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Abstract

Our objective is to analyze the relationship between the Shapley value and

the core from the perspective of the potential of a game. To this end, we

introduce a new concept, generalized HM-potential, which is a generalization

of the potential function defined by Hart and Mas-colell (1989). We show that

the Shapley value lies in the core if and only if the maximum of the generalized

HM-potential of a game is less than a cutoff value. Moreover, we show that

this is equivalent to the minimum of the generalized HM-potential of a game

being greater than another, different cutoff value. We also provide a geometric

characterization of the class of games in which the Shapley value lies in the

core, which also shows the relationship with convex games and average convex

games as a corollary. Our results suggest a new approach to utilizing the

potential function in cooperative game theory.
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1 Introduction

One of the objectives in cooperative game theory is to explore desirable solutions.

The Shapley value (Shapley, 1953b) and the core should be the most well-known solu-

tion concepts. The Shapley value is a single-valued solution, which assigns payoffs to

each player based on his/her contributions to cooperative coalitions. Since the semi-

nal study of Shapley (1953b), many researchers have sought to clarify the properties

behind the Shapley value.*1 The Shapley value not only has normative properties but

also a variety of applications and strategic foundations.*2 The core is a set-valued

solution, which is a set of payoff allocations from which no players attempt to deviate

by forming a group. Its axiomatic properties and strategic foundations are also well-

studied.*3 Because of its generality, the core is used not only in cooperative game

theory but also in a wide range of economic theories.

The Shapley value sometimes lies in the core and sometimes does not. If it is in the

core, the Shapley value is stable in terms of coalitional deviations and is an attractive

core selection. This fact raises the traditional question: What is the condition for the

Shapley value to lie in the core? One of the most eminent conditions is convexity,

introduced by Shapley (1971). He shows that if a game is convex, the Shapley value

lies in the core. Inarra and Usategui (1993) and Izawa and Takahashi (1998) show

that a condition, called average convexity, is also a sufficient condition.*4 In addition

*1 See Young (1985), Casajus (2011, 2014), and Casajus and Yokote (2017) and references therein.
*2 Shapley and Shubik (1954) apply the Shapley value to evaluate the distribution of power

among the members of a committee system. Hart and Moore (1990) use the Shapley value

as each agent’s payoff to analyze the incomplete contract model. Gul (1989), Pérez-Castrillo

and Wettstein (2001) and McQuillin and Sugden (2016) provide implementation procedures

for obtaining the Shapely value as the sub-game perfect equilibrium outcome of the game.
*3 Consistency properties play a central role in axiomatic characterizations of the core. Davis and

Maschler (1965), Moulin (1985), Peleg (1986) and Tadenuma (1992) introduce different types

of consistencies and axiomatize the core. Abe (2017) axiomatically characterizes the core for

games with externalities. Perry and Reny (1994) offer a non-cooperative game through which

a core element is implemented.
*4 Average convexity is also analyzed by Sprumont (1990). He calls it quasi-convexity in his work.

However, his approach is totally different from those of Inarra and Usategui (1993) and Izawa

and Takahashi (1998). He defines the Shapley value with respect to every subset of the grand

coalition and considers an allocation scheme for all possible coalitions. He uses quasi-convex

games for an allocation scheme to be population monotonic.
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to the sufficient conditions above, they provide some necessary and sufficient condi-

tions. Although these necessary and sufficient conditions are important steps toward

understanding the relationship between the Shapley value and the core, considering

their technical expression, it might be difficult to derive applicable insights from these

conditions.*5 Our objective is to provide new necessary and sufficient conditions for

the Shapley value to be in the core.

To this end, we introduce a generalized potential function, which is a generalization

of the potential function introduced by Hart and Mas-Colell (1989), and provide the

conditions for the optimization of the generalized potential function. The potential

function is a function that assigns a real number to each game.*6 Hart and Mas-Colell

(1989) show that the potential function uniquely exists and that the marginal con-

tributions of each player to the potential function coincide with the Shapley value.

Moreover, they show that the potential function is represented as a linear transfor-

mation of each game: The potential function is given as a weighted sum of each

coalition’s collective payoff with the given weight profile. By weakening the restric-

tions of weights offered by Hart and Mas-Colell (1989), we offer certain classes of

weights. Then, our generalized potential function is defined over the set of all games

and the set (or class) of weight profiles. Therefore, once we fix a game, the generalized

potential function is a function over the set of weight profiles.

We show that the Shapley value lies in the core if and only if the maximum of

the generalized potential function in a particular class of weight profiles is less than

a threshold value. We also present its dual characterization, that is, the Shapley

value lies in the core if and only if the minimum of the generalized potential function

in another set of weight profiles is greater than another threshold value. Moreover,

this approach is straightforwardly applied to any linear solution.*7 We show that,

*5 We discuss their conditions in Section 5.
*6 We follow Morris and Ui (2005)’s terminology for the generalized potential. They introduce

the concept in non-cooperative games and analyze the robustness of equilibria to incomplete

information.
*7 Various linear solutions are intensively studied to complement the Shapley value: weighted

Shapley values (Shapley, 1953a; Chun, 1988, 1991; Kalai and Samet, 1987; Nowak and Radzik,

1995; Yokote, 2015), egalitarian Shapley values and their generalization (Joosten, 1996; Casajus

and Huettner, 2013, 2014; van den Brink, Funaki and Ju, 2013; Abe and Nakada, 2017; Yokote,

Kongo and Funaki, 2017), and the CIS value (Driessen and Funaki, 1991). See also Yokote

and Funaki (2017) for other solutions.
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for any linear solution, there is a corresponding set of weight profiles such that the

linear solution lies in the core if and only if the minimum of the generalized potential

function in the set of weights is greater than zero.

Our result fills the gap between non-cooperative and cooperative game theory re-

garding the usage of the potential function. Monderer and Shapley (1996) introduce

the potential function in non-cooperative game theory, which is a function on the

action space that aggregates players’ preferences over action profiles.*8 The potential

function in non-cooperative game theory is practically employed because its max-

imizer designates a Nash equilibrium. This result implies that optimizing the po-

tential function gives an equilibrium without considering the complicated fixed point

argument. Moreover, some subsequent studies suggest a relationship between the sta-

bility of equilibria and the optimizers of the potential function.*9 In contrast to non-

cooperative games, the potential function is rarely used to find solutions and stability

in cooperative games. We show that the potential function can play a similar role in

cooperative games as in non-cooperative games: Optimizing our generalized potential

function provides us with information about the solution and stability, namely, the

Shapley value and the core.

