∞,∞)},(A.8)

Φ = {{ft}∞t=1 ⊂ R | limT↑∞
∑T

t=1 ft exits in [−∞,∞)}.(A.9)

Lemma A.2. (i) ∀{ft} ∈ Ψ, lims↑∞ limT↑∞
∑T

t=s ft ≤ 0.21

(ii) ∀{ft} ∈ Φ, lims↑∞ limT↑∞
∑T

t=s ft ≤ 0.

Proof. Let {ft} ∈ Ψ and A = limT↑∞
∑T

t=1 ft (< ∞). Then

∀s ≥ 2, lim
T↑∞

T∑
t=s

ft = A−
s−1∑
t=1

ft.(A.10)

Thus if A = −∞, then lims↑∞ limT↑∞
∑T

t=s ft = −∞. If A > −∞, then

lim
s↑∞

lim
T↑∞

T∑
t=s

ft = A− lim
s↑∞

s−1∑
t=1

ft = A− A = 0.(A.11)

Hence (i) holds. The proof of (ii) is similar.

Theorem A.1. Assume Assumptions A.1–A.4. Suppose

∃{bt}∞t=1 ⊂ R, ∃ε ∈ (0, ε0],∀t ∈ N, m̂t(ε) ≤ bt.(A.12)

Then (i) {bt} ∈ Ψ ⇒ limt↑∞ qt ≤ 0 and (ii) {bt} ∈ Φ ⇒ limt↑∞ qt ≤ 0.
21A similar result is shown by Michel (1990, Proposition 1). Continuous-time versions of Lemma A.2 and

some of the other results in this paper are shown in Kamihigashi (2000b).
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Proof. By (A.5) and (A.12), ∀s ∈ Z+, qs ≤ limT↑∞
∑T

t=s+1 bt. Thus both (i) and (ii) hold by

Lemma A.2.

Assumption A.5. ∃δ > 0,∀δ ∈ (0, δ], (i) (y∗0, y
∗
1 +δ) ∈ Y0, (ii) ∀t ∈ N, (y∗t +δ, y∗t+1 +δ) ∈ Yt,

(iii) r0(y
∗
0, y

∗
1 + δ) > −∞, and (iv) ∀t ∈ N, rt(y

∗
t + δ, y∗t+1 + δ) ≥ rt(y

∗
t , y

∗
t+1).

Theorem A.2. Assume Assumptions A.1–A.5. Suppose

∃ε ∈ (0, ε0],∃δ ∈ (0, δ],∃θ ≥ 0,∀t ∈ N, m̂t(ε) ≤ θmt(−δ).(A.13)

Then limt↑∞ qt ≤ 0.

Proof. By the optimality of {y∗t } and Assumption A.5,

r0(y
∗
0, y

∗
1 + δ)− r0(y

∗
0, y

∗
1) +

∞∑
t=1

[rt(y
∗
t + δ, y∗t+1 + δ)− rt(y

∗
t , y

∗
t+1)] ≤ 0,(A.14)

where the infinite sum exists by Assumption A.5(iv). By Assumption A.5(iii), for (A.14) to

hold, we must have

∞∑
t=1

[rt(y
∗
t + δ, y∗t+1 + δ)− rt(y

∗
t , y

∗
t+1)] < ∞.(A.15)

Dividing through by δ and recalling (A.3), we get
∑∞

t=1 mt(−δ) < ∞. Thus by (A.13) and

Theorem A.1(ii), limt↑∞ qt ≤ 0.

A.2 Proof of Theorem 2.1

Let {xt} be a feasible path satisfying (2.7) and (2.8). Then

lim
T↑∞

T∑
t=0

[Vt(x
∗
t , x

∗
t+1)− Vt(xt, xt+1)] < ∞.(A.16)

It follows that

{Vt(x
∗
t , x

∗
t+1)− Vt(xt, xt+1)}∞t=1 ∈ Ψ,(A.17)

where Ψ is defined by (A.8). For t ∈ Z+, let et = x∗t − xt. Consider the following problem.“ max
{yt}∞t=0

