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Abstract

Strong Nash equilibrium (see Aumann, 1959) and coalition-proof Nash equi-
librium (see Bernheim et al., 1987) rely on the idea that players are allowed to
form coalitions and make joint deviations. They both consider a case in which
any coalition can be formed. Yet there are many real-life examples where the
players cannot form certain types of coalitions/subcoalitions. There may also
be instances, when all coalitions are formed, where conflicts of interest arise
and prevent a player from choosing an action that simultaneously meets the
requirements of the two coalitions to which he or she belongs. Here we ad-
dress these criticisms by studying an organizational framework where some
coalitions/subcoalitions are not formed and where the coalitional structure is
formulated in such a way that no conflicts of interest remain. We define an
organization as a collection of partitions of a set of players ordered in such a
way that any partition is coarser than the partitions that precede it. For a
given organization, we introduce the notion of organizational Nash equilibrium.
We analyze the existence of equilibrium in a subclass of games with strategic
complementarities and illustrate how the proposed notion refines the set of
Nash equilibria in some examples of normal form games.
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1 Introduction

In the final scene of the western movie The Good, the Bad and the Ugly, three cowboys
resolve a conflict between them via a truel. They all claim rights to a sum of money
that the survivor(s) of the truel will collect. The situation can clearly be described
as a strategic game. The Good, it turns out, cooperates with the Ugly, while the
Bad takes part in no coalition. Now, knowing that only a single coalition is formed,
would not the notions of strong Nash equilibrium (see Aumann, 1959) or of coalition-
proof Nash equilibrium (see Bernheim et al., 1987) be misleading? Perhaps more
importantly, would not it be possible to find a new equilibrium notion that makes
more precise predictions than the notion of Nash equilibrium (see Nash, 1951)? More
generally, if it is known that there are players who cooperate with some of their fellow
players but not with others, then how can we make correct and/or precise predictions
using a notion that presumes that every player acts entirely on his or her own or using
a notion that presumes that the players participate in any combination of coalitions?

Numerous papers on non-cooperative game theory focus on approaches for refin-
ing the set of Nash equilibria (see Aumann, 1959; Selten, 1965, 1975; Myerson, 1978;
Kohlberg and Mertens, 1986; Bernheim et al., 1987, among others). Some of these
equilibrium refinements allow players to form coalitions and make joint deviations.
Among these coalitional refinements, in this paper, we are mainly concerned with
strong Nash equilibrium (SNE) and coalition-proof Nash equilibrium (CPNE).1 Both
of these equilibrium notions satisfy a certain type of coalitional stability. For instance,
at a SNE, the members of any particular coalition should generally be presumed to
prefer not to deviate collectively. As coalitions do not face too many restrictions in
choosing their joint deviations, the set of SNE generally turns out to be empty. Ex-
panding from this observation, Bernheim et al. (1987) propose the notion of CPNE
according to which coalition members cannot make binding commitments (i.e., agree-
ments must be self-enforcing2). Accordingly, if no coalition is able to deviate from
a strategy profile via self-enforcing contracts, then that strategy profile is said to be
coalition-proof.

An important observation would be that SNE and CPNE both consider a case in
which any coalition can be formed. Yet in real-life situations, we see many instances
where some coalitions are not or cannot be formed. Moreover, even if a particular
coalition is formed, this does not necessarily imply that all of its subcoalitions will
be formed. Indeed, a game might have players that hate/dislike each other or who

1These are known to be the most prominent coalitional refinements of Nash equilibrium. For
studies on these refinements, see Bernheim and Whinston (1987); Greenberg (1989); Dutta and Sen
(1991); Konishi et al. (1997a,b, 1999) among others. In addition to these equilibrium notions, we can
find other refinements of Nash equilibrium also utilizing coalitional structures: strong Berge equi-
librium (Berge, 1957), the largest consistent set (Chwe, 1994), negotiation-proof Nash equilibrium
(Xue, 2000), etc.

2A joint strategy profile of a coalition is self-enforcing if the members of the deviating coalition
do not desire further deviations.
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simply cannot communicate to form a coalition. Consider, for example, two countries
with a history of bad relations. These countries might not prefer to create a two-
player coalition; or even if they meet at a global association, they might still refuse
to form the two-player subcoalition.3 Following the studies on conference structures
in the vein of Myerson (1980), consider also two academic scholars at a conference,
neither of whom has met the other or any colleague who could have introduced them
or brought them together. who have never met each other or anyone that could
have connected them in a conference. Even if they belong to the same society, these
scholars cannot or choose not to collaborate. In other examples, we note that some
coalitions cannot be formed because of some rules or regulations. The competition
laws in many countries, for example, prohibit cooperation between firms that compete
in the same market. Firms are free to cooperate, however, with other firms with whom
they do not compete. Along a similar line, in sport competitions, a player in a team
is forbidden to form a coalition with a player of the opponent team while he or she
freely cooperates with the other members of his or her own team.