We also provide a geometric characterization of the class of games in which the

Shapley value lies in the core.*10 As mentioned above, the condition for the Shapley

value to lie in the core is characterized by minimizing the generalized potential func-

tion with respect to weight profiles in a certain set of weights. Since the function is

linear with respect to weight profiles, the minimization above is equivalent to minimiz-

ing the generalized potential function with respect to weights in a cone generated by

the set of weight profiles. As elaborated below, we show that this is, moreover, equiv-

alent to a game being in the dual cone constructed by the set of underlying weight

*8 For the relationship between the potential function in cooperative games and that in non-

cooperative games, see Ui (2000) and Nakada (2017).
*9 Hofbauer and Sorger (1999, 2002) show that the maximizer of the potential function has

stability properties in the dynamics process. Ui (2001) shows that the unique maximizer of

the potential function is robust to incomplete information.
*10 Shapley (1971) provides the geometric characterization of the core in convex games. Marinacci

and Montrucchio (2004) provide a similar characterization in terms of the Choquet integral with

respect to the underlying game. In contrast, we characterize the class of games: a geometrical

structure of the class of games for which the Shapley value lies in the core.
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profiles. This geometric characterization uncovers the new reason that convexity and

average convexity allow the Shapley value to be in the core and provides an intuition

for the mutual relationship among the classes, which we discuss in Section 5.

The rest of this paper is organized as follows. Section 2 provides basic concepts.

In Section 3, we introduce the definition of the generalized potential function. Our

main results are offered in Section 4. We compare our results with existing results in

Section 5. Section 6 is the conclusion of this paper. Some proofs are relegated to the

Appendix.

2 Preliminaries

2.1 TU-games

Let N = {1, · · · , n} be the set of players and a function v : 2n → R with v(∅) = 0

denote a characteristic function. A coalition of players is a nonempty subset of the

player set: S ⊆ N . We denote the cardinality of coalition S by |S|. We use n to

denote |N |. A cooperative game with transferable utility (a TU-game) is (N, v). We

fix the player set N throughout this paper and typically use v instead of (N, v) to

denote a game. Let GN be the set of all TU-games with the player set N .

For each nonempty T ⊆ N , a unanimity game uT ∈ GN is defined as

uT (S) =

{
1 if T ⊆ S,
0 otherwise.

Shapley (1953a) shows that any game v ∈ GN can be represented as a unique linear

combination of unanimity games: For any game v ∈ GN , there are unique values λvT ,

∅ ̸= T ⊆ N such that

v(S) =
∑

∅̸=T⊆N

λvTuT (S) =
∑

∅̸=R⊆S

λvR, (2.1)

where λvT =
∑

∅̸=R⊆T (−1)|T |−|R|v(R). For simplicity, we omit v and write λT instead

of λvT when there is no ambiguity from doing so. We use λ to denote the vector

(λT )∅̸=T⊆N ∈ R2n−1.
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2.2 Shapley value and Core

Let σ be a permutation of N . For any game v, player i’s marginal contribution in

σ is
mci,σ = v(ρσi ∪ {i})− v(ρσi ), (2.2)

where ρσi is the set of predecessors of player i in σ. Let Π be the set of all permutations.

The Shapley value Sh(v) is given as follows: For each i ∈ N ,

Shi(v) =
1

n!

∑
σ∈Π

mci,σ. (2.3)

In view of the linearity of the Shapley value, Sh(v) satisfies

Shi(uT ) =

{
1/|T | if i ∈ T,
0 otherwise.

From (2.1), it follows that Shi(v) =
∑

T⊆N,i∈T λT /|T |, where λT /|T | is called

Harsanyi’s dividend to the members of T .

The core C(v) is the set of allocations given by

C(v) =

x ∈ Rn

∣∣∣∣∣∣
∑
j∈N

xj ≤ v(N) and
∑
j∈S

xj ≥ v(S) for all S ⊆ N

 . (2.4)

We say that a vector γ ∈ R2n−2 is a balancing weight if for any i ∈ N , it satisfies∑
S: i∈S⊂N γS = 1. Bondareva (1963) and Shapley (1967) study the class of games

in which the core is nonempty in terms of balancing weights.

Theorem 1 (Bondareva, 1963; Shapley, 1967). For each v ∈ GN , C(v) ̸= ∅ if and

only if, for any balancing weight γ ∈ R2n−2, we have∑
∅≠S⊆N

γSv(S) ≤ v(N).

A game is said to be balanced if it has a nonempty core. Let GC
N = {v ∈ GN |C(v) ̸=

∅} be the set of balanced games.
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3 Generalized potentials

Hart and Mas-colell (1989) introduce the potential function. For each w ∈ Rn
+, a

function Pw : GN → R is said to be a weighted HM-potential if it satisfies∑
i∈N wiDP

w
i (v) = v(N)

where DPw
i (v) is the marginal contribution of a player i, which is defined as

DPw
i (v) = Pw(v)− Pw(v−i).

Note that v−i ∈ GN is the game given by v−i(S) = v(S ∩ (N \ i)) for any nonempty

S ⊆ N . Hart and Mas-colell (1989) show that the potential Pw is uniquely given by

Pw(v) =
∑
T⊆N

( 1∑
i∈T wi

)
λT .

In particular, if w = (1, · · · , 1), we say that Pw is the HM-potential. Let P denote

the HM-potential and DPi(v) = P (v) − P (v−i). They show that DPi(v) = Shi(v)

for any game v and any player i ∈ N .

We now introduce the following generalized potential function, which plays a central

role in this paper.

Definition 1. A function V : GN × R2n−1
+ → R is a generalized HM-potential if for

any game v ∈ GN and vector w ∈ R2n−1
+ ,

V (v, w) = w · λ

Note that wT does not necessarily require that wT = 1∑
i∈T wi

. If w satisfies wT =
1∑

i∈T w′
i
for all ∅ ̸= T ⊆ N and some w′ = (w′

i)i∈N , then this function is a weighted

potential for w′ = (w′
i)i∈N .
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4 Results

4.1 Maximization of the generalized potential

For any nonempty S ⊆ N , we define

LS =
∑
j∈S

∑
σ∈Π

mcj,σ. (4.1)

Defining Li := L{i}, we have

LS =
∑
j∈S

Lj . (4.2)

In other words, LS is the sum of each member’s total marginal contribution Li =∑
σ∈Πmci,σ. From (2.3), it follows that

Shi(v) =
1

n!
Li. (4.3)

Let L be a vector given by L = (LS)∅̸=S⊆N .

Lemma 1. Suppose v(N) > 0. The Shapley value lies in the core if and only if for

any γ = (γS)∅̸=S⊂N ∈ R2n−1
+ with

∑
∅̸=S⊆N γSLS ≤ 1, we have

∑
∅≠S⊆N

γSv(S) ≤
1

n!
.

