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Behavioral Heterogeneity : Pareto Distributions of Homothetic
Preference Scales and Aggregate Expenditures Income Elasticities

Abstract

We evaluate the income elasticity of the aggregate budget share spent on
a sub-group of commodities, in a competitive framework, by a continuum of
agents having the same income, but heterogeneous behavior described by an
"homothetic preferences scaling factor" having a bounded Pareto distribution
in the population. If individual budget share increases globally significantly
in the limit from low to large incomes, aggregate budget share is locally in-
creasing with medium range incomes when the logarithm of the heterogeneity
factor has an increasing (exponential) density with a large support. Aggre-
gate income elasticity converges to that exponential density parameter when
its support becomes infinitely large. Symmetric results hold in the decreas-
ing case. Applications are made to market expenditures, wealth effects on
portfolio choice with many risky assets, concave expenditures, that are com-
patible with standard (expected) utility maximization or other "behavioral"
decision making processes.

Keywords : Behavioral heterogeneity, aggregation, preference scales,
aggregate income elasticity, power law, Pareto distribution, exponential dis-
tribution, market demand, wealth effect on aggregate portfolio choices.
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1 Introduction
This work seeks to make theoretical progress on the analysis of macroe-

conomic aggregates by relying significantly on a distributional approach, i.e.
on specified properties of distributions of heterogeneous individual prefer-
ences characteristics. Such an approach has been initiated in particular by
W. Hildenbrand (1983, 1994) and the author (1987, 1992). It aims at cop-
ing with the observed behavioral diversity of economic agents, which has
been well documented empirically for long in households demand analysis
(see Barten (1964, 1977), Calvet and Comon (2003), Deaton and Muellbauer
(1980), Jorgenson and Selsnik (1987), Lewbel (1997), Lewbel and Pendakur
(2017), Matzkin (2007), McFadden (2001), Muellbauer (1977, 1980), Prais
and Houthakker (1971)), or in households heterogeneous portfolio choices
(see Calvet et alii (2007, 2009, 2014), Chan and Kogan (2002), Curcuru et
alii (2010)): for useful recent surveys, see Blundell and Stoker (2005), Lew-
bel (2007). A distinguishing feature of the approach adopted here is that we
take as a reguirement that the introduced heterogeneity should be compatible
with individual agents behaving "rationally", i.e. through (expected) utility
maximization, as well as with various kinds of "behavioral" biases. This is
of course to be contrasted with a large part of (micro or macro) economic
theorizing, that is often based more or less implicitly (and misleadingly) on a
"representative agent" approach, in which all agents are supposed to behave
similarly, whether in markets for goods and services, or in their portfolio
choices in finance.

The distributional approach employed in this work, as in previous con-
tributions of the author on this topic (1987, 1992, 1993), seeks to account
for behavioral heterogeneity through "preference scaling factors" (the word
"preference" being there as a reminder of our requirement of individual be-
haviors being compatible with "rationality"). These are essentially (possi-
ble commodity specific) versions of the well known "households equivalence
scales", due to Prais and Houthakker (1971), Barten (1964, 1977), that have
been subsequently much used in econometric studies (Blundell and Lewbel
(1991), Deaton and Muellbauer (1980), Jorgenson and Selsnik (1987), Lew-
bel (1997), Lewbel and Pendakur (2008), Muellbauer (1977, 1980)). Such a
structure was also used long ago in general equilibrium analysis to show that
suitably dispersed distributions on the space of consumers’ characteristics
led to a nice "smoothing" of competitive aggregate demand (Mas-Colell and
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Neuefind (1977), E. Dierker, H. Dierker and Trockel (1984)). Specifically,
one considers a collection (continuum) of agents who have the same income
and the same individual (possibly (expected) utility maximizing) "base" be-
havior, but who behave actually differently, i.e. as if the prices they face
were multiplied by these (possibly commodity specific) heterogeneity scal-
ing factors. Previous analysis showed that when the distributions of such
commodity specific scaling factors (actually, of their logarithms), were "flat
enough", aggregate expenditures became less sensitive to prices (Grandmont
(1992), Quah (1997, 2001), Giraud and Maret (2002)). Such aggregate insen-
sitivity property has been further shown to occur as well for non-parametric
definitions of "behavioral heterogeneity" (see Kneip (1999), Jerison (1999),
Hildenbrand and Kniep (2005) and their references). These "behavioral het-
erogeneity" concepts were however mostly defined directly as properties of
the distributions of individual demand functions themselves, without any
explicit guarantee that there were compatible with standard individual "ra-
tional" utility maximization, in the spirit of the early "irrational" approach
of Becker (1962).

The aim of this paper is to show that one can actually get sharper ag-
gregate properties by exploiting further the convenient parametric nature of
the distributions of such heterogeneous preference scaling factors. We focus
here on the simple case where such scaling factors are "homothetic", i.e. the
same for all commodities exchanged in the market, as in Grandmont (1987),
Quah (1997). Such a formulation is indeed particularly adapted to an ap-
plication we wish to make, i.e. portfolio choices in financial markets, if only
to be compatible with standard individual decision making specifications,
including VNM expected utility maximization, ambiguity, loss aversion, or
whatever. We shall show that focusing, for the distributions of such homo-
thetic scaling factors, on power laws, which do have important applications
in economics and finance (Gabaix (2009), generates fruitful implications also
here. We consider accordingly a continuum of agents who have the same in-
come and the same "base" behavior, but whose actual behavior is indexed by
such a multiplicative heterogeneity scaling factor, that is distributed among
the agents following a bounded Pareto distribution. We focus on the income
elasticity of the aggregate budget share spent by these agents on a sub-group
of commodities. We derive then sharp results on the aggregate income elas-
ticity from rather weak limiting properties of individual "base" behavior for
quite low and large income levels, and by relying significantly on the spec-
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ification of a Pareto distribution for the scaling factor. While our analysis
is compatible with standard "rational" (expected) utility maximization over
the entire income range, as mentioned earlier, it is compatible as well with
any other "behavioral", more or less "irrational" departures in the medium
income range, as we do not require any specific properties of the individ-
ual "base" behavior there. In the "increasing" case, one requires that the
individual "base" budget share spent on the subgroup of commodities, or
assets, under consideration, is very small for low incomes, and quite large for
high incomes. Then if the logarithm of the homothetic scaling factor has an
increasing (exponential) density with a large support, the aggregate budget
share is locally increasing for medium range incomes. Further, the aggregate
income elasticity converges to the (positive) parameter of this exponential
density when its support becomes infinitely large. Symmetric results are
valid in the "decreasing" case.

A detailed application is made to expenditures on a subgroup of com-
modities in a competitive framework. There, low budget shares allocated to
this subgroup for low incomes can be viewed as resulting from low marginal
rates of substitution for these commodities at low consumption levels. And
conversely, large budget shares spent on the subgroup for large incomes, are
resulting from large marginal rates of substitution in favor of these com-
modities at large consumption levels. Another detailed application is made
to aggregate portfolio choice in financial markets involving several risky se-
curities and a single riskfree asset. There, a low budget share invested in
the riskless asset for low incomes, at the individual level, is then the conse-
quence of very large degrees of relative risk aversion (or of loss aversion) in
that income range. Symmetrically, a very low degree of risk aversion (i.e. risk
neutrality) for large incomes implies a vanishing investment, at the individual
level, in the risk free asset. Our approach enables us then to get the aggre-
gate budget share invested in the riskfree asset to be locally decreasing with
medium range wealth levels. Such a property has been known to be valid at
the individual level since the contribution of Arrow (1970), when individual
relative degrees of risk aversion are decreasing everywhere with income, pro-
vided however that there is a single risky asset to be invested in. By contrast,
when there are several risky securities as here, such a property has been well
known to be impossible to obtain at the individual level, without imposing
extremely particular specifications, e.g. of the agent’s VNM expected utility
(Cass and Stiglitz (1970, 1972), Hart (1974)). Our results show that going
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to the aggregate level does improve significantly the perspective. Detailed
applications to higher order derivatives, i.e. concavity or convexity of aggre-
gate expenditures, are also presented, a topic that has attracted a significant
attenion in the literature (see Caroll and Kimball (1996)).

The paper is organized as follows. We present the basic framework and as-
sumptions in section 2. We state the core formal results on aggregate income
elasticities in section 3 when the homothetic heterogeneity scaling factor has
a bounded Pareto distribution, i.e. when its logarithm has an exponential
density. The case where that density is uniform is considered in section 3.1,
and monotonically increasing or decreasing in section 3.2. Detailed appli-
cations to market demand are given in section 4.1, to aggregate portfolio
choice in section 4.2, to concavity of aggregate expenditures in section 4.3.
We conclude briefly in section 5. Proofs are gathered in an appendix.