∞∑
t=0

Vt(x
∗
t + ytet, x

∗
t+1 + yt+1et+1)”

s.t. y0 = 0, ∀t ∈ Z+, (x∗t + ytet, x
∗
t+1 + yt+1et+1) ∈ Xt,

(A.18)
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where ∀t ∈ Z+, yt ∈ R. For t ∈ Z+, define

rt(yt, yt+1) = Vt(x
∗
t + ytet, x

∗
t+1 + yt+1et+1),(A.19)

Yt = {(yt, yt+1) ∈ R2 | (x∗t + ytet, x
∗
t+1 + yt+1et+1) ∈ Xt}.(A.20)

Obviously Assumptions A.1 and A.2 hold. For t ∈ Z+, let y∗t = 0. Then {y∗t } is optimal

for (A.18) since {x∗t} is optimal for (2.1). Thus Assumption A.3 holds. Assumption A.4

follows from the convexity of Xt and (2.8). Note that ∀t ∈ Z+,

qt = lim
ε↓0

Vt(x
∗
t , x

∗
t+1 − εet)− Vt(x

∗
t , x

∗
t+1)

ε
= Vt,2(x

∗
t , x

∗
t+1;−et).(A.21)

Note also that ∀t ∈ Z+,∀ε ∈ (0, 1],

mt(ε) =
Vt(x

∗
t , x

∗
t+1)− Vt(x

∗
t − εet, x

∗
t+1 − εet+1)

ε
(A.22)

≤ Vt(x
∗
t , x

∗
t+1)− Vt(x

∗
t − et, x

∗
t+1 − et+1),(A.23)

where the inequality holds by concavity. Recalling (A.17) and the definition of {et}, we see

that (A.12) holds with bt = Vt(x
∗
t , x

∗
t+1) − Vt(xt, xt+1). Thus TVC (2.6) holds by Theorem

A.1(i) and (A.21).

A.3 Proof of Theorem 2.2

Consider the following problem.“ max
{yt}∞t=0

∞∑
t=0

Vt(ytx
∗
t , yt+1x

∗
t+1)”

s.t. y0 = 1, ∀t ∈ Z+, (ytx
∗
t , yt+1x

∗
t+1) ∈ Xt,

(A.24)

where ∀t ∈ Z+, yt ∈ R. For t ∈ Z+, define

rt(yt, yt+1) = Vt(ytx
∗
t , yt+1x

∗
t+1),(A.25)

Yt = {(yt, yt+1) ∈ R2 | (ytx
∗
t , yt+1x

∗
t+1) ∈ Xt}.(A.26)

Obviously Assumptions A.1 and A.2 hold. For t ∈ Z+, let y∗t = 1. Then {y∗t } is optimal

for (A.24) since {x∗t} is optimal for (2.1). Thus Assumption A.3 holds. Assumption A.4

follows from Assumption 2.4. Note that ∀t ∈ Z+,

qt = lim
ε↓0

Vt(x
∗
t , (1− ε)x∗t+1)− Vt(x

∗
t , x

∗
t+1)

ε
= Vt,2(x

∗
t , x

∗
t+1;−x∗t+1).(A.27)
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Note also that ∀t ∈ N, m̂t(1 − λ) = ŵt(λ). Thus (A.12) holds by (2.12). Hence both

conclusions hold by Theorem A.1.

A.4 Proof of Theorem 2.3

Consider (A.24) again. For t ∈ Z+, define rt and Yt by (A.25) and (A.26). It is easy to see

that Assumptions A.1–A.5 hold. Note that ∀t ∈ N, m̂t(1−λ) = ŵt(λ) and mt(1−µ) = wt(µ).

Thus (A.13) holds by (2.18). Recalling (A.27), we see that TVC (2.16) holds by Theorem

A.2.

A.5 Proof of Theorem 3.1

By Theorem 2.1, TVC (2.6) holds. Thus it suffices to verify (3.8). Let t ∈ Z+ and et = x∗t−xt.

For ε̃ ∈ (0, ε] (ε is given by (3.7)), define

at(ε̃) =
vt(x

∗
t , x

∗
t+1 − ε̃et+1)− vt(x

∗
t , x

∗
t+1)

ε̃
.(A.28)

By (3.7), Eat(ε) > −∞. By concavity, at(ε̃) is nonincreasing in ε̃ ∈ (0, ε]. Hence ∀ε̃ ∈

(0, ε], at(ε̃) ≥ at(ε). Now by the monotone convergence theorem, limε̃↓0 Eat(ε̃) = E limε̃↓0 at(ε̃),

which is equivalent to (3.8).