Proof. See Appendix A.

Let WSC1(v) = {w ∈ R2n−1
+ |wT =

∑
T⊆S γS and

∑
S⊆N γSLS ≤ 1}. The set

WSC1 allows us to write Lemma 1 as follows.

Lemma 2. Suppose that v(N) > 0. The Shapley value lies in the core if and only if

max
w∈WSC1(v)

V (v, w) ≤ 1

n!
.

We say that two games v, v′ are strategically equivalent if there exist a ∈ R++ and

b = (bi)i∈N ∈ Rn such that v′(S) = av(S) +
∑

i∈S bi for all S ⊆ N . For a given v,

strategic equivalence generates an equivalent class in GN . We denote by [v] the set of

all strategically equivalent games to v. For any game v, it is clear that there exists a
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game v′ ∈ [v] such that v′(N) > 0. Moreover, since the Shapley value and the core

satisfy covariance, we have Sh(v) ∈ C(v) ⇔ Sh(v′) ∈ C(v′).*11 Therefore, by Lemma

2, we obtain the following result.

Proposition 1. For any v, the Shapley value lies in the core if and only if there

exists v′ ∈ [v] such that v′(N) > 0 and

max
w∈WSC1(v′)

V (v′, w) ≤ 1

n!
.

4.2 Minimization of the generalized potential

For any ∅ ̸= T, S ⊆ N , let qT (S) =
∑

j∈T∩S
1
|S| = |T∩S|

|S| . Each qT (S) is the

proportion of members of T in S. To consider how the members in coalition T

additionally make a gain by cooperating with the members in S, we define

ψT (S) =

{
0 if qT (S) = 1,
qT (S) if qT (S) < 1.

(4.4)

Hence, for any S ⊆ N , ψT (S) is also given as
∑

j∈T ψ{j}(S) as long as∑
j∈T ψ{j}(S) < 1; otherwise (namely, if the summation is 1), ψT (S) is zero. Note

that for any nonempty S, T ⊆ N ,

qT (S) = 1 ⇐⇒ S ⊆ T.

Moreover, as for ψT (S),

ψT (S) = 0 ⇐⇒ S ⊆ T or S ∩ T = ∅. (4.5)

For each T ⊆ N , we define wT ∈ R2n−1 as

wT (S) = ψT (S) for each S ⊆ N . (4.6)

Let WSC2 = {w ∈ R2n−1|wT for some ∅ ̸= T ⊆ N}. Then, we provide the following

characterization result.

Proposition 2. The Shapley value lies in the core if and only if

min
w∈WSC2

V (v, w) ≥ 0.

*11 A solution f : GN ⇒ Rn satisfies covariance if for any v ∈ GN and any x ∈ f(v), ax+b ∈ f(v′),

where a ∈ R++, b = (bi)i∈N ∈ Rn, and v′(S) = av(S) +
∑

i∈S bi for all S ⊆ N .
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Proof. See Appendix A.

Summarizing Propositions 1 and 2, we obtain the following dual characterizations.

Theorem 2. For any game v, the following statements are equivalent.

(i) The Shapley value lies in the core.

(ii) There exists v′ ∈ [v] such that v′(N) > 0 and maxw∈WSC1(v′) V (v′, w) ≤ 1
n! .

(iii) minw∈WSC2 V (v, w) ≥ 0.

In contrast to WSC1, WSC2 does not depend on game v. This result suggests that

even the calculations of the Shapley value and the core are no longer needed to check

Sh(v) ∈ C(v).

While Proposition 2 is described in terms of λ, which depends on v, it can be

translated into the expression using v instead of λ. Let U ∈ R2n−1 × R2n−1 be the

matrix whose column vector is each unanimity game uT . For any game v, in view of

(2.1), we can write v = Uλ. Then, for any w ∈ R2n−1
+ , we have V (w, v) = w · λ =

(wU−1)︸ ︷︷ ︸
w̃

·v = w̃ ·v. Let W̃SC2 = {w̃|w̃ = wU−1, w ∈ WSC2}. Since WSC2 and U−1 do

not depend on v, W̃SC2 does not depend on v, either. In the following example, we

demonstrate how to apply our result. Tables 1-4 in Example 1 show WSC2, U, U−1,

and W̃SC2 for three players.

Example 1. Suppose that N = {1, 2, 3}. As mentioned in Section 2, λ is uniquely

determined for v. The inequalities of Proposition 2 are as follows.

T = {1}; 1

2
λ{1,2} +

1

2
λ{1,3} +

1

3
λ{1,2,3} ≥ 0,

T = {1, 2}; 1

2
λ{1,3} +

1

2
λ{2,3} +

2

3
λ{1,2,3} ≥ 0.

If T = {1, 2, 3}, it is always satisfied with 0 ≥ 0 (see the bottom row of Table 1).
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Similarly, we can write the conditions in terms of v.

T = {1}; −2

3
v({1})− 1

6
v({2})− 1

6
v({3})

+
1

6
v({1, 2}) + 1

6
v({1, 3})− 1

3
v({2, 3}) + 1

3
v({1, 2, 3}) ≥ 0,

T = {1, 2}; 1

6
v({1}) + 1

6
v({2})− 1

3
v({3})

−2

3
v({1, 2})− 1

6
v({1, 3})− 1

6
v({2, 3}) + 2

3
v({1, 2, 3}) ≥ 0.

For T = {1, 2, 3}, it similarly holds with 0 ≥ 0. We have only to verify such inequalities

for every ∅ ̸= T ⊆ N to determine whether the Shapley value lies in the core.

T\S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
{1} 0 0 0 1

2
1
2 0 1

3

{2} 0 0 0 1
2 0 1

2
1
3

{3} 0 0 0 0 1
2

1
2

1
3

{1, 2} 0 0 0 0 1
2

1
2

2
3

{1, 3} 0 0 0 1
2 0 1

2
2
3

{2, 3} 0 0 0 1
2

1
2 0 2

3

{1, 2, 3} 0 0 0 0 0 0 0

Table 1 WSC2.

S\T {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
{1} 1 0 0 0 0 0 0

{2} 0 1 0 0 0 0 0

{3} 0 0 1 0 0 0 0

{1, 2} 1 1 0 1 0 0 0

{1, 3} 1 0 1 0 1 0 0

{2, 3} 0 1 1 0 0 1 0

{1, 2, 3} 1 1 1 1 1 1 1

Table 2 U .
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S\T {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
{1} 1 0 0 0 0 0 0

{2} 0 1 0 0 0 0 0

{3} 0 0 1 0 0 0 0

{1, 2} -1 -1 0 1 0 0 0

{1, 3} -1 0 -1 0 1 0 0

{2, 3} 0 -1 -1 0 0 1 0

{1, 2, 3} 1 1 1 -1 -1 -1 1

Table 3 U−1.