2 Framework
We study aggregate expenditures for a particular group of commodities

(consumption goods, services, physical or financial assets) of a collection
(continuum) of agents in a given period, in a competitive set up. Their
common "base" behavior is described by an individual expenditure function
w∗(p, β), where p = (p1, . . . , pn) � 0 is a vector of positive market prices
for all commodities exchanged in the period under consideration and β > 0
is income. It satisfies 0 5 w∗(p, β) 5 β and is homogenous of degree 1.
The corresponding individual budget share function s∗(p, β) = w∗(p, β)/β
lies accordingly in [0,1] and is homogenous of degree 0. Both expenditure
functions are continuously differentiable in (p, β) � 0 up to any required
order.

The agents’ actual behavior is governed by these expenditure functions
up to a "behavioral heterogeneity" scaling factor λ, an arbitrary positive real
number. An agent corresponding to the scaling factor λ has "tastes" for all
commodities that are homothetically divided by λ : she behaves accordingly
"as if" the market price vector were λp instead of p. We shall work for
analytical convenience with the heterogeneity parameter α = log λ. If the
agent’s income is b > 0, the resulting expenditures functions are given by
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w(α, p, b) = w∗(eαp, b) = eαw∗(p, e−αb), (2.1)
s(α, p, b) = s∗(eαp, b) = s∗(p, e−αb). (2.2)

There is a continuum of such individual agents, normalized to 1, that
is described by a probability distribution over the behavioral heterogeneity
parameter, generated by a density function g(α) = 0. It is concentrated
on an interval [α0, α1] with α0 < α1, i.e. g(α) = 0 for α 6∈ [α0, α1], and
continuously differentiable up to any required order on that interval. Under
the assumption that all these agents face the same current price system p� 0
and have the same current income b > 0, aggregate expenditures and budget
shares for the group of commodities under consideration, are given by

W (p, b) =

∫ α1

α0

w(α, p, b)g(α)dα, (2.3)

S(p, b) = W (p, b)/b =

∫ α1

α0

s(α, p, b)g(α)dα. (2.4)

Our aim is to analyze how these aggregate expenditures vary with in-
come, namely to evaluate ∂W (p, b)/∂b and ∂S(p, b)/∂b, in relation with the
properties of individual expenditure functions and of the behavioral hetero-
geneity scaling factor density distribution g(α). It is clear from (2.2) that

b
∂s

∂b
(α, p, b) = − ∂s

∂α
(α, p, b), so that by differentiation of (2.4)

b
∂S

∂b
(p, b) = −

∫ α1

α0

∂s

∂α
(α, p, b)g(α)dα. (2.5)

An elementary integration by parts yields accordingly

Lemma 1. Aggregate expenditures’ income derivatives satisfy

b
∂S

∂b
(p, b) =

∫ α1

α0

s(α, p, b)g′(α)dα− [g(α)s(α, p, b)]α1
α0

(2.6)
where [g(α)s(α, p, b)]α1

α0
= g(α1)s

∗(p, e−α1b)− g(α0)s
∗(p, e−α0b),

∂W

∂b
(p, b) = S(p, b) + b

∂S

∂b
(p, b). (2.7)
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The above suggests a potentially fruitful research strategy. Aggregate expen-
ditures’ income derivatives, or elasticities, depend on two interacting features : a)
the relative sizes of individual "base" budget shares for low and large incomes at
the endpoints of the distribution, namely s∗(p, e−α1b) compared to s∗(p, e−α0b),
together with b) the shape of the scaling parameter density, through its derivative
g′(α) and its values at the endpoints of the distribution, g(α0) compared to g(α1).
As a quick simple example, one is sure to get a locally increasing aggregate budget
share, i.e. b∂S(p, b)/∂b > 0, if the scaling parameter density is non-decreasing,
g′(α) = 0 (in which case g(α1) = g(α0)), whenever the individual budget share
s∗(p, β) is much higher for large incomes β than for low ones, so that,

g(α0)s
∗(p, e−α0b)− g(α1)s

∗(p, e−α1b) > 0. (2.8)

In such a configuration, a significant increase of individual base behavior "in the
large" (for large incomes β compared to low ones) translates into a locally in-
creasing behavior for intermediate incomes b through a smoothing effect of the
distribution of the behavioral heterogeneity scaling parameter. In the sequel, we
shall rely on the two following alternative configurations where base individual
budget shares increase (assumption (H.0)), or decrease (assumption (H.1)), more
or less significantly when comparing large incomes β to low ones.

(H.0) (Increasing individual budget share "in the large") Given p� 0, there exist
0 < β∗0 < β∗1 and 0 5 s∗0 < s∗1 5 1 such that s∗(p, β) 5 s∗0 for 0 < β 5 β∗0 and
s∗1 5 s∗(p, β) for β∗1 5 β.

(H.1) (Decreasing individual budget share "in the large") Given p� 0, there exist
0 < β∗0 < β∗1 and 1 = s∗0 > s∗1 = 0 such that s∗(p, β) = s∗0 for 0 < β 5 β∗0 and
s∗1 = s∗(p, β) for β∗1 5 β.

In order to ensure the possibility that these increasing or decreasing properties of
individual behavior, "in the large", may induce corresponding local monotonicity
properties in the aggregate, we consider distributions of the scaling parameter that
have a large enough support. In addition to either (H.0) or (H.1), we shall assume
throughout

(H) Given β∗0 and β∗1 in either (H.0) or (H.1), the support of the distribution of
the heterogeneity scaling parameter α is large, so that eα0β∗1 < eα1β∗0 . The agents’
common income b lies in the open interval (eα0β∗1 , e

α1β∗0), so that the scaled incomes
e−αb at the endpoints of the density distribution g(α) satisfy

7



e−α1b < β∗0 and β∗1 < e−α0b. (2.9)

This strategy will enable us to get approximate relative evaluations of the indi-
vidual "base" budget shares s∗(p, e−αb) at the endpoints of the density distribution
α0, α1, as for instance in (2.8), by direct comparison of s∗(p, β∗0) and s∗(p, β∗1). As
for the distribution of the behavioral heterogeneity parameter itself, we shall focus
on monotone distributions, and actually bounded exponential distributions for the
indexing parameter α = log λ, which corresponds to the case of bounded Pareto
distributions for the heterogeneity scaling factor λ itself. That will enable us to
derive sharp results on the income elasticities of aggregate expenditures for large
heterogeneity distributions, i.e. when |α1 − α0| tends to +∞.

3 Exponential distributions of α = log λ

We consider bounded exponential distributions for the indexing parameter α,
i.e. g′(α) = εg(α) for α in [α0, α1] in which case

g(α) = γ0e
αε for α ∈ [α0, α1], g(α) = 0 for α 6∈ [α0, α1], with

γ0 = ε/(eα1ε − eα0ε) when ε 6= 0, and γ0 = 1/(α1 − α0) when ε = 0. (3.1)

Equivalently, the heterogeneity scaling factor λ = eα follows a bounded Pareto
distribution on [λ0, λ1], where λ0 = eα0 , λ1 = eα1 , with a density f(λ) given by

f(λ) = γ0λ
ε−1 for λ ∈ [λ0, λ1], f(λ) = 0 for λ 6∈ [λ0, λ1] with also here

γ0 = ε/(λε1 − λε0) when ε 6= 0 and γ0 = 1/(log λ1 − log λ0) when ε = 0.

3.1 Uniform distributions (ε = 0)
In this benchmark configuration, we get immediately from (2.6)

b
∂S

∂b
(p, b) =

s∗(p, e−α0b)− s∗(β, e−α1b)

α1 − α0
(3.2)

It is then clear that one gets a locally increasing aggregate budget share, i.e.

b
∂S

∂b
(p, b) > 0, when individual budget shares s∗(p, β) are increasing "in the large",
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i.e. under assumptions (H.0) and (H). Symmetrically, one gets b
∂S

∂b
(p, b) < 0 under

assumptions (H.1) and (H). On the other hand, if the support of the distribution,
i.e. |α1−α0|, becomes increasingly large, given β∗0 , β∗1 , aggregate budget shares be-
comes less sensitive to income variations. One can in fact show that the aggregate
budget share income elasticity converges then uniformly to ε = 0.

Proposition 1. Under assumption (H), given p� 0 and the agents’ common
income eα0β∗1 < b < eα1β∗0 ,

a) under assumption (H.0), one has b
∂S

∂b
(p, b) > 0. Furthermore

0 <
b
∂S

∂b
(β, b)

S(p, b)
5

1

s∗1(log(b/β∗1)− α0)
(3.3)

converges to 0 when α0 tends to −∞, uniformly on compact income subintervals
[bm, bM ] of (eα0β∗1 , e

α1β∗0).

b) Under assumption (H.1), one has b
∂S

∂b
(p, b) < 0. Furthermore

1

s∗0(log(b/β∗0)− α1)
5
b
∂S

∂b
(p, b)

S(p, b)
< 0 (3.4)

converges to 0 when α1 tends to +∞, uniformly on compact subintervals [bm, bM ]
of (eα0β∗1 , e

α1β∗0).