Another important observation on SNE and CPNE lies within the actions of
the players. Considering a coalition and its subcoalition, the notion of SNE allows
both coalitions to determine joint strategy profiles in such a way that a member of
the subcoalition cannot take an action that would simultaneously fulfill the inter-
ests of both coalitions (vertical conflict of interest). The notion of CPNE actually
overcomes this conflict by restricting each coalition to respect the rationality of its
subcoalitions/members. Be that as it may, since CPNE allows for coalitions that
have a non-empty intersection, a player participating in two coalitions may not be
able to take an action that would simultaneously fulfill the interests of both coalitions
(horizontal conflict of interest).

With regard to the former observation, is it truly reasonable and feasible to control
for all coalitions? If a coalition is not or cannot be formed, why would its members’
hypothetical best actions be effective in the equilibrium behavior? With regard to the
latter observation, can there be a specific structure that eliminates both vertical and
horizontal conflicts of interests simultaneously? In this paper we seek to address these
observations and associated questions by formulating a new equilibrium refinement.
Our notion (i) resolves the problems of vertical and horizantal conflicts of interests,
and (ii) proves to be more useful than the notions of SNE and CPNE (and even than
Nash equilibrium) in cases where some coalitions are formed and the others are not.

Note that the former observation calls for a general coalitional structure that
does not necessarily include some coalitions; whereas the latter observation calls for
a specific framework that restricts the set of coalitional structures to be studied.
More precisely, in order to eliminate vertical conflicts of interest, every coalition

3One may argue that the countries would form a two-player coalition if it benefited them, but
(i) forming a coalition does not necessarily make them better off (at the equilibrium), given that
there is strategic interaction between the players; and (ii) participating in the same coalition could
be somehow costly. Note that if participating in the same coalition does turn out to be costly, the
cost cannot be implemented into the payoff functions of the game.
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should respect to the rationality of its subcoalitions/members (as it does in the case of
CPNE). In addition to this, to eliminate horizontal conflicts of interest, the coalitional
structure should be formulated in such a way that for any pair of active (or formed)
coalitions, it is either the case that the coalitions are disjoint or one coalition contains
the other. This is what we refer to as an organizational structure.

The intuition behind the organizational structure is as follows. In a non-cooperative
game, players may prefer to form coalitions if they are allowed to. We assume that
if a player is a member of a coalition, then he or she cannot be a member of another
coalition. Accordingly, the set of these coalitions turns out to be a partition of the
player set. As coalitions may prefer to unite to form greater coalitions, in the next
step we have another partition of the player set, one coarser than the former parti-
tion. This recursively leads to a collection of partitions that are all coarser than the
partitions that preceded them. It leads, in other words, to an organization. Con-
sider, for example, a university as a set of faculty members, each of whom belongs
to one department. Each department, in turn, belongs to either the school of social
sciences or the school of natural sciences. Another example would be a company with
divisions, departments, units, and employees.4

In this paper, we take the organizational structure as given.5 Accordingly, for any
organization, we define the notion of organizational Nash equilibrium (ONE), a solu-
tion concept for which we utilize strict Pareto dominance to describe the preferences
of coalitions (Section 3). We provide a monotonicity property for the proposed notion
in such a way that as we consider greater organizations, the equilibrium set is more

4More solid real-life examples can be provided. In a doubles tennis match, a total of four players
play on two teams, and no player can participate in the same coalition as either of his or her
opponent. As an example of a larger organization, we can consider a football (i.e., soccer) game
with twenty-two players. Teammates playing in the same position, such as defenders, midfielders,
and strikers, form into small coalitions; and these small coalitions join together to form the teams.
Clearly, no coalition includes players from both teams. As another example, we can consider the
market for mobile phone services. Consumers need mobile phones and lines to receive this service,
so that phone producers and telecommunication companies operate in the market to serve them.
Two telecommunication companies are forbidden to form a coalition, whereas a telecommunication
company is allowed to form a coalition with a phone producer. To establish an organization in
such a scenario, we need a regularity condition, namely, an agreement between a telecommunication
company and a phone producer that restricts each of them from entering other agreements with
third parties without the other. When one thinks of a regularity condition of this type, a coalitional
structure emerging from the transfer market (as in sport competitions) seems like a better example:
If a team signs a contract with a player, the player cannot sign another contract with another team.
And if the team signs a contract with another player, the contract would not preclude the presence
of the former player. Finally, we recall the example mentioned at the beginning of the paper, the
truel taking place in the final scene of the western movie The Good, the Bad and the Ugly. There
appears an organization, since the only coalition formed is the coalition between the Good and the
Ugly.