T\S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
{1} − 2

3 − 1
6 − 1

6
1
6

1
6 − 1

3
1
3

{2} − 1
6 − 2

3 − 1
6

1
6 − 1

3
1
6

1
3

{3} − 1
6 − 1

6 − 2
3 − 1

3
1
6

1
6

1
3

{1, 2} 1
6

1
6 − 1

3 − 2
3 − 1

6 − 1
6

2
3

{1, 3} 1
6 − 1

3
1
6 − 1

6 − 2
3 − 1

6
2
3

{2, 3} − 1
3

1
6

1
6 − 1

6 − 1
6 − 2

3
2
3

{1, 2, 3} 0 0 0 0 0 0 0

Table 4 W̃SC2 = WSC2U−1.
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4.3 Geometric characterization

We provide a geometric characterization of GSC
N , which is useful to compare the

results in Sections 4 and 5. We begin with a brief introduction on cones. Let X

be a nonempty subset of Rl. We denote by coni(X) = {z|z =
∑

x∈X txx, tx ≥ 0}
the conical hull of X, namely, the minimal convex cone containing X. Moreover, let

coni(X)∗ = {p ∈ Rl|p · x ≥ 0, x ∈ coni(X)} be the dual cone of coni(X), and let

coni(X)◦ = {p ∈ Rl|p · x ≤ 0, x ∈ coni(X)} be the polar cone of coni(X). Now, it

follows from Proposition 2 and the linearity of V that

min
w∈WSC2

V (v, w) ≥ 0 ⇔ ∀w ∈ coni(WSC2), w · λ ≥ 0

⇔ ∀w̃ ∈ coni(W̃SC2), w̃ · v ≥ 0

⇔ v ∈ coni(W̃SC2)∗.

Let GSC
N = {v ∈ GN |Sh(v) ∈ C(v)} be the set of games for which the Shapley value

lies in the core. Then, by the above discussion, we provide the following geometric

characterization of GSC
N .

Theorem 3. GSC
N = coni(W̃SC2)∗.

Our result can also be applied for the class of balanced games GC
N . As introduced in

Section 2, a balancing weight is γ = (γS)∅̸=S⊆N ∈ R2n−1 satisfying
∑

S: i∈S⊆N γS = 1

for any i ∈ N . In view of the redundancy of γN and v(N), for a given balancing weight

γ, we define γ′S = γS for every nonempty S ⊊ N and γ′N = −1. Let Λ be the set of γ′,

formally, Λ = {γ′ ∈ R2n−2
+ × {−1}|

∑
S:i∈S⊊N γ′S = 1 ∀i ∈ N}. In view of Theorem

1, for any game v ∈ GN , C(v) ̸= ∅ if and only if

max
γ∈Λ

γ · v ≤ 0.

Note that the set Λ is a convex polytope (see, for example, Peleg and Sudhölter

(2007)). Hence, Λ is the convex hull of its extreme points.*12 Let Λ̂ denote the set of

extreme points of Λ. Theorem 1 is written as follows.

*12 The explicit description of Λ̂ in general n-player games is not known. This is because it is

generally difficult to construct extreme points of a convex polyhedron.
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Theorem 4. For any game v ∈ GN , C(v) ̸= ∅ if and only if

max
γ∈Λ̂

γ · v ≤ 0.

Note that Λ̂ is independent of v. In the same manner as WSC2, we have maxγ∈Λ̂ γ ·
v ≤ 0 if and only if maxγ̃∈coni(Λ̂) γ̃ · v ≤ 0. The latter condition is equivalent to

v ∈ coni(Γ)◦. Hence, we obtain the following direct connection between the balancing

weights and balanced games.

Theorem 5. GC
N = coni(Λ̂)0.

For any class of games, we can find a corresponding conical expression as long as

we obtain a class of weights representing the class of games through the generalized

potential. In Section 5, we investigate other important classes.

5 Relationship with existing results

5.1 Convex and average convex games

Convex games and average convex games are known as the classes of games in which

the Shapley value lies in the core. In this subsection, we first show that some systems

of weights define the two classes of games and, then, explore their relationship through

the weights.

We begin with convex games. A game v is convex if for any i, j ∈ N (i ̸= j), any

S ⊆ N \ {i, j} and T = S ∪ {j},

v(T ∪ {i})− v(T ) ≥ v(S ∪ {i})− v(S).

Shapley (1971) shows that if a game v is convex, then Sh(v) ∈ C(v). To revisit

convexity through the generalized potential, we offer the following expression for

convexity.

Lemma 3. The following statements are equivalent.

(i): A game v is convex.

(ii): For any S ⊆ N with |S| = 2 and any T with S ⊆ T ⊆ N ,∑
R:S⊆R⊆T

λR ≥ 0.
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Proof. See Appendix B.

One can verify Lemma 3 through the following example. Let N = {1, 2, 3}. For

player 1’s marginal contributions, we have

v({1, 2, 3})− v({2, 3}) ≥ v({1, 2})− v({2}) ⇐⇒ λ{1,2,3} + λ{1,3} ≥ 0,

v({1, 2, 3})− v({2, 3}) ≥ v({1, 3})− v({3}) ⇐⇒ λ{1,2,3} + λ{1,2} ≥ 0,

v({1, 2})− v({2}) ≥ v({1}) ⇐⇒ λ{1,2} ≥ 0,

v({1, 3})− v({3}) ≥ v({1}) ⇐⇒ λ{1,3} ≥ 0.

The inequalities for players 2 and 3 also hold in the same manner.

Now, we provide the system of weights for convex games. Let α ⊆ N be a coalition

such that |α| = 2. For a given α, we define β ⊆ N as α ⊆ β. For given α and β, we

define wα,β ∈ R2n−1 as follows: For any S ⊆ N ,

wα,β(S) =

{
1 if α ⊆ S ⊆ β,
0 otherwise.

(5.1)

Let WSC3 = {wα,β ∈ R2n−1| α, β ⊆ N, |α| = 2, α ⊆ β}. Note that WSC3 is

independent of v. Hence, we can write Lemma 3 as follows.

Proposition 3. A game v is convex if and only if

min
w∈WSC3

V (v, w) ≥ 0.

Proof. We have minw∈WSC3 V (v, w) = minα,β: |α|=2, α⊆β wα,β ·λ. This entails (ii) of
Lemma 3. Note that, in view of (5.1), wα,β · λ =

∑
α⊆R⊆β λR.

Let GCONV
N be the set of convex games. Proposition 3 implies the following result

in the same manner as Theorem 3.