A proof is given in the appendix. The implications for aggregate expenditures
W (p, b) are immediate through (2.7). Details are left to the reader.

3.2 Strictly monotonic exponential distributions
We focus now on exponential distributions of the heterogeneity parameter, g′(α) =

εg(α) for α in [α0, α1] with ε 6= 0. We get from (2.6) and (3.1)

b
∂S

∂b
(p, b) = εS(p, b) + γ0[e

α0εs∗(p, e−α0b)− eα1εs∗(p, e−α1b)]

with γ0 = ε/(eα1ε − eα0ε). (3.5)

When ε > 0, it is straightforward to verify here, as above in our heuristic
discussion of (2.8), that the aggregate budget share is locally increasing, in fact

b
∂S

∂b
(p, b) − εS(p, b) > 0, if individual budget shares s∗(p, β) increase strongly
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enough when comparing low incomes β 5 β∗0 to large incomes β = β∗1 , as in
assumption (H.0). One can in fact show the much stronger result that the aggre-

gate income elasticity b
∂S

∂b
(p, b)/S(p, b) actually converges to ε > 0, uniformly on

compact income intervals, when the support [α0, α1] of the heterogeneity density
becomes infinitely large, if individual budget shares s∗(p, β) converge fast enough
to 0 (faster than βε) when β 5 β∗0 goes to 0.

Symmetrically, when ε < 0, one verifies also easily that b
∂S

∂b
(p, b)−εS(p, b) < 0

if individual budget shares s∗(p, β) decrease strongly enough when comparing low
incomes β 5 β∗0 to large incomes β = β∗1 , as in assumption (H.1). Here also,

one can show that the aggregate income elasticity b
∂S

∂b
(β, b)/S(p, b) converges to

ε < 0, uniformly on compact income intervals, when the support [α0, α1] of the
heterogeneity density becomes infinitely large, if individual budget shares s∗(p, β)
go fast enough to 0 when β = β∗1 increases without bound.

Proposition 2. Under assumption (H), given p� 0 and the agents’ common
income eα0β∗1 < b < eα1β∗0 ,

a) If ε > 0, under assumption (H.0), one has b
∂S

∂b
(p, b) > εS(p, b) > 0 if

[log s∗1 − log s∗0]/(α1 − α0) > ε. (3.6)

The aggregate income elasticity b
∂S

∂b
(p, b)/S(p, b) converges uniformly to ε when

α0 → −∞, α1 → +∞, if

0 5 s∗(p, β) 5 aβγε for all β 5 β∗0 ,with a = 0, γ > 1. (3.7)

b) If ε < 0, under assumption (H.1), one has b
∂S

∂b
(p, b) < εS(p, b) < 0 if

[log s∗1 − log s∗0]/(α1 − α0) < ε. (3.8)

The aggregate income elasticity b
∂S

∂b
(p, b)/S(p, b) converges uniformly to ε when

α0 → −∞, α1 → +∞, if

0 5 s∗(p, β) 5 aβγεfor all β = β∗1 ,with a = 0, γ > 1. (3.9)

A proof is given in the appendix. The above has immediate implications for
aggregate expenditures, through (2.7) and (3.5).

Corollary 1. Under the assumptions of Proposition 2, income derivatives of
aggregate expenditures are given by
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∂W

∂b
(p, b) = (1 + ε)S(p, b) + [g(α0)s

∗(p, e−α0b)− g(α1)s
∗(p, e−α1b)]. (3.10)

a) When ε > 0, (H.0) and (3.6) imply b
∂W

∂b
(p, b) > (1 + ε)W (p, b) > 0. Under

(3.7), b
∂W

∂b
(p, b)/W (p, b) converges uniformly to 1+ε when α0 → −∞, α1 → +∞.

b) When ε < 0, (H.1) and (3.8) imply b
∂W

∂b
(p, b) < (1 + ε)W (p, b), while

b
∂W

∂b
(p, b)/W (p, b) converges uniformly to 1 + ε when α0 → −∞, α1 → +∞ under

(3.9). Aggregate expenditures are then decreasing in income if 1 + ε < 0.

It may be noted that when ε > 0, the claimed results are valid in the limiting,
but nevertheless relevant, configuration where s∗(p, β) = 0 for all 0 < β 5 β∗0 ,
which corresponds to the case where log s∗0 = −∞ in (3.6) and a = 0 in (3.7). In
that case, convergence of the aggregate income elasticity to ε > 0 obtains when
α0 → −∞, even when α1 > log(b/β∗0) remains bounded above. When s∗0 > 0 and
thus a > 0 in (3.7), one needs both α0 → −∞ and α1 → +∞. The distribution over
the heterogeneity parameter becomes then more concentrated on large α, hence the
scaled incomes e−αb on low levels. Both the aggregate budget share S(p, b) and its
income derivative become small, while the aggregate income elasticity gets closer
to ε > 0. An analogous symmetric argument applies to the case ε < 0.

4 Applications
We apply next the above results and methods to a few specific frameworks :

aggregate market demand, portfolio choice, and concave aggregate expenditures.

4.1 Aggregate market demand
We consider the case where "base" behavior is the result of maximizing individual

preferences, or utility U(x), over commodity bundles x = (x1, . . . , xn) = 0 for low
and large incomes. Given the commodity price vector p = (p1, . . . , pn)� 0, "base"
expenditures for each commodity h,w∗h(p, β), s∗h(p, β), are the result of maximizing
U(x) subject to p.x = β for β < βm and for βM < β, where 0 < βm < βM
are given thresholds. We assume standard conditions (strict monotonicity and
concavity, smoothness) ensuring in particular interior solutions xh > 0 within this
admissible income range, that can be characterized by standard FOC relations
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equating marginal rates of substitution of any pair of commodities h, k with the
corresponding price ratios ph/pk. Expenditure functions wh(α, p, b) and sh(α, p, b)
corresponding to the heterogeneity scaling factor λ = eα, as in (2.1), (2.2), are
then obtained by maximizing U(x/λ) = U(e−αx) subject to p.x = b, whenever
e−αb < βm or βM < e−αb. Other (possibly non utility maximizing) behaviors are
of course compatible with our analysis for medium range incomes βm 5 β 5 βM .

We wish to see under which conditions on the utility function U(x) one
can get the configurations described in Propositions 1,2 above. For the simplicity
of the exposition, we focus on the "increasing" case (H.0) and ε = 0. Similar
arguments extend easily to the other case (H.1) and ε 5 0. Intuitively, one should
get the individual "base" budget share s∗(p, β) of a particular group of commodities
h = (1, . . . , i) to be increasing in the "large" as in (H.0) if the marginal rates of

substitution
∂U

∂xh
(x)/

∂U

∂xk
(x) between commodities h = 1, . . . , i in that group and

those outside k = i+1, . . . , n, become low for small income commodity bundles, and
high for large income commodity bundles, in a sense we wish to make precise. And
similarly for limiting conditions such as (3.7) for incomes going to 0 in Proposition
2 for the case ε > 0.

A two commodities CES example

Given p = (p1, . . . , pn)� 0, let base expenditures be the result of maximizing
the CES utility function

U(x1, x2) = a1
x1−ρ11

1− ρ1
+ a2

x1−ρ22

1− ρ2
, ρ1 > 0, ρ2 > 0 (4.1)

with a1 > 0, a2 > 0, under the budget constraint p.x = β for low incomes 0 < β <
βm and large ones βm < βM < β. The optimum base budget share of commodity
1, s = p1x1/β = s∗(p, β) is then the unique solution of the FOC

s∗(p, β)ρ1

[1− s∗(p, β)]ρ2
= βρ2−ρ1d (4.2)

with d = a1p
ρ1−1
1 /a2p

ρ2−1
2 . When ρ2 > ρ1, s

∗(p, β) is increasing within these income
ranges β < βm, βM < β. Then (H.0) applies : the right hand side of (4.2) a) goes to
0 (s∗(p, β) decreases to 0) when β < βm goes down to 0, and b) goes to +∞ (s∗(p, β)
goes up to 1) when βM < β tends to +∞. Therefore, for any arbitrary thresholds
0 < s∗0 < s∗1 < 1, there exist β∗0 low enough and β∗1 large enough such that (H.0)
applies.

Then Proposition 1 applies for uniform distributions (ε = 0). For increasing

12



exponential densities ε > 0, Proposition 2 applies as well provided that ρ2 is
significantly greater than ρ1. Indeed one gets from (4.2) for any β 5 β∗0

s∗(p, β) 5 β(ρ2−ρ1)/ρ1d1/ρ1 , (4.3)

which is bounded above by aβγε for some γ > 1 as in (3.7) (provided that, without
loss of generality, β∗0 < 1) if (ρ2 − ρ1)/ρ1 = γε > ε.