A.6 Proof of Theorem 3.2

Immediate from Theorem 2.2 and Assumption 3.3.

A.7 Proof of Theorem 3.3

Immediate from Theorem 2.3 and Assumption 3.3.

A.8 Proof of Proposition 4.1

Note from Remark 3.3 that

Assumption 4.3 ⇒ Assumption 3.3.(A.29)

Thus to conclude TVC (4.1) from Theorem 3.2 and Remark 4.1, it suffices to verify (2.12)

and (2.15). Let λ ∈ (λ0, 1), where λ0 is given by Assumption 2.4. Let t ∈ N. By Assumptions
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4.1 and 4.2,

0 ≤
∂Evt(λx∗t , λx∗t+1)

∂λ

∣∣∣∣
λ=1

=
∂λαEv∗t

∂λ

∣∣∣∣
λ=1

= αEv∗t ,(A.30)

where v∗t = vt(x
∗
t , x

∗
t+1). By Assumption 4.1 and (A.30),

∀λ ∈ [λ, 1), wt(λ) =
1− λα

(1− λ)α
αEv∗t ≤ AαEv∗t ,(A.31)

where A = supλ∈[λ,1)(1 − λα)/[(1 − λ)α] ∈ (0,∞); A is finite since (1 − λα)/[(1 − λ)α] is

continuous on [λ, 1] by l’Hôpital’s rule. Now (2.12) and (2.15) follow from (A.31) and (4.2).

A.9 Proof of Proposition 4.2

Recall (A.29). To conclude TVC (4.1) from Theorem 3.3 and Remark 4.1, it suffices to verify

(2.18). Let µ ∈ (1, µ], where µ is given by Assumption 2.5. By Assumption 4.1,

∀t ∈ N, wt(µ) =
µα − 1

(µ− 1)α
αEv∗t .(A.32)

Now (2.18) follows from (A.31) and (A.32).

A.10 Proof of Proposition 4.3

Note from Remarks 2.3 and 3.3 that

Assumptions 4.5 and 4.6 ⇒ Assumption 2.4 and 3.3.(A.33)

To conclude TVC (4.1) from Therem 3.2 and Remark 4.2, it suffices to verify (2.12) and

(2.15). Let λ ∈ (0, 1), λ ∈ [λ, 1), and t ∈ N. By concavity and Assumption 4.5(iii),

gt(λx∗t , λx∗t+1) ≥ λgt(x
∗
t , x

∗
t+1) + (1− λ)gt(0, 0) ≥ λgt(x

∗
t , x

∗
t+1).(A.34)

We have

(1− λ)β−twt(λ) = E[ln gt(x
∗
t , x

∗
t+1)− ln gt(λx∗t , λx∗t+1)](A.35)

≤ E[ln gt(x
∗
t , x

∗
t+1)− ln(λgt(x

∗
t , x

∗
t+1))] = − ln λ,(A.36)

where the inequality holds by (A.34). It follows that

wt(λ) ≤ βt− ln λ

1− λ
≤ βt− ln λ

1− λ
.(A.37)

Now (2.12) and (2.15) follow.
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A.11 Proof of Proposition 4.4

Recall (A.33). To conclude TVC (4.1) from Therem 3.2 and Remark 4.2, it suffices to verify

(2.12) and (2.15). Let λ ∈ (0, 1), λ ∈ [λ, 1), and t ∈ N. We have

(1− λ)β−twt(λ) = E[u(gt(x
∗
t , x

∗
t+1))− u(gt(λx∗t , λx∗t+1))](A.38)

≤ E[u(gt(x
∗
t , x

∗
t+1))− u(λgt(x

∗
t , x

∗
t+1))](A.39)

= (1− λα)Eu(gt(x
∗
t , x

∗
t+1)),(A.40)

where (A.39) holds by (A.34), and (A.40) holds by Assumption 4.4. It follows that

wt(λ) ≤ βt 1− λα

(1− λ)α
αEu(g∗t ) ≤ βtAαEu(g∗t ),(A.41)

where g∗t = gt(x
∗
t , x

∗
t+1) and A is as in (A.31). Now (2.12) and (2.15) follow from (4.6) and

(A.41).22

B A Further Result on the Model of Section 4.2

This appendix considers the model of Section 4.2 and shows a result that does not assume

(4.6), i.e., the finiteness of the objective function at the optimum.