Theorem 6. GCONV
N = coni(W̃SC3)∗.

Next, we consider average convex games. A game is average convex if for any

nonempty S, T ⊆ N with S ⊆ T ,∑
j∈S

(v(T )− v(T \ {j})) ≥
∑
j∈S

(v(S)− v(S \ {j})).
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Note that convexity implies average convexity.*13 Inarra and Usategui (1993) show

that if a game v is average convex, then Sh(v) ∈ C(v).*14 Similar to convex games,

the following relationship holds.

Lemma 4. The following statements are equivalent.

(i): A game v is average convex.

(ii): For any S, T ⊆ N with S ⊆ T ⊆ N ,∑
R⊆T

R∩S ̸=∅,R∩(T\S)̸=∅

|R ∩ S| · λR ≥ 0.

Proof. See Appendix B.

We also provide the system of weights for average convex games. For given α and

β, we define ωα,β ∈ R2n−1 as follows: For any S ⊆ N ,

ωα,β(S) =

{
|S ∩ α| if S ⊆ β, S ∩ α ̸= ∅, and S ∩ (β \ α) ̸= ∅,
0 otherwise.

(5.2)

Let WSC4 = {ωα,β ∈ R2n−1| α, β ⊆ N, α ⊆ β}. Note that WSC4 is independent of

v. The following proposition shows that WSC4 defines average convexity.

Proposition 4. A game v is average convex if and only if

min
ω∈WSC4

V (v, ω) ≥ 0.

*13 For the counter examples of the opposite direction, see examples in Inarra and Usategui (1993)

and Izawa and Takahashi (1998).
*14 Inarra and Usategui (1993) also offer the necessary and sufficient condition as follows: v ∈ GSC

N

if and only if for any T ⊆ N ,∑
∅≠S⊆N

(n− s)!(s− 1)!

n!
hT (S)(v(S)− v(S \ T )− v(S ∩ T )) ≥ 0,

where

hT (S) =

{
|S| ·

( |S∩T |
|S| − |T\S|

|N\S|
)

if S ⊆ N,S ̸= N,

|T | if S = N.

Izawa and Takahashi (1998) also show that v ∈ GSC
N if and only if for any T ⊆ N ,∑

S⊂N

∑
i∈S∩T

(n− s)!(s− 1)!

n!
(vi(S)− vi(S ∩ T )) ≥ 0.

Our result can be seen as another interpretation of this result.
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Proof. We have minw∈WSC4 V (v, w) = minα,β, α⊆β wα,β · λ. This entails (ii) of

Lemma 4. Note that, in view of (5.2), wα,β · λ =
∑

R⊆β
R∩α ̸=∅,R∩(β\α)̸=∅

|R ∩ α|λR.

Let GAV CONV
N be the set of convex games. Proposition 4 implies the following

result.

Theorem 7. GAV CONV
N = coni(W̃SC4)∗.

Now, we analyze the relationship among WSC2,WSC3, and WSC4. First, we offer

the following relationship between WSC3 and WSC4.

Lemma 5. For each ω ∈ WSC4, it can be represented as sum of weights in WSC3.

Proof. See Appendix B.

Second, we show that each weight w ∈WSC2 is decomposed into weights in WSC4.

Lemma 6. For any nonempty subset T ⊆ N and wT ∈WSC2, we have

wT =
∑

∅≠α⊆T

∑
γ⊆N\T
β:=α∪γ

κT,α,βωα,β ,

where wα,β ∈ WSC4 for any α, β and

κT,α,β =
∑

β⊆R⊆N

(−1)|R|−|β| 1

|R|

=
1

n · (n−1Cm−1)
≥ 0,

where nCr means a combination

(
n

r

)
= n!

r!(n−r)! .

Proof. See Appendix B.

From Propositions 2 and 4 and Lemma 6, the fact that the Shapley value lies in

the core in average convex games is written as follows. For any nonempty T ⊆ N ,

V (v, wT ) = wT · λ =

 ∑
α∈FT

∑
α⊆β⊆N

κT,α,βωα,β

 · λ

=
∑

α∈FT

∑
α⊆β⊆N

κT,α,β (ωα,β · λ)

≥ 0.

17



The last inequality holds because of average convexity (Proposition 4).

By Lemma 5, we know that, for each ω ∈ WSC4, there are nonnegative coefficients

{µω,w}w∈WSC3 such that ω =
∑

w∈WSC3 µω,ww. Combining this result with Lemma

6, we can say that, for each wT ∈WSC2,

wT =
∑

∅̸=α′⊆T

∑
γ′⊆N\T

β′:=α′∪γ′

κT,α′,β′ωα′,β′

=
∑

∅̸=α′⊆T

∑
γ′⊆N\T

β′:=α′∪γ′

κT,α′,β′
( ∑
w∈WSC3

µωα′,β′ ,ww
)

=
∑

w∈WSC3

( ∑
∅̸=α′⊆T

∑
γ′⊆N\T

β′:=α′∪γ′

κT,α′,β′µωα′,β′ ,w

︸ ︷︷ ︸
ηT,α,β

)
w

=
∑

α⊆β⊆N

ηT,α,βwα,β

where wα,β ∈ WSC3 for each α, β with |α| = 2. By construction, ηT,α,β ≥ 0. There-

fore, we can decompose w ∈ WSC2 into weights in WSC3 in a similar manner as

Lemmas 5 and 6.

Lemma 7. For any nonempty subset T ⊆ N and wT ∈WSC2, we have

wT =
∑

α⊆β⊆N

ηT,α,βwα,β ,

for some ηT,α,β ≥ 0 and wα,β ∈ WSC3 for each α, β with |α| = 2.

From Propositions 2 and 3 and Lemma 7, one can verify that the Shapley value lies

in the core in convex games as follows: For any nonempty subset T ⊆ N ,

V (v, wT ) = wT · λ =

 ∑
α∈FT

∑
α⊆β⊆N

ηT,α,βwα,β

 · λ

=
∑

α∈FT

∑
α⊆β⊆N

ηT,α,β (wα,β · λ)

≥ 0.

The last inequality holds because of convexity (Proposition 3).

Finally, summarizing Lemmas 5, 6, and 7, we obtain the following geometric rela-

tionship among WSC2,WSC3, and WSC4.
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Theorem 8. coni(WSC2) ⊊ coni(WSC4) ⊊ coni(WSC3).

Theorem 8 provides a new explanation for why the classes of convex games and

average convex games are larger than those of games for which the Shapley value lies

in the core, as
coni(W̃SC3)∗︸ ︷︷ ︸

=GCONV
N

⊊ coni(W̃SC4)∗︸ ︷︷ ︸
=GAV CONV

N

⊊ coni(W̃SC2)∗︸ ︷︷ ︸
=GSC

N

.