As an illustration of the impact of large supports of the behavioral heterogeneity
parameter density g(α), one may note that the limit value ε > 0 in Proposition

2 for the aggregate income elasticity b
∂S

∂b
(p, b)/S(p, b), can be somewhat different

from the underlying individual base income elasticity of s∗(p, β) for low incomes :
the latter goes, from (4.2), to (ρ2 − ρ1)/ρ1 > ε when β goes to 0. This occurs
despite the fact that the distributions considered in Proposition 2 give increasing
weight on large heterogeneity parameters α, hence on low income e−αb, when ε > 0.

Multicommodities markets

The core economic mechanism, in the foregoing two commodities CES example,
rests on a simple property of the marginal rate of substitution MRS12(x1, x2) =
∂U

∂x1
(x1, x2)/

∂U

∂x2
(x1, x2) when expenditures are fixed proportions of variable in-

come β, x1 = µ1β, x2 = µ2β, i.e. µ1 = s/p1, µ2 = (1− s)/p2 where commodity 1′s
budget share s is fixed. If ρ2 > ρ1

MRS12(µ1β, µ2β) = βρ2−ρ1(a1µ
ρ2
2 /a2µ

ρ1
1 ) (4.4)

goes to 0 when β < βm goes to 0, to +∞ when βM < β goes up to +∞. Then
for low incomes, one needs to lower commodity 1′s consumption (decrease s) to
reestablish the optimum equality of the marginal rate of substitution MRS12 with
the given price ratio p1/p2, and a similar symmetric argument applies for large
incomes. Hence the (H.0) pattern that arises in such a case. We consider now a
similar mechanism in a multicommodity context.

We use a simple two steps procedure. Every commodity bundle x = (x1, . . . , xn) =
0 is split in two groups x = (x1, x2) with x1 = (x1, . . . , xi), x

2 = (xi+1, . . . , xn).
And similarly for the price vector p = (p1, . . . , pn)� 0, i.e. p = (p1, p2) with p1 =
(p1, . . . , pi), p

2 = (pi+1, . . . , pn). The base expenditures resulting from maximizing
U(x) subject to p.x = β for β < βm and βM < β, we focus on the budget share allo-

cated to the first group of commodities, which is noted s∗(p, β) =

i∑
h=1

s∗h(p, β). Let

β1, β2 be a preliminary spending allocation for the two groups, with β1 + β2 < βm
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or βM < β1+β2, and define the corresponding "indirect" utility by the constrained
maximization

V (p, β1, β2) = Max U(x1, x2)/p1.x1 = β1, p
2.x2 = β2. (4.5)

Under standard regularity conditions on U(x) (strict monotonicity and concavity,
smoothness, interior solutions), the "indirect" utility V (p, β1, β2) will display the
same regularity properties. Further, the original optimum allocation of total income
β among the two groups will be the result of maximizing V (p, β1, β2) under the
total budget constraint β1 +β2 = β. The corresponding optimum condition is then

∂V

∂β1
(p, β1, β2) =

∂V

∂β2
(p, β1, β2). (4.6)

The interpretation of this two steps procedure follows standard lines. The first stage
(4.5) allocates expenditures so as to equalize, within each group of commodities,
marginal utilities of additional spending

∂V

∂β1
(p, β1, β2) =

1

ph

∂U

∂xh
(x), h = 1, . . . , i,

∂V

∂β2
(p, β1, β2) =

1

pk

∂U

∂xk
(x), k = i+ 1, . . . , n,

under the budget constraints p1.x1 = β1, p
2.x2 = β2. These marginal utilities are

then equalized, accross the two groups, in the second stage (4.6), so as to reach
the original optimum allocation obtained by maximizing directly U(x) subject to
p.x = β. The outcome of (4.6), under the budget constraint β1 + β2 = β, yields
then the optimum budget share, β1/β = s∗(p, β), β2/β = 1− s∗(p, β).

On expects that, similarly to our two commodities CES example, the (H.O)
pattern and the conditions of Propositions 1,2 with ε = 0, will obtain if the "indi-
rect" utility’s marginal rate of substitution

MRS12(p, β1, β2) =
∂V

∂β1
(p, β1, β2)/

∂V

∂β2
(p, β1, β2) (4.7)

becomes low for small incomes β1 + β2 < βm and large for high incomes βM <
β1 + β2, along lines analogous to (4.4).

Proposition 3. Let the indirect utility function V (p, β1, β2) be defined as in
(4.5).

1) Assume that for any fixed budget share 0 < s < 1 of the first group of
commodities, the marginal rate of substitutionMRS12(p, β1, β2) in (4.7), with β1 =
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sβ, β2 = (1 − s)β, tends : a) to 0 when β < βm goes down to 0, b) to +∞ when
βM < β increases without bound. Then for any thresholds 0 < s∗0 < s∗1 < 1, there
exist 0 < β∗0 < βm < βM < β∗1 , with β

∗
0 small enough and β∗1 large enough, such

that (H.0) is satisfied. Then Proposition 1 applies when ε = 0, as well as the first
part of Proposition 2. a) when ε > 0, under condition (3.6).

2) Assume in addition, when ε > 0

MRS12(p, aβ
γε+1, β)→ 0 when β 5 β∗0 tends to 0 (4.8)

for some a > 0, γ > 1. Then for β∗0 small enough, condition (3.7) is satisfied and
the whole Proposition 2.a) applies.

The argument of the proof is straightforward. Details are given in the appendix. A
similar symmetric argument can be easily designed to generate the (H.1) pattern,
to be applied to decreasing densities of the heterogeneity parameter α, i.e. ε 5 0.

4.2 Aggregate portfolio choices
We consider the aggregate market behavior of a centinuum of agents who have an

identical income b to invest in several risky securities and a single riskfree asset. The
issue we investigate is : under which conditions the aggregate amount invested in
the risky assets is an increasing proportion of their income. Or equivalently, when
the aggregate amount invested in the riskfree asset is a decreasing proportion of
their income. It has been well known since the work of Arrow (1970, Ch.3), that
in the case of a single risky security and of a single expected utility maximizing
investor, such a behavior would obtain if the agent’s relative degree of risk aversion
was a decreasing function of her wealth. But it has been also known since then
that such an investment behavior was no longer true in the case of several risky
securities (Cass and Stiglitz (1970, 1972), Hart (1974)). Without mentioning the
impact of modern "behavorial" departures from expected utility maximization...

We show that swithching to an aggregate viewpoint with heterogeneous agents
allows to make the above portfolio property to be valid even with many risky assets
when there are no personal outside income insurance motives (as in the standard
frameworks quoted above), and when the available risky securities still imply in-
complete markets. We require individual "base" behavior, as measured by the
budget shares function s∗h(p, β) of every asset, to be the result of consistent ex-
pected utility maximization only for quite low incomes β < βm, and quite large
ones βM < β, while allowing for any "behavioral" departure (loss aversion, am-
biguity or whatever...) in the medium income range βm 5 β 5 βM . Variations
of relative degrees of risk aversion are needed only "in the large", i.e. we assume
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high relative degrees of risk aversion for small incomes β, and a very low one (risk
neutrality) for quite large incomes β, while anything can happen in medium in-
come ranges. The proportion of aggregate investment in the riskless security is
then shown to be decreasing with the investors’ (identical) wealth b for large het-
erogeneous populations as in Propositions 1,2 above, in the (H.1) pattern, with
ε 5 0.

Formally, there are n risky securities available today. A unit of any such asset
h = 1, . . . , n yields dhj > 0 units of income tomorrow, that may depend on the
occurrence of some event j = 1, . . . , J . Its price today is qh > 0, the corresponding
gross rates of return being Rhj = dhj/qh > 0. There is a single riskfree asset, a unit
of which generates a sure unit of income tomorrow. Its current unit price is q0 > 0,
the corresponding sure gross rate of return being R0 = 1/q0 > 0. The current asset
prices vector is noted p = (q0, q1, . . . , qn) � 0. We assume that every portfolio of
the risky securities involves some possible loss by comparison to the riskfree asset.

(Incomplete asset markets) The exists ∆Rm < 0 such that for every λh = 0

with
n∑
h=1

λh = 1, one has for some j = 1, . . . , J,

n∑
h=1

λhRhj −R0 < ∆Rm < 0. (4.9)

The "base" behavior of individual investors is described by the non-negative
proportions of the variable income β > 0 invested in the riskless asset, s =

s∗(p, β) = 0, and in the risky ones, sh = s∗h(p, β) = 0, with s +

n∑
h=1

sh = 1.