5Our approach may seem rather ad-hoc. It must be understood, however, that we have no
intention of imposing a certain type of coalitional structure. We simply argue that (i) there are
many real-life examples in which some coalitions/subcoalitions are not included in a coalitional
structure and (ii) organizations make up an important subset of such coalitional structures.
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refined; we analyze the existence of equilibrium for a subclass of games with strategic
complementarities; and we study some examples of normal form games through which
we understand how our organizational refinement works and how its predictions are
different from those made by SNE and CPNE (Section 4). We conclude in Section 5.

2 Preliminaries

Let Γ = (N, (Xi)i∈N , (ui)i∈N) be an |N |-player normal form game in which N denotes
the finite set of players, Xi denotes the strategy set for player i ∈ N , and ui :∏

i∈N Xi → R denotes the utility function for player i ∈ N . For any coalition S ⊂ N ,
let XS ≡

∏
i∈S Xi denote the set of strategy profiles for the members of this coalition.

For any S ⊂ N , set X−S = XN\S. And further, set XN = X.
First, we define a Nash equilibrium.

Definition 2.1. Given a normal form game Γ, a strategy profile x∗ ∈ X is a Nash
equilibrium if for every i ∈ N and every x′i ∈ Xi: ui(x

∗) ≥ ui(x
′
i, x
∗
−i).

Being one of the most prominent coalitional refinements in the literature, the
notion of strong Nash equilibrium (SNE) is defined as follows.

Definition 2.2. Given a normal form game Γ, a strategy profile x∗ ∈ X is a strong
Nash equilibrium (SNE) if for no coalition S ⊂ N , there exists some x′S ∈ XS such
that for every i ∈ S: ui(x

′
S, x

∗
−S) > ui(x

∗).

Bernheim et al. (1987) introduce self-enforceability in order to weaken the coali-
tional stability that SNE requires. They accordingly define coalition-proof Nash
equilibrium (CPNE) that is weaker than the notion of SNE. Now, before proceeding
to the definition of CPNE, we define a reduced game.

Definition 2.3. Given a normal form game Γ, a coalition S ⊂ N , and a strategy
profile x−S ∈ X−S, the reduced game ΓS|x−S

= (S, (Xi)i∈S, (vi)i∈S) is defined in
such a way that for every i ∈ S, vi : XS → R is given by vi(x

′
S) = ui(x

′
S, x−S).

The following is the definition of CPNE.

Definition 2.4. Given a normal form game Γ,

(i) If Γ is a single-player game, then a strategy profile x∗ ∈ X is a coalition-proof
Nash equilibrium (CPNE) if and only if x∗ maximizes u1.

(ii) Let |N | > 1 and assume that the set of CPNE is defined for any game with less
than |N | players. Define a strategy profile x∗ ∈ X to be self-enforcing if for every
S ( N : x∗S ∈ CPNE(ΓS|x∗−S

). Then a strategy profile x∗ ∈ X is a CPNE if and only
if it is self-enforcing and there is no other self-enforcing strategy profile x ∈ X such
that for every i ∈ N : ui(x) > ui(x

∗).
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Despite both notions’ plausible refinement structures, there are normal form
games in which these refinements (i) cannot make any prediction or (ii) make unde-
sirable predictions. The normal form game given in Table 1, for example, has two
Nash equilibria: (x1, x2, x3) and (y1, y2, y3); but it has no SNE. More precisely, the
grand coalition N deviates from (x1, x2, x3) to (y1, y2, y3), whereas the coalition {1, 2}
deviates from (y1, y2) to (x1, x2) when Player 3 sticks to y3. As a result, none of the
Nash equilibria is coalitionally stable in the sense of SNE. Furthermore, this game
has a unique CPNE: (x1, x2, x3). In particular, we can see that the deviation by N
from (x1, x2, x3) to (y1, y2, y3) is not self-enforcing, because the subcoalition {1, 2}
further deviates to (x1, x2). Since there is no other coalition that would like to devi-
ate, the profile (x1, x2, x3) turns out to be a CPNE. Also note that the unique CPNE
is strictly Pareto dominated by the other Nash equilibrium, (y1, y2, y3).