Proposition B.1. Assume Assumptions 2.3, 2.5, 3.1, 3.2, and 4.4–4.6. Suppose α 6= 0.

For λ ∈ [0, µ], let γt(λ) = gt(λx∗t , λx∗t+1), where µ is given by Assumption 2.5. Let ε =

min{1, µ− 1}. Suppose

∃ε ∈ (0, ε),∃θ ≥ 0,∀t ∈ N, 0 ≤ γt(1)− γt(1− ε) ≤ θ[γt(1 + ε)− γt(1)].(B.1)

Then TVC (4.5) holds.23

22This proof works without Assumption 4.4 if u is nondecreasing, concave, and differentiable and if ∃λ ∈
(0, 1),∃α ∈ (−∞, 1],∀t ∈ N,∀λ ∈ [λ, 1), u(λg∗t ) ≥ λαu(g∗t ). In this case, “=” in (A.40) must be replaced
by “≤.” That αEu(g∗t ) ≥ 0 can be shown from the inequality u(λg∗t ) ≥ λαu(g∗t ). Note that both sides
are equal at λ = 1. Thus, differentiating both sides with respect to λ and evaluating at λ = 1, we have
0 ≤ u′(g∗t )g∗t ≤ αu(g∗t ).

23Proposition B.1 can easily be generalized to more general utility functions. In fact the proof of
Proposition B.1 works without Assumption 4.4 if u is nondecreasing, concave, and differentiable and if
∃σ ≥ 0,∀t ∈ N, u′(γt(1− ε)) ≤ σu′(γt(1 + ε)), where ε is given by (B.1). (To verify this inequality, one may
utilize (A.34) and (B.3).) In this case, the first inequalities in (B.2) and (B.4) together with (B.1) imply
(2.18).
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Proof. Recall (A.33). To conclude TVC (4.1) from Theorem 3.3 and Remark 4.2, it suffices

to verify (2.18). Let λ = 1− ε, µ = 1 + ε, and t ∈ N. Note from (A.38) that by concavity,

wt(λ) ≤ βtEu′(γt(λ))[γt(1)− γt(λ)]

1− λ
≤ βtλα−1Eu′(γt(1))[γt(1)− γt(λ)]

1− λ
,(B.2)

where the second inequality uses (A.34), the first inequality in (B.1), and Assumption 4.4.

By concavity, γt(1) ≥ (1− (1/µ))γt(0) + γt(µ)/µ ≥ γt(µ)/µ (the second inequality holds by

Assumption 4.5(iii)); thus

γt(µ) ≤ µγt(1).(B.3)

By concavity,

wt(µ) ≥ βtEu′(γt(µ))[γt(µ)− γt(1)]

µ− 1
≥ βtµα−1Eu′(γt(1))[γt(µ)− γt(1)]

µ− 1
,(B.4)

where the second inequality uses (B.3) and Assumption 4.4. Recalling Remark 2.4, we obtain

(2.18) from (B.1), (B.2), and (B.4).

Note that (B.1) holds with θ = 1 if ∃n ∈ N,∀t ∈ N, (i) Bt = R
n (recall Assumption 3.1),

(ii) gt(x
∗
t , x

∗
t+1) ≥ gt(0, 0), and (iii) ∀(y, z) ∈ Xt, gt(y, z) = at + bty + ctz for some at : Ω → R

and bt, ct : Ω → R
n. These conditions are satisfied in single-agent asset pricing models of the

type studied by Lucas (1978), Kamihigashi (1998), and Montrucchio and Privileggi (2000).

For such models, TVC (4.5) can be used to rule out bubbles.24 Even if gt is nonlinear,

condition (B.1) can be satisfied; e.g., it is satisfied in a stochastic discrete-time version of

the asset pricing model with nonlinear constraints discussed in Kamihigashi (2000b).
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