As in section 2, we consider a continuum of agents with a common income b,
whose actual portfolio choices s(α, p, b), sh(α, p, b), are affected by a behavioral
heterogeneity scaling factor λ = eα, as in (2.2), and look at the proportion of their
aggregate investments in the various assets S(p, b), Sh(p, b), defined as in (2.4). We
investigate then, within the framework of section 3, conditions ensuring that the
aggregate budget share invested in the riskless asset, S(p, b), decreases with income
b. To do so, we need to focus on the case where the individual "base" budget share
of the riskfree security, s∗(p, β), decreases "in the large", as in the (H.1) pattern.

We assume that for low incomes, 0 < β < βm, and large ones, βM < β, where
0 < βm < βM are given thresholds, individual "base" choices of a portfolio s =
s∗(p, β), sh = s∗h(p, β), are driven by the maximization of a standard VNM expected

utility E[u(yj)] =

J∑
j=1

πju(yj), where πj > 0 are the subjective probabilities of
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occurrence of each state j, with
J∑
j=1

πj = 1, subject to s+

n∑
h=1

sh = 1. The incomes

generated by such a portfolio, are given by, for each state j = 1, . . . , J (there is no
exogenous risky income, so no outside income insurance motive).

yj = (sR0 +
n∑
h=1

shRhj)β = R0β +
n∑
h=1

(Rhj −R0)shβ. (4.10)

On the other hand, the corresponding budget shares s(α, p, b), sh(α, p, b) associated
to the heterogeneity scaling factor λ = eα, as in (2.2), can be viewed as resulting
from the maximization of the expected utility E[u(e−αyj)] under the same con-
straints in similar income ranges. We make the standard "rationality" assumption
for all low income ranges yj < ym and large ones yM < yj generated by arbitrary
portfolios (s, sh) as in (4.10) with β < βm and βM < β respectively :

(U) The VNM utility function u(y) is, on the relevant income ranges y < ym
and yM < y, continuous, twice continously differentiable for y > 0, increasing
(u′(y) > 0, with limy→0 u

′(y) = +∞), strictly concave (u′′(y) < 0).

As a counterpart of (4.9), the following assumption states that risky securities
are nevertheless financially attractive.

There is at least one risky asset h such that

E[Rs −R0] =

J∑
j=1

πj(Rhj −R0) > 0. (4.11)

Proposition 4. Let the assumptions (U), (4.9) and (4.11) hold.

1) Assume that investors are risk neutral for high incomes :

There is y∗1 > yM such that ρ(y) = −yu′′(y)/u′(y) = 0 for y > y∗1. (4.12)

Then there exists β∗1 > βM such that s∗(p, β) = 0 for all β = β∗1 .

2) Assume that investors are very much risk averse for low incomes :

ρ(y)→ +∞ when y → 0. (4.13)

Then for any 0 < s∗0 < 1, there exists 0 < β∗0 < βm such that s∗(p, β) > s∗0 for all
β 5 β∗0 .
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3) Under assumptions (4.12), (4.13), the (H.1) pattern applies with 1 > s∗0 >
s∗1 = 0 as above. For any exponential distribution of the heterogeneity scaling
parameter α and any investors’ common income b satisfying (H), the aggregate
budget share invested in the riskless security, S(p, b), is decreasing in b when ε 5 0.
Its elasticity with respect to b tends to ε when α1 → +∞.

A proof is given in the appendix. As a concluding remark, it may be worth re-
emphasizing that the standard "rationality" expected utility assumption was used
here only for low and large incomes, as in (U). And this only to assume formally
risk neutrality for large incomes, as in (4.12), or a relative degree of risk aversion
that tends to +∞ (not necessarily monotonically !) for low incomes as in (4.13). As
a matter of fact, a cursory look at the argument in the proof suggests strongly that
the driving mechanism to derive the above results 1) and 2) (and hence the whole
Proposition from Propositions 1.b), 2.b)) is the investors’ degree of loss aversion,
that is absent for high incomes and becomes infinite for low incomes. On the other
hand, the whole analysis is compatible with any "behavioral rationality departure"
in the medium range incomes.

4.3 Concave/convex aggregate expenditures
We extend the results of section 3 to higher order derivatives, namely concav-
ity/convexity of aggregate budget shares S(p, b) and expenditures W (p, b) with
respect to income b. We maintain throughout our assumption (3.1) of exponential
distributions for the heterogeneity parameter α = log λ (i.e. Pareto distributions
of the scaling factor λ). It is convenient to reformulate the income derivative of
aggregate expenditure (3.10) as

b
∂W

∂b
(p, b) = W (p, b)(1 + ε)− γ0[eαεw(α, p, b)]α1

α0
, (4.14)

with the maintained notation [f(α)]α1
α0

= f(α1)− f(α0).

Lemma 2. Differentiation with respect to income b, of (3.5) and (4.14), yields

b
∂2S

∂b2
(p, b) = (ε− 1)

∂S

∂b
(p, b)− γ0[eα(ε−1)

∂s∗

∂β
(p, e−αb)]α1

α0
, (4.15)

b
∂2W

∂b2
(p, b) = ε

∂W

∂b
(p, b)− γ0[eαε

∂w∗

∂β
(p, e−αb)]α1

α0
. (4.16)

In what follows, as in section 3, we let assumption (H) hold, while the price
system p � 0 and the agents’ common income eα0β∗1 < b < eα1β∗0 are given.
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We keep assumption (H.0), or (H.1), that enabled us to evaluate the sign and

magnitude of
∂S

∂b
from a comparison of individual budget shares s∗(p, β) for low and

large incomes, i.e. for β ≤ β∗0 versus β∗1 ≤ β for some appropriate thresholds β∗0 <
β∗1 . Our strategy is also here to compare the income derivatives of individual "base"

budget shares
∂s∗

∂β
(p, β), or expenditures

∂w∗

∂β
(p, β), for low and large incomes

β. We focus on budget shares through assumptions (D.0), or (D.1) below. The

individual "base" income derivative
∂s∗

∂β
(p, β) will play accordingly here, through

these conditions, a role similar to that of s∗(p, β) in section 3 through (H.0), (H.1).
The main technical difference being that, by construction, the budget share s∗(p, β)
is bounded since it lies in [0,1], whereas the income derivative needs not.

(D.0) (Increasing individual budget share’s income derivative "in the large")
Given p � 0 and β∗0 < β∗1 as in (H.0) or (H.1), there exist σ∗0 < σ∗1 such that
∂s∗

∂β
(p, β) 5 σ∗0 for 0 < β < β∗0 , while σ∗1 5

∂s∗

∂β
(p, β) for β∗1 5 β.

(D.1) (Decreasing individual budget share’s income derivative "in the large")
Given p � 0 and β∗0 < β∗1 as in (H.0) or (H.1), there exist σ∗0 > σ∗1 such that
∂s∗

∂β
(p, β) = σ∗0 for 0 < β 5 β∗0 , while σ∗1 =

∂s∗

∂β
(p, β) for β∗1 5 β.

We focus essentially on one configuration in the main text here, where the aggre-
gate budget share S(p, b) is locally decreasing and convex in income (Proposition 5
below, under assumptions (H.1), (D.0) and a decreasing exponential heterogeneity
distribution g(α), with ε 5 0). Such a configuration seems indeed of specific poten-
tial interest, as it can generate aggregate expenditures W (p, b) that are increasing
and concave (Corollary 2 below, with −1 < ε < 0), i.e. an aggregate (multicom-
modities) "concave consumption function", a topic that has attracted a significant
attention (see, e.g. Caroll and Kimball (1996), Gourinchas and Parker (2002)).
Two other interesting configurations are considered in the appendix, where the
aggregate budget share S(p, b) is 1) locally increasing and convex (Proposition 6,
under assumptions (H.0), (D.0) and a significantly increasing exponential hetero-
geneity distribution, with ε = 1) and 2) locally increasing and concave (Proposition
7, under assumptions (H.0), (D.1) and a moderately increasing exponential het-
erogeneity distribution with 0 5 ε 5 1).

Proposition 5. (Locally decreasing and convex aggregate budget share)
Let (H.1) hold, as well as (D.0) with σ∗0 < σ∗1 5 0, and consider a decreasing

exponential heterogeneity distribution with ε 5 0.
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1) One has b
∂2S

∂b2
(p, b) > (ε− 1)

∂S

∂b
(p, b) if σ∗1 is close enough to 0, i.e.