Table 1

x3

y1 0, 0, 0 0, 0, 0
x1 1, 1, 1 0, 0, 0

x2 y2

y3

y1 0, 0, 0 2, 2, 2
x1 3, 3, 0 0, 0, 0

x2 y2

We can also provide an example for which there exists no CPNE, hence no SNE.

Table 2

x3

y1 0, 0, 0 0, 0, 1
x1 1, 1, 0 0, 0, 1

x2 y2

y3

y1 0, 1, 2 2, 0, 1
x1 2, 0, 0 0, 2, 1

x2 y2

For instance, in the normal form game given in Table 2, we find two Nash equilibria:
(x1, x2, x3) and (y1, y2, x3). The coalition {2, 3} makes a self-enforcing deviation from
(x2, x3) to (y2, y3) when Player 1 sticks to x1. In a similar manner, the same coalition
deviates from (y2, x3) to (x2, y3) when Player 1 sticks to y1.

3 Organizational Refinements of Nash Equilibrium

In this section, we first introduce a notation relevant to our definition of organizational
refinement. While doing so, we also provide alternative definitions for the notions
of SNE and CPNE. These equivalent definitions are consistent with the notation we
introduce which makes them apparently comparable to the notion of organizational
Nash equilibrium (ONE) we propose later in this paper.
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3.1 Criticisms of SNE and CPNE

For any strategy profile x ∈ X and any set of strategy profiles Y ⊂ X, define BN(x, Y )
and BN(Y ) as follows:

BN(x, Y ) = BN(Y ) = {y ∈ Y | @z ∈ Y, ∀i ∈ N : ui(y) < ui(z)}.

For any coalition S ⊂ N with |S| < |N |, any strategy profile x ∈ X, and any set
YS ⊂ XS, define6

BS(x, YS) = {y ∈ X | yS ∈ YS and @zS ∈ YS,∀i ∈ S : ui(yS, x−S) < ui(zS, x−S)}.

We refer to BS(x, YS) as the set of rational (or weakly Pareto optimal) responses of
S to the strategy profile x ∈ X within the set YS × X−S. For any strategy profile
x ∈ X, define

B(x) =
⋂
S⊂N

BS(x,XS).

We now prove that a SNE is a fixed point7 of this correspondence.

Proposition 3.1. A strategy profile x ∈ X is a strong Nash equilibrium if and only
if x ∈ B(x).

Proof. Take any x ∈ X such that x ∈ B(x). Suppose that x is not a SNE. Then
∃S ⊂ N , ∃zS ∈ XS such that ∀i ∈ S : ui(zS, x−S) > ui(xS, x−S). We then have
x /∈ BS(x,XS); a contradiction.

Conversely, take any x ∈ SNE(·). Suppose that x /∈ B(x). Then ∃S ⊂ N
such that x /∈ BS(x,XS); that is, ∃zS ∈ XS, ∀i ∈ S : ui(zS, x−S) > ui(xS, x−S); a
contradiction.

Unfortunately, without additional restrictions, the correspondence above is mostly
empty-valued. Two types of conflicts of interest, what we call vertical and horizontal
conflicts of interest, are likely to cause this.

Table 3

D 4, 0 1, 1
C 2, 2 0, 4

C D

A vertical conflict of interest arises between a coalition and its subcoalitions.
Consider, for example, the Prisoner’s Dilemma represented by the matrix given in

6Note that BS(x, YS) does not impose any restriction on the joint strategy profile for the non-
members of the coalition S. More precisely, for any y = (yS , y−S) ∈ BS(x, YS) and any y′−S ∈ X−S ,
we have (yS , y

′
−S) ∈ BS(x, YS) as well.

7A fixed point x of a correspondence of F : X → X is defined to satisfy x ∈ F (x).
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Table 3. Take the grand coalition N and observe that the unique Nash equilibrium
(D,D) is the only strategy profile to be strictly Pareto dominated by another. Thus
BN(X) includes all strategy profiles except (D,D); i.e., at each of the three strategy
profiles in BN(X), at least one player is required to cooperate against his or her
individual rationality. Hence, there is always a player that faces a conflict of interest
between coalitional rationality and his or her own individual rationality. More pre-
cisely, for any x ∈ BN(X), we either have x /∈ B1(x,X1) or x /∈ B2(x,X1), or both.
This surely implies that for any x ∈ X: B(x) = ∅. Note also that for games with
more players, the same type of conflict may arise between a coalition of at least three
players and its subcoalitions of multiple players.