5.2 Commander games

Yokote, Funaki, and Kamijo (2017) provide a necessary and sufficient condition

for the Shapley value to be in the core by considering another basis, which is called

commander games. For each nonempty T ⊆ N , a commander game ūT ∈ GN is

defined as

ūT (S) =

{
1 if |T ∩ S| = 1,
0 otherwise.

Yokote, Funaki, and Kamijo (2016) show that {ūT }∅̸=T⊆N is a basis of GN , that

is, each game v is represented as v =
∑

∅̸=T⊆N dT ūT , where d = (dT )∅̸=T⊆N is

the coefficient for the corresponding ūT . Moreover, they show that, for any i ∈ N ,

d{i} = Shi(v), that is, the coefficient corresponding to each singleton set coincides

with the Shapley value. By this expression, we can write

v(S) =
∑

∅̸=T⊆N

dT ūT (S)

=
∑
i∈S

Shi(v) +
∑

∅̸=T⊆N ;|T |≥2,|T∩S|=1

dT . (5.3)

Let vSh ∈ [v] be a strategically equivalent game such that vSh(S) = v(S) −∑
i∈S Shi(v). From the above discussion, they provide the following result.

Proposition 5 (Yokote, Funaki and Kamijo, 2017). Sh(v) ∈ C(v) if and only if

0 ∈ C(vSh).

By (5.3), this condition is equivalent to stating that, for any nonempty T ⊆ N ,∑
∅̸=S⊆N ;|S|≥2,|S∩T |=1

dS ≤ 0. (5.4)
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We clarify the relationship between Proposition 2 and Proposition 5. Let E ∈ R2n−1×
R2n−1 be the matrix that corresponds to (5.3), meaning that v−Sh = Ed ≤ 0. Since

both unanimity games {uT }∅̸=T⊆N and commander games {ūT }∅̸=T⊆N are the basis

of GN , for any game v,
v = Uλ = Ūd,

where Ū ∈ R2n−1 × R2n−1 is the matrix whose column vector is a commander game

ūT . Therefore, d = (Ū−1U)λ, meaning that Ed = E(Ū−1U)λ. Let WSC5 be the set

of row vectors of E(Ū−1U). By this expression, condition (5.4) is equivalent to

max
w∈WSC5

V (v, w) ≤ 0. (5.5)

Let W̃SC5 be the set of row vectors of E(Ū−1U)U−1 = EŪ−1. Then, by the same

logic as in Theorem 3, we have

GSC
N = coni(W̃SC5)0.

To see the relationship between WSC5 and WSC2, we regard WSC2,WSC5 ∈ R2n−1×
R2n−1 as the matrix, each of whose row vectors corresponds to each w ∈ WSC2 and

w ∈ WSC5. For any v ∈ GN , remember that 1
n!L = (

∑
i∈S Shi(v))∅̸=S⊆N . Then, for

any v ∈ GN ,

−WSC2λ = Uλ− 1

n!
L = Ūd− 1

n!
L

= Ed

= E(Ū−1U)λ

= WSC5λ.

where the third equality holds because of the definition of E. Therefore, we have

WSC5 = −WSC2. In this sense, condition (5.5), which is equivalent to Proposition 5,

is the mirror image of Proposition 2. The following Tables 5-8 show the description

of Ū , Ū−1, E and WSC5 for three players.
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S\T {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
{1} 1 0 0 1 1 0 1

{2} 0 1 0 1 0 1 1

{3} 0 0 1 0 1 1 1

{1, 2} 1 1 0 0 1 1 0

{1, 3} 1 0 1 1 0 1 0

{2, 3} 0 1 1 1 1 0 0

{1, 2, 3} 1 1 1 0 0 0 0

Table 5 Ū .

S\T {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
{1} 1

3 - 16 - 16
1
6

1
6 - 13

1
3

{2} - 16
1
3 - 16

1
6 − 1

3
1
6

1
3

{3} - 16 - 16
1
3 − 1

3
1
6

1
6

1
3

{1, 2} 1
6

1
6 - 13 − 1

6
1
3

1
3 − 1

3

{1, 3} 1
6 - 13

1
6

1
3 − 1

6
1
3 − 1

3

{2, 3} - 13
1
6

1
6

1
3

1
3 - 16 − 1

3

{1, 2, 3} 1
3

1
3

1
3 − 1

3 − 1
3 - 13

1
3

Table 6 Ū−1.
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T\S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
{1} 0 0 0 1 1 0 1

{2} 0 0 0 1 0 1 1

{3} 0 0 0 0 1 1 1

{1, 2} 0 0 0 0 1 1 0

{1, 3} 0 0 0 1 0 1 0

{2, 3} 0 0 0 1 1 0 0

{1, 2, 3} 0 0 0 0 0 0 0

Table 7 E.

T\S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
{1} 0 0 0 − 1

2 − 1
2 0 − 1

3

{2} 0 0 0 − 1
2 0 − 1

2 − 1
3

{3} 0 0 0 0 − 1
2 − 1

2 − 1
3

{1, 2} 0 0 0 0 − 1
2 − 1

2 − 2
3

{1, 3} 0 0 0 − 1
2 0 − 1

2 − 2
3

{2, 3} 0 0 0 − 1
2 − 1

2 0 − 2
3

{1, 2, 3} 0 0 0 0 0 0 0

Table 8 WSC5 = EŪ−1U .

6 Concluding remarks

In this paper, we introduce the generalized potential function and offer the neces-

sary and sufficient conditions for the Shapley value to be in the core by optimizing

the generalized potential. The traditional potential function only characterizes the

Shapley value in cooperative games, while it is practically utilized to find Nash equi-

libria in non-cooperative games. One of our contributions lies in the novelty that we

suggest a new approach to put “a real number assigned to a game” into practice in

cooperative game theory through generalizing the traditional potential function. We

conclude the paper with the following two other possibilities for generalization.

22



6.1 Other linear solutions

Throughout the previous sections, we considered the relationship between the Shap-

ley value and the core. However, as briefly mentioned in Section 1, our approach

applies to any linear solution instead of the Shapley value. A solution f : GN → Rn is

linear if for any c, c′ ∈ R and v, v′ ∈ GN , f(cv+ c
′v′) = cf(v)+ c′f(v′). If a solution f

is linear, in view of (2.1), f(v) =
∑

∅̸=T⊆N λT f(uT ). Then, for any nonempty subset

T ⊆ N , we define wf
T ∈ R2n−1 as

wf
T (S) =

{ ∑
i∈T fi(uS) if S ⊈ T,∑
i∈T fi(uS)− 1 if S ⊆ T.