[log |σ∗1| − log |σ∗0|]/(α1 − α0) < ε− 1. (4.17)

The aggregate budget share is then locally strictly decreasing,
∂S

∂b
(p, b) < 0, and

strictly convex, b
∂2S

∂b2
(p, b) > 0, if either ε = 0, or under condition (3.8) when

ε < 0.
2) Assume that the individual "base" budget share is non-increasing with in-

come,
∂s∗

∂β
(p, β) 5 0, for all β > 0. Then the aggregate income elasticity, b

∂2S

∂b2
(p, b)/

∂S

∂b
(p, b),

converges uniformly to ε− 1 5 −1 when α0 → −∞, α1 → +∞, if |∂s
∗

∂β
(p, β)|

a) goes fast enough to 0 when β tends to +∞, and b) is bounded above or does
not diverge to +∞ too fast when β goes down to 0 :

a) for β = β∗1 , |
∂s∗

∂β
(p, β)| 5 a1β

ν1(ε−1) with a1 = 0, ν1 > 1, (4.18)

b) for 0 5 β∗0 , |
∂s∗

∂β
(p, β)| 5 a0β

ν0(ε−1) with a0 > 0, 0 5 ν0 < 1. (4.19)

A detailed proof is given in the appendix. On the other hand, it is immediate to ver-

ify that when the aggregate budget share income elasticity b
∂2S

∂b2
(p, b)/

∂S

∂b
(p, b) con-

verges to δ, the corresponding income elasticity for aggregate expenditure b
∂2W

∂b2
(p, b)/

∂W

∂b
(p, b)

converge to 1 + δ. One should expect accordingly that a moderately decreasing ex-
ponential heterogeneity distribution with −1 < ε < 0, should lead to an increasing
and concave (again, multidimentional) aggregate expenditure.

Corollary 2. (Locally increasing and concave aggregate expenditure)
Let the assumptions of Proposition 5 above and of Corollary 1 at the end of

section 3 hold, with −1 < ε < 0, and let α0 → −∞, α1 → +∞.

a) Under condition (3.9), the aggregate income elasticity b
∂W

∂b
(p, b)/W (p, b)→

1 + ε > 0.

b) The aggregate income elasticity b
∂2W

∂b2
(p, b)/

∂W

∂b
(p, b)→ ε < 0.
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5 Conclusion
The analysis presented in this paper shows that exploiting further the paramet-

ric structure of heterogeneity preference scaling factors, here by assuming Pareto
distributions, may be a significantly fruitful research avenue to get sharp mono-
tonicity properties of macroeconomic aggregates. This allowed us to go well beyond
earlier results about possible "insensitivity" properties of aggregate expenditures
obtained with less specific notions of "behavioral heterogeneity", recalled in the in-
troduction. In particular, the application made here to the study of wealth effects
on aggregate portfolio choices, shows that this approach enables us to get neat
aggregate monotonicity properties that are usually hard, or even impossible, to get
at the individual level from standard microeconomic (expected utility maximizing,
ambiguity,...) theory in financial markets.

The theoretical analysis of this paper focussed on a single group of agents
displaying heterogeneous behavior generated from a single individual "base" ex-
penditure function and a single homothetic heterogeneity scaling factor Pareto dis-
tribution. Clearly, it can be easily extended to encompass other possible sources of
heterogeneity, e.g. by considering several groups of such individuals, these groups

i = 1, . . . , n having relative sizes µi > 0 with
n∑
i=1

µi = 1, and being endowed with

individual incomes bi > 0, individual "base" expenditure functions and heterogene-
ity factor distributions that are possibly different. For a given income distribution
with b = Σiµibi, the elasticity of the aggregate budget share with respect to aggre-
gate income b, can be easily deduced from the results of this paper if each group fits
our framework (of course, its relation with each group’s aggregate elasticity with
respect its income bi will have to take into account covariance, as noted e.g. by
Paluch, Kneip and Hildenbrand (2012)). Further, the impact of a (local) change of
the income distribution, given aggregate income, can also be easily derived within
such an extended framework. Such an extended model is then able to cope with
a wide variety of observable behavioral heterogeneities, that have been so much
documented in the empirical literature, as reviewed in the introduction, in various
frameworks (goods and services, portfolio choices, ...).

Preliminary research work suggests also that the methodological approach of
this paper, which focussed as a starting point on aggregate income elasticities, can
presumably also be applied fruitfully to price elasticities, by using commodity spe-
cific scaling factors, as in Grandmont (1992, 1993). This may open the possibility
to extend the analysis to general equilibrium frameworks, with perfect of imperfect
competition.
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Appendix

1. Proof of Proposition 1

a) Under (H.0), (3.2) implies

b
∂S

∂b
(p, b) = [s∗1 − s∗0]/(α1 − α0) > 0.

Moreover S(p, b) = s∗1(log(
b

β∗1
)−α0)/(α1−α0) > 0. Combining this inequality with

(3.2) yields immediately (3.3), hence the result.

b) Under (H.1), (3.2) implies

b
∂S

∂b
(p, b) 5 [s∗1 − s∗0]/(α1 − α0) < 0.

Moreover S(p, b) = s∗0(α1− log(
b

β∗0
))/(α1−α0) > 0. Combining this inequality with

(3.2) yields immediately (3.4), hence the result. Q.E.D.

2. Proof of Proposition 2

a) Case ε > 0. Under (H.0), (3.5) implies

b
∂S

∂b
(p, b)− εS(p, b) = γ0[e

α0εs∗1 − eα1εs∗0].

Since γ0 > 0, the right hand side will be positive if and only if (3.6) is satisfied
(including the limiting case where s∗0 = 0, or log s∗0 = −∞).

When the support [α0, α1] becomes large, with α0 < log(b/β∗1), log(b/β∗0) < α1,
a lower bound for S(p, b) is given by

S(p, b) =
∫ log(b/β∗

1 )

α0

s∗1γ0e
εαdα

= s∗1
γ0
ε

[(
b

β∗1
)ε − eα0ε] > 0. (A.1)

One gets then from (3.5)∣∣∣∣∣∣∣
b
∂S

∂b
(p, b)

S(p, b)
− ε

∣∣∣∣∣∣∣ 5 ε
|eα0εs∗(p, e−α0b)− eα1εs∗(p, e−α1b)|

s∗1[(
b

β∗1
)ε − eα0ε]

(A.2)
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Since s∗(p, e−α0b) = s∗1 > 0, one needs to have α0 → −∞ to make the right hand
side of (A.2) go to 0. This condition is actually sufficient when s∗0 = 0, hence
s∗(p, e−α1b) = 0, even when α1 > log(b/β∗0) remains bounded above. Under the
more general condition (3.7), where one may have a > 0, one gets∣∣∣∣∣∣∣

b∂S

∂b
(p, b)

S(p, b)
− ε

∣∣∣∣∣∣∣ 5 ε
eα0ε + aeα1ε(1−γ)bγε

s∗1[(
b

β∗1
)ε − eα0ε]

(A.3)

which tends uniformly to 0 when α0 → −∞ and since γ > 1, when α1 → +∞.

b) Case ε < 0. Under (H.1), (3.5) implies

b
∂S

∂b
(p, b)− εS(p, b) 5 γ0[e

α0εs∗1 − eα1εs∗0].

Since γ0 > 0, the right hand side will be negative if and only if (3.8) is satisfied
(including the limiting case where s∗1 = 0, or log s∗1 = −∞).

When the support [α0, α1] becomes large, with α0 < log(b/β∗1), log(b/β∗0) < α1,
a lower bound for S(p, b) is given by

S(p, b) =
∫ α1

log(b/β∗
0 )
s∗0γ0e

εαdα

= s∗0
γ0
ε

[eα1ε − (
b

β∗0
)ε] > 0. (A.4)

One gets then from (3.5)∣∣∣∣∣∣∣
b
∂S

∂b
(p, b)

S(p, b)
− ε

∣∣∣∣∣∣∣ 5 |ε|
|eα1εs∗(p, e−α1b)− eα0εs∗(p, e−α0b)|

s∗0[(
b

β∗0
)ε − eα1ε]

. (A.5)

Since s∗(p, e−α1b) = s∗0 > 0, one needs to have α1 → +∞ to make the right
hand side of (A.5) go to 0. This condition is sufficient when s∗1 = 0, hence
s∗(p, e−α0b) = 0, even when α0 remains bounded away from −∞. Under the
more general condition (3.9), where one may have a > 0, one gets∣∣∣∣∣∣∣

b
∂S

∂b
(p, b)

S(p, b)
− ε

∣∣∣∣∣∣∣ 5 |ε|
eα1ε + aeα0ε(1−γ)bγε

s∗0[(
b

β∗0
)ε − eα1ε]

(A.6)
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which tends uniformly to 0 when α1 → +∞ and, since ε(1 − γ) > 0, when α0 →
−∞. Q.E.D.

3. Proof of Proposition 3

We consider the standard case where MRS12(p, β1, β2) in (4.7) is a decreasing
function of β1 that tends to +∞ when β1 goes to 0, and an increasing function
of β2 that goes down to 0 when β2 tends to 0, in the small income configuration
β1 + β2 < βm. Symmetrically MRS12(p, β1, β2) tends to 0 when βM < β1 goes up
to +∞, and tends to +∞ when βM < β2 increases without bound. For β < βm
and βM < β, the optimum individual base budget share s∗(p, β) of the first group
of commodities is then the unique solution, given β, of

MRS12(p, sβ, (1− s)β) = 1, (A.7)

where the left hand side of (A.7) is a decreasing function of s that tends to +∞
when s goes down to 0, and tends to 0 when s goes up to 1.

The assumption made in Proposition 3.1) states that MRS12(p, sβ, (1−s)β) is
an increasing function of β, given s, that tends to 0 when β goes down to 0. Thus
for any 0 < s∗0 < 1 fixed, there exists β∗0 small enough such thatMRS12(p, s

∗
0β, (1−

s∗0)β) is uniformly small, hence less than 1, for all β 5 β∗0 . Then one needs to lower
s to reestablish the optimum of (A.7), i.e. s∗(p, β) < s∗0 for all β 5 β∗0 . A symmetric
argument applies for an arbitrary 1 > s∗1 > s∗0 and β∗1 > βM , so that s∗1 < s∗(p, β),
as in (H.0).

Thus Proposition 1 applies for the case ε = 0. When ε > 0, Proposition 2. a)
applies as well if condition (3.6) is satisfied. Assume now (4.8) for some a > 0 and
γ > 1. One has for β 5 β∗0 going to 0

MRS12(p, aβ
γε+1, (1− aγε)β) < MRS12(p, aβ

γε+1, β)→ 0. (A.8)

So if β∗0 is chosen small enough, the above is small, hence less than 1, which implies
that s∗(p, β) < aβγε, i.e. (3.7), for all β 5 β∗0 . Thus Proposition 2. a) applies fully
for the case ε > 0. Q.E.D.

4. Proof of Proposition 4

1) Under (4.12), let β∗1 > βM be large enough so that all incomes generated by
arbitrary portfolios as in (4.10) satisfy yj > y∗1. Then for any β = β∗1 , if the "base"
budget share invested in the riskfree security at the optimum portfolio (s, (sh)), is
positive, s = s∗(p, β) > 0, one should have E[(Rhj −R0)u

′(yj)] 5 0 for every risky
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asset h, with equality whenever sh > 0, where (yj) is the resulting optimum income
stream (4.10). That would not be possible for the risky security h mentioned in
(4.11), since risk neutrality means that u′(yj) is a constant independent of yj . Thus
s∗(p, β) = 0 for all β = β∗1 .

2) Let 0 < s∗0 < 1, an arbitrary "large" budget share invested in the riskfree
asset, be fixed. Consider an arbitrarily small income level 0 < β < βm. Let (sh(β))
be the budget shares of risky securities that maximize expected utility E[u(yj)]

with s = s∗0 and
n∑
h=1

sh(β) = 1−s∗0. Let the resulting income stream y∗j (β) be given

by (4.10) :

y∗j (β) = R0β +
n∑
h=1

sh(β)β(Rhj −R0) > 0. (A.9)

From the corresponding FOC, marginal expected utilities E[Rhju
′(y∗j (β))] > 0

for additional investment in risky assets h must all be equalized for assets with
sh(β) > 0, while marginal expected utilities must be lower for those other assets k
with sk(β) = 0.

Consider now the optimum portfolio budget shares when the riskless security
proportion s is free to vary. The necessary and sufficient condition for s∗(p, β) > s∗0
is that marginal expected utility of investing in the riskfree asset exceeds that of
investing in the risky securities, when these are evaluated at the optimum portfolio
(sh(β)) obtained when s is fixed at s∗0 :

E[
n∑
h=s

sh(β)β(Rhj −R0)u
′(y∗j (β))] < 0. (A.10)

Taking an exact first order Taylor development of u′(y∗j (β)) at R0β and using (A.9)
generates the equivalent inequality

E[(y∗j (β)−R0β)u′(R0β)] < E[(y∗j (β)−R0β)2ρ(θj(β))u′(θj(β))/θj(β)]

where the income θj(β) > 0 lies in [R0β, y
∗
j (β)]. Dividing both sides by βu′(R0β) >

0 and introducing the notation ∆Rj(β) =

n∑
h=1

sh(β)(Rhj −R0), leads to the equiv-

alent inequality

E[∆Rj(β)] < E[(∆Rj(β))2
β

θj(β)

u′(θj(β))

u′(R0β)
ρ(θj(β))]. (A.11)
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We now make β > 0 tend to 0 and prove that the right hand side of (A.11)
tends to +∞, which implies the existence of a small income level β∗0 > 0 such

that s∗(p, β > s∗0 for all β 5 β∗0 , as claimed. Since
n∑
h=1

sh(β) = 1 − s∗0 > 0,

the income θj(β) > 0 lies in the interval [R0β, (

n∑
h=1

sh(β)Rhj + s∗0R0)β] and tends

thus to 0, but the ratio β/θj(β) remains bounded away from 0. On the other
hand, (4.9) implies the existence of a state j (that may depend on β) such that
∆Rj(β)(1 − s∗0) < ∆Rm < 0. For that state j, one has y∗j (β) < R0β, hence
θj(β) 5 R0β in which case u′(θj(β))/u′(R0β) = 1. If π > 0 is the minimum of all
state probabilities, the right hand side of (A.11) is larger than

π[∆Rm/(1− s∗0)]2
β

θj(β)
ρ(θj(β)).

Since θj(β) goes to 0, ρ(θj(β)) tends to +∞ by (4.13), so the above goes to +∞
when β goes to 0, which proves 2).

3) The claims made in 3) of Proposition 4 follow immediately, from Proposition
1. b) when ε = 0 and Proposition 2. b) when ε < 0. Q.E.D.

5. Proof of Proposition 5

1) Under (D.0), (4.5) implies

b
∂2S

∂b2
(p, b)− (ε− 1)

∂S

∂b
(p, b) = γ0

[
eα0(ε−1)σ∗1 − eα1(ε−1)σ∗0

]
. (A.12)

If σ∗0 < σ∗1 5 0, since γ0 > 0, the right hand side is positive if and only if (4.17)
holds (including the limiting case where σ∗1 = 0, or log |σ∗1| = −∞). To complete

the proof, one needs to prove that
∂S

∂b
(p, b) < 0. Under (H.1), this is true if ε = 0

(Proposition 1), and under condition (3.8) when ε < 0 (Proposition 1), and under
condition (3.8) when ε < 0 (Proposition 2.b).

2) Let [α0, α1] become large, with α0 < log(b/β∗1), log(b/β∗0) < α1. Under the

assumption
∂s∗

∂β
(p, β) 5 0 for all β > 0, a lower bound for∣∣∣∣∂S∂b (p, b)

∣∣∣∣ =

∫ α1

α0

∣∣∣∣∂s∗∂β (p, e−αb)

∣∣∣∣ e−αg(α)dα (A.13)

is given by
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∣∣∣∣∂S∂b (p, b)

∣∣∣∣ =
∫ α1

log(b/β∗
0 )
γ0|σ∗0|eα(ε−1)dα

= |σ∗0|
γ0
ε− 1

[
eα1(ε−1) − (b/β∗0)ε−1

]
. (A.14)

One gets then from (4.15)

∣∣∣∣∣∣∣∣
b
∂2S

∂b2
(p, b)

∂S

∂b
(p, b)

− (ε− 1)

∣∣∣∣∣∣∣∣ 5
∣∣∣∣ε− 1

σ∗0

∣∣∣∣
∣∣∣∣eα0(ε−1)∂s

∗

∂β
(p, e−α0b)− eα1(ε−1)∂s

∗

∂β
(p, e−α1b)

∣∣∣∣
(b/β∗0)ε−1 − eα1(ε−1)

.

(A.15)

Since
∂s∗

∂β
(p, e−α1b) 5 σ∗0 < 0, one needs to have α1 → +∞, together with (4.19),

to make eα1(ε−1)
∣∣∣∣∂s∗∂β (p, e−α1b)

∣∣∣∣ go to 0. This condition is actually sufficient to

make the right hand side of (A.15) go to 0 when σ∗1 = 0, hence
∂s∗

∂β
(p, e−α0b) = 0,

even when α0 is bounded below. Under the additional more general condition
(4.18), where one may have a1 > 0 when σ∗1 < 0, one verifies that the absolute
value of the numerator of the right hand side of (A.15) is bounded above by

a1b
ν1(ε−1)eα0(ε−1)(1−ν1) + a0b

ν0(ε−1)eα1(ε−1)(1−ν0), (A.16)

which tends to 0 when α0 → −∞, α1 → +∞ under the conditions specified in
(4.18), (4.19). Q.E.D.

6. Proposition 6. (Locally increasing and concave aggregate budget share)
Let (H.0) hold, as well as (D.O) with σ∗1 > σ∗0 = 0, and consider an increasing

exponential heterogeneity distribution with ε = 1.