Let Wf be the set of all wf
T . Note that this construction corresponds to that of (4.6).

We have f(v) ∈ C(v) if and only if

min
w∈Wf

V (v, w) ≥ 0

in a similar manner as Proposition 2.

6.2 Coincidence of linear solutions

Our approach is also valid to identify the coincidence of different linear solutions.

As noted above, for any liner solution f , it holds that fi(v) =
∑

T⊆N λT fi(uT ) for

each i ∈ N . For each i ∈ N , let us define θf,f
′

i ∈ R2n−1 as θf,f
′

i (T ) = fi(uT )− f ′i(uT )

for each T ⊆ N . Then, let Θf,f ′
= {θf,f

′

i ∈ R2n−1| for some i ∈ N}. Similar to

the above discussion, two linear solutions f and f ′ coincide if and only if for any

θi ∈ Θf,f ′
,

V (v, θi) = 0. (6.1)

We slightly abuse notation and regard Θf ∈ Rn × R2n−1 as the matrix whose row

vector is θf,f
′

i . Then, this is equivalent to

v ∈ coni(Θ̃f,f ′
)⊥

where coni(Θ̃f,f ′
)⊥ is an orthogonal complement of coni(Θ̃f,f ′

), which implies that v

is included in the null space of Θ̃f,f ′
. Yokote, Funaki and Kamijo (2017) discuss the

conditions for the Shapley value to coincide with the CIS value and the ENSC value,

23



based on the covariance of these solutions and commander games. Their results can

be obtained by condition (6.1) in the same manner as in Section 5.2. Moreover, our

result has an advantage: It applies to any linear solution. The application to linear

solutions is not necessarily induced from the covariance of solutions and commander

games. As demonstrated above, we believe that the generalized potential is a useful

tool to study the relationship among various solutions of TU-games.

A. Omitted Proofs in Section 4

Proof of Lemma 1. We assume Sh(v) ∈ C(v) and consider the following linear pro-

graming problem:
min
x∈R+

x subject to xL ≥ v, (A.1)

where v is a vector (v(S))∅̸=S⊆N .*15 From the assumption Sh(v) ∈ C(v), it follows

that
∑

j∈S Shj(v) ≥ v(S) for any S ⊆ N , which implies 1
n!LS ≥ v(S) by (4.2) and

(4.3). Hence, (A.1) is feasible (e.g., x = 1
n! ). The corresponding dual problem is given

as follows:
max

γ∈R2n−1
+

γ · v subject to γ · L ≤ 1. (A.2)

This problem is feasible for any v (e.g ., γ = 0). By the duality theorem, the two

optimal values coincide, say z. Hence, for any γ with
∑

∅̸=S⊆N γSLS ≤ 1, we have∑
∅̸=S⊆N

γSv(S) ≤ z.

Moreover, by substituting 1
n! for x in the minimization problem, we obtain z ≤ 1

n! .

Hence, ∑
∅≠S⊆N

γSv(S) ≤
1

n!
. (A.3)

Next, on the contrary, we assume that (A.3) holds for any γ with
∑

∅̸=S⊆N γSLS ≤
1. The maximization problem (A.2) is feasible (e.g., γ = 0), and its maximum, say

z, should be less than or equal to 1
n! . By the assumption, for any γ with γ · L ≤ 1,

*15 x ≥ y if xi ≥ yi for each i.
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γ · v has the upper bound 1
n! , which implies that the minimization problem (A.1) is

feasible.*16 By the duality theorem, its minimum coincides with z ≤ 1
n! .

Hence, z is a feasible solution of (A.1) and satisfies

zLN ≥ v(N). (A.4)

Moreover, we have

LN =
∑
j∈N

∑
σ∈Π

mcj,σ =
∑
σ∈Π

v(N) = n! · v(N).

From v(N) > 0, it follows that z ≥ 1
n! . Hence, z = 1

n! . Substituting 1
n! for x in the

constraints of (A.1), we obtain Sh(v) ∈ C(v).

Proof of Proposition 2. Fix T ⊆ N and let wT ∈ WSC2. For any v, we have

V (v, wT ) =
∑
S⊆N

wT
SλS =

∑
S⊆N

ψT,SλS

=
∑

S:S⊆T

ψT,SλS +
∑

S:S ̸⊆T

ψT,SλS

(4.4), (4.5)
=

 ∑
S:S⊆T

qT,SλS −
∑

S:S⊆T

λS

+
∑

S:S ̸⊆T

qT,SλS

=
∑
S⊆N

qT,SλS −
∑

S:S⊆T

λS

=
∑
S⊆N

 ∑
j∈T∩S

1

|S|

λS −
∑

S:S⊆T

λS

=
∑
j∈T

∑
S:j∈S

1

|S|
λS −

∑
S:S⊆T

λS

=

∑
j∈T

Shj(v)

− v(T ).

Hence, Sh(v) ∈ C(v) if and only if V (v, wT ) ≥ 0 for all wT ∈ WSC2. This completes

the proof.

*16 Since the maximization problem is feasible and has the upper bound, it has an optimal solution.

Since the maximization problem has an optimal solution, the corresponding minimization

problem is feasible.
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B. Omitted Proofs in Section 5

Proof of Lemma 3. Let i, j ∈ N (i ̸= j) and S ⊆ N \ {i, j}. Define T = S ∪ {j}. We

have

v(T ∪ {i})− v(T )− [v(S ∪ {i})− v(S)] =
∑

R⊆T∪{i}

λR −
∑
R⊆T

λR −

 ∑
R⊆S∪{i}

λR −
∑
R⊆S

λR


=

∑
R⊆T∪{i}

i∈R

λR −

 ∑
R⊆S∪{i}

i∈R

λR


=

∑
R⊆S∪{i,j}

i∈R

λR −
∑

R⊆S∪{i}
i∈R

λR

=
∑

R⊆S∪{i,j}
i∈R, j∈R

λR.

(i) ⇒ (ii): Setting S′ := {i, j} and T ′ := S ∪ {i, j} competes the proof.

(ii) ⇒ (i): We have
∑

R⊆S∪{j,i}
i∈R, j∈R

λR ≥ 0 and obtain convexity.

Proof of Lemma 4. For any nonempty S, T ⊆ N with S ⊆ T , we have

∑
j∈S

(v(T )− v(T \ {j}))−
∑
j∈S

(v(S)− v(S \ {j})) =
∑
j∈S

 ∑
R:j∈R⊆T

λR −
∑

R:j∈R⊆S

λR


=
∑
j∈S

∑
R:j∈R

R ̸⊆S, R⊆T

λR

=
∑
R⊆T

R ̸⊆S, R ̸⊆T\S

|R ∩ S| · λR.

This completes the proof.

Proof of Lemma 5. Fix α, β ⊆ N with α ⊆ β. Let us enumerate β \ α =

{k1, · · · , k|β\α|} and set k0 = ∅. Then, we want to show that

ωα,β =
∑
j∈α

(

|β\α|∑
i=1

w{j,ki},β\{k0,··· ,ki−1})
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where w{j,ki},T\{k0,··· ,ki−1} ∈ WSC3. It suffices to consider S ⊆ β. First, we consider

S ⊆ N such that S ∩ α = ∅ or S ∩ (β \ α) = ∅. Then, by (5.1) and (5.2), ωα,β(S) =

0 =
∑

j∈α(
∑|β\α|

i=1 w{j,ki},β\{k0,··· ,ki−1})(S). Second, we consider S ⊆ N such that

S ∩ α ̸= ∅ and S ∩ (β \ α) ̸= ∅. Let S = {j1, · · · , js} ∪ {ki1 , · · · , kis} where each

element is enumerated and {j1, · · · , js} ⊆ α, {ki1 , · · · , kis} ⊆ β \ α. Then, we have

∑
j∈α

(

|β\α|∑
i=1

w{j,ki},β\{k0,··· ,ki−1})(S) =
∑

j∈S∩α

(

|β\α|∑
i=1

w{j,ki},β\{k0,··· ,ki−1})(S)

=
∑

j∈S∩α

w{j,ki1
},β\{k0,··· ,ki1−1}(S)

= |S ∩ α|
= ωα,β .

This completes the proof.

Proof of Lemma 6. Decomposition. Fix ∅ ̸= T ⊆ N . It suffices to consider S ⊆ β.

First, we consider S ⊆ N such that T ∩ S = ∅ or S \ T = ∅. We have ωα,β(S) = 0 for

any α ⊆ T and any β := α ∪ γ with γ ⊆ N \ T by (5.2), which results in∑
∅≠α⊆T

∑
γ⊆N\T
β:=α∪γ

κα,βωα,β(S) =
∑

∅̸=α⊆T

∑
γ⊆N\T
β:=α∪γ

κα,β · 0 = 0.

In view of (4.6) and (4.5), wT (S) = 0. Hence the equality holds.

Next, we consider S ⊆ N such that T ∩ S ̸= ∅ and S \ T ̸= ∅. We have

∑
∅̸=α⊆T

∑
γ⊆N\T
β:=α∪γ

κα,βωα,β(S) =
∑

∅̸=α⊆T

∑
γ⊆N\T
β:=α∪γ

 ∑
β⊆R⊆N

(−1)|R|−|β| 1

|R|

ωα,β(S)

(5.2)
=

∑
S⊆β⊆N

∑
β⊆R⊆N

(−1)|R|−|β| 1

|R|
|S ∩ (β ∩ T )|

=
∑

S⊆β⊆N

∑
β⊆R⊆N

(−1)|R|−|β| 1

|R|
|S ∩ T |

=
∑

S⊆R⊆N

∑
S⊆β⊆R

(−1)|R|−|β| 1

|R|
|S ∩ T |

= |S ∩ T |
∑

S⊆R⊆N

1

|R|
∑

S⊆β⊆R

(−1)|R|−|β|.
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For the first summation, we divide S ⊆ R ⊆ N into two cases: S = R and S ⊊ R ⊆ N .

For any R with S ⊊ R ⊆ N , we have
∑

S⊆β⊆R(−1)|R|−|β| = 0 by the binomial

theorem.*17 If S = R, then
∑

S⊆β⊆R(−1)|R|−|β| = (−1)0 = 1. Hence, we obtain

|S ∩ T |
∑

S⊆R⊆N

1

|R|
∑

S⊆β⊆R

(−1)|R|−|β| = |S ∩ T | · 1

|S|
· 1 =

|S ∩ T |
|S|

.

By (4.6) and (4.5), we obtain wT (S) =
|S∩T |
|S| if S satisfies T ∩ S ̸= ∅ and S \ T ̸= ∅.

Nonnegativity. Now, we show that the coefficients are nonnegative:

∑
β⊆R⊆N

(−1)|R|−|β| 1

|R|
=

1

n · (n−1Cm−1)
≥ 0.

Note that
∑

β⊆R⊆N (−1)|R|−|β| 1
|R| =

∑n−m
k=0 (−1)k · n−mCk

m+k where m = |β|. Hence, we
obtain

n−m∑
k=0

(−1)k · n−mCk

m+ k
=

1

m

(n−m∑
k=0

(−1)k · n−mCk · 1

1 + k
m

)
=

1

m

(n−m∑
k=0

(−1)k · n−mCk ·
∫ 1

0

y
k
m dy

)
=

1

m

(∫ 1

0

n−m∑
k=0

(−1)k · n−mCk · y k
m dy

)
=

1

m

(∫ 1

0

n−m∑
k=0

n−mCk · (−y 1
m )kdy

)
=

1

m

∫ 1

0

(1− y
1
m )n−mdy.

*17 We have
∑r−s

b′=0

(
r − s

b′

)
(−1)r−s−b′ =

∑r−s
b′=0

(
r − s

b′

)
(−1)r−s−b′ (1)b

′
= ((−1) + (1))r−s =

0.
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Let I(m,n) =
∫ 1

0
(1− y

1
m )n−mdy. By integral by parts, we have

I(m,n) =

∫ 1

0

(1− y
1
m )n−mdy

=

∫ 1

0

y′(1− y
1
m )n−mdy

= [y(1− y
1
m )]10 −

∫ 1

0

(n−m)y(1− y
1
m )n−m−1(− 1

m
y

1−m
m )dy

=
n−m

m

∫ 1

0

y
1
m (1− y

1
m )n−m−1.

Then, we have

n−m

m
I(m,n− 1)− I(m,n) =

n−m

m
I(m,n)

⇔ I(m,n) =
n−m

n
I(m,n− 1).

Since

I(m,n) =
n−m

n
I(m,n− 1),

I(m,n− 1) =
n−m− 1

n− 1
I(m,n− 2),

...

I(m,m+ 1) =
1

m+ 1
I(m,m),

and I(m,m) = 1, we obtain

I(m,n) =
(n−m) · (n−m− 1) · · · 2 · 1

n · (n− 1) · · · (m+ 1)
=

(n−m)!m!

n!
.

Thus, we have

n−m∑
k=0

(−1)k · n−mCk

m+ k
=

1

m
I(m,n) =

(n−m)!(m− 1)!

n!
=

1

n · n−1Cm−1
.

This completes the proof.
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