1) One has b
∂2S

∂b2
(p, b) > (ε− 1)

∂S

∂b
(p, b) if

[log σ∗1 − log σ∗0]/(α1 − α0) > ε− 1 = 0. (A.17)

The aggregate budget share is then locally strictly increasing,
∂S

∂b
(p, b) > 0, and

strictly convex, b
∂2S

∂b2
(p, b) > 0, under condition (3.6).
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2) Assume that the individual "base" budget share is non-decreasing with in-

come,
∂s∗

∂β
(p, β) = 0 for all β > 0. Then the aggregate income elasticity b

∂2S

∂b2
(p, b)/

∂S

∂b
(p, b)

converges uniformly to ε − 1 = 0 when α0 → −∞, α1 → +∞, if
∂s∗

∂β
(p, b) a) is

bounded above or does not tend to +∞ too fast when β∗1 5 β → +∞, and b) goes
to 0 fast enough when β∗0 = β → 0 :

a) 0 < σ∗1 5
∂s∗

∂β
(p, β) 5 a1β

ν1(ε−1) for β∗1 5 β, with a1 > 0, 0 5 ν1 < 1, (A.18)

b) 0 5
∂s∗

∂β
(p, β) 5 a0β

ν0(ε−1) for 0 < β 5 β∗0 , with a0 > 0, ν0 > 1. (A.19)

Proof. 1) As seen in the proof of Proposition 5, (D.0) implies (A.12). Since
γ0 > 0 and 0 5 σ∗0 < σ∗1 here, the right hand side is positive if and only if (A.17)

holds. Since
∂S

∂b
(p, b) > 0 under condition (3.6) (Proposition 2.a), the proof is

complete.
2) Let [α0, α1] become large, with α0 < log(b/β∗1), log(b/β∗0) < α1. Under the

assumption
∂s∗

∂β
(p, β) = 0 for all β > 0, from (A.13), a lower bound for

∂S

∂b
(p, b) is

given by

∂S

∂b
(p, b) =

∫ log(b/β∗
1 )

α0

γ0σ
∗
1e
α(ε−1)dα,

which is equal to σ∗1
γ0
ε− 1

[(b/β∗1)(ε−1)−eα0(ε−1)] > 0 when ε > 1, and to σ∗1γ0[log(b/β∗1)−
α0] > 0 when ε = 1.

One gets then from (4.15) when ε = 1∣∣∣∣∣∣∣∣
b
∂2S

∂b2
(p, b)

∂S

∂b
(p, b)

∣∣∣∣∣∣∣∣ 5
1

σ∗1

∣∣∣∣∂s∗∂β (p, e−α0b)− ∂s∗

∂β
(p, e−α1b)

∣∣∣∣
log(b/β∗1)− α0

.

Assumption (A.18) implies that
∂s∗

∂β
(p, e−α0b) is bounded above by a1 > 0 when

ε = 1, while 0 5
∂s∗

∂β
(p, e−α1b) 5 σ∗0 from (D.0). So the above income elasticity

goes to ε− 1 = 0 when α0 → −∞ (even if α1 is bounded above).
When ε > 1, (4.15) implies
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∣∣∣∣∣∣∣∣
b
∂2S

∂b2
(p, b)

∂S

∂b
(p, b)

− (ε− 1)

∣∣∣∣∣∣∣∣ 5
ε− 1

σ∗1

|eα0(ε−1)∂s
∗

∂β
(p, e−α0b)− eα1(ε−1)∂s

∗

∂β
(p, e−α1b)|

(b/β∗1)ε−1 − eα0(ε−1)
.

(A.20)

Since 0 < σ∗1 5
∂s∗

∂β
(p, e−α0b), one needs to make α0 go to −∞, together with

(A.18), to make eα0(ε−1)∂s
∗

∂β
(p, e−α0b) go to 0. The condition is in fact sufficient to

make the right hand side of (A.20) go to 0 when σ∗0 = 0, hence
∂s∗

∂β
(p, e−α1b) = 0,

even when α1 is bounded above. Under the additional more general condition
(A.19), where one may have σ∗0 > 0 and a0 > 0, the absolute value of the numerator
of the right hand side of (A.20) is bounded above by an expression identical to
(A.16). This expression goes to 0 under conditions (A.18), (A.19) when α0 →
−∞, α1 → +∞. Q.E.D.

7. Proposition 7. (Locally increasing and concave aggregate budget share)
Let (H.0) hold, as well as (D.1) with σ∗0 > σ∗1 = 0, and consider an increasing

exponential heterogeneity distribution with 0 5 ε 5 1.

1) One has b
∂2S

∂b2
(p, b) < (ε− 1)

∂S

∂b
(p, b) if

[log σ∗1 − log σ∗0]/(α1 − α0) < ε− 1 5 0. (A.21)

The aggregate budget share is then locally strictly increasing,
∂S

∂b
(p, b) > 0, and

strictly concave, b
∂2S

∂b2
(p, b) < 0, if either ε = 0, or under condition (3.6) when

ε > 0.

2) Assume that the individual "base" budget share is non-decreasing with in-

come,
∂s∗

∂β
(p, β) = 0, for all β > 0. The aggregate income elasticity b

∂2S

∂b
(p, b)/

∂S

∂b
(p, b)

converges uniformly to ε− 1 5 0 when α0 → −∞, α1 → +∞, if
∂s∗

∂β
(p, β) a) goes

to 0 fast enough when β∗1 5 β tends to +∞, and b) is bounded above or does not
go too fast to +∞ when β∗0 = β tends to 0 :

a) 0 5
∂s∗

∂β
(p, β) 5 a1β

ν1(ε−1) for β = β∗1 ,with a1 = 0, ν1 > 1, (A.22)
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b) 0 < σ0 5
∂s∗

∂β
(p, β) 5 a0β

ν0(ε−1) for β = β∗0 ,with a0 > 0, 0 5 ν0 < 1. (A.23)

Proof. 1) Under (D.1), (4.15) implies

b
∂2S

∂b2
(p, b)− (ε− 1)

∂S

∂b
(p, b) 5 γ0

[
eα0(ε−1)σ∗1 − eα1(ε−1)σ∗0

]
.

If σ∗0 > σ∗1 = 0, since γ0 > 0, the right hand side is negative if and only if (A.21)

holds. To complete the proof, one needs to show
∂S

∂b
(p, b) > 0. Under (H.0), this

is true if ε = 0 (Proposition 1), and under condition (3.6) when ε > 0 (Proposition
2.a).

2) Let [α0, α1] become large with α0 < log(b/β∗1), log(b/β∗0) < α1. Under the

assumption
∂s∗

∂β
(p, β) = 0 for all β > 0, from (A.13), a lower bound for

∂S

∂b
(p, b) is

given by

∂S

∂b
(p, b) = σ∗0

γ0
1− ε

[(b/β∗0)ε−1 − eα1(ε−1)]

when 0 5 ε < 1, and by

∂S

∂b
(p, b) = σ∗0γ0[α1 − log(b/β∗0)]

when ε = 1.

One gets then from (4.15) when ε = 1∣∣∣∣∣∣∣∣
b
∂2S

∂b2
(p, b)

∂S

∂b
(p, b)

∣∣∣∣∣∣∣∣ 5
1

σ∗0

∣∣∣∣∂s∗∂β (p, e−α0b)− ∂s∗

∂β
(p, e−α1b)

∣∣∣∣
α1 − log(b/β∗0)

.

Assumption (A.23) implies that 0 < σ∗0 5
∂s∗

∂β
(p, e−α1b) 5 a0 when ε = 1 while

0 ≤ ∂s∗

∂β
(p, e−α0b) ≤ σ∗1 from (D.1). So the above income elasticity goes to 0 = ε−1

when α1 tends to +∞ (even when α0 is bounded below).

When ε < 1, (4.15) implies
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∣∣∣∣∣∣∣∣
b
∂2S

∂b2
(p, b)

∂S

∂b
(p, b)

− (ε− 1)

∣∣∣∣∣∣∣∣ 5
|ε− 1|
σ∗0

|eα0(ε−1)∂s
∗

∂β
(p, e−α0b)− eα1(ε−1)∂s

∗

∂β
(p, e−α1b)|

(b/β∗0)ε−1 − eα1(ε−1)
.

(A.24)

Since
∂s∗

∂β
(p, e−α1b) = σ∗0 > 0, one needs to make α1 → +∞, together with (A.23),

to make eα1(ε−1)∂s
∗

∂β
(p, e−α1b) go to 0. This condition is infact sufficient to make

the right hand side of (A.24) go to 0 when σ∗1 = 0, hence
∂s∗

∂β
(p, e−α0b) = 0,

even when α0 is bounded below. Under the additional more general condition
(A.22), where one may have σ∗1 > 0, a1 > 0, the absolute value of the numerator
of the right hand side of (A.24) is bounded above by the same expression stated
in (A.16). Under the conditions (A.22), (A.23), this expression goes to 0 when
α0 → −∞, α1 → +∞. Q.E.D.
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