Vertical conflicts of interest can be eliminated. In a two-player game, for example,
no vertical conflict of interest arises if the grand coalition respects the rationality of
each player by restricting itself to the set of individually rational strategy profiles (i.e.,
the set of Nash equilibria). More generally, no vertical conflict of interest arises if each
coalition respects the rationality of its proper subcoalitions, i.e., restricts itself to the
strategy profiles from which none of its subcoalitions have an incentive to deviate.

As discussed below, this idea is closely related to self-enforceability in CPNE. We
can formalize the idea in the following way. For a set of strategy profiles Y ⊂ X and
a coalition S ⊂ N , define

[Y ]S = {yS ∈ XS | ∃y−S ∈ X−S : (yS, y−S) ∈ Y }.

Take any x ∈ X. For any i ∈ N , define Ri(x) = Bi(x,Xi). For any coalition S ⊂ N
with |S| = 2, define

ES(x) =
{
y ∈ X

∣∣∣ (yS, x−S) ∈
⋂
i∈S

Ri((yS, x−S))
}
.

The set [ES(x)]S can be interpreted as the set of Nash equilibria of the reduced game
played by the coalition S, given that the actions of the other players are fixed to x−S.
Then define

RS(x) = BS (x, [ES(x)]S) .

This is the set of rational responses of coalition S among the strategy profiles which
its members can jointly reach and which are rational for all of its members. In
other words, coalition S restricts itself to the strategy profiles acceptable to all of its
members. For any coalition S ⊂ N with |S| = 3, define

ES(x) =
{
y ∈ X

∣∣∣ (yS, x−S) ∈
⋂
C(S

RC((yS, x−S))
}
. (3.1)

Similarly, the set [ES(x)]S can be interpreted as the equilibrium set of the correspond-
ing reduced game. Likewise,

RS(x) = BS (x, [ES(x)]S) . (3.2)
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This is the set of rational responses of coalition S among the strategy profiles that
the members of S can jointly reach and that are rational for all of the subcoalitions
of S. In other words, coalition S restricts itself to the strategy profiles acceptable to
all of its subcoalitions. Using (3.1) and (3.2) inductively, define ES(·) and RS(·) for
S ⊂ N with |S| = 4, 5, . . . , |N |. Finally, for any strategy profile x ∈ X, define

R(x) =
⋂
S⊂N

RS(x).

We first prove the following lemma.

Lemma 3.1. For any coalition S ⊂ N with |S| ≥ 2 and any strategy profile x ∈ X,
we have ⋂

C(S

RC(x) =
⋂
C⊂S

|C|=|S|−1

RC(x).

Proof. It is trivial that the left-hand side is included in the right-hand side.
Conversely, take any

x ∈
⋂
C⊂S

|C|=|S|−1

RC(x),

and suppose that

x /∈
⋂
C(S

RC(x).

Then ∃C ( S such that x /∈ RC(x). Note that there exists C ′ ⊂ S such that C ⊂ C ′

and |C ′| = |S| − 1. Since the definition is recursive, it follows that x /∈ RC′(x); a
contradiction.

As we now show, a fixed point of the correspondence above turns out to be a
CPNE, as formally defined in the previous section.

Proposition 3.2. A strategy profile x ∈ X is a coalition-proof Nash equilibrium if
and only if x ∈ R(x).

Proof. We prove this result by induction. Clearly, the statement holds when |N | = 1.
For some k ∈ N, assume that it holds when |N | ≤ k− 1 and consider the case where
|N | = k.

Take any x ∈ X such that x ∈ R(x). And suppose that x is not a CPNE. Then
either (i) x is not self-enforcing; or (ii) x is self-enforcing but there exists another
self-enforcing strategy profile z ∈ R(x) such that ∀i ∈ N : ui(z) > ui(x). If (i) is
the case, then ∃S ( N such that xS /∈ CPNE(ΓS|x−S

). But then x /∈ RS(x) by the
induction hypothesis; a contradiction. If, on the other hand, case (ii) applies, then
it must be that x /∈ RN(X); a contradiction.
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Conversely, take any x ∈ CPNE(·). And suppose that x /∈ R(x). Then either (i)
x /∈ RN(x); or (ii) x /∈

⋂
S(N RS(x). If case (i) applies, then there exists another

strategy profile z ∈ R(x) such that ∀i ∈ N : ui(z) > ui(x). By the induction
hypothesis, z must be self-enforcing; a contradiction. On the other hand, if (ii) is
the case, then

x /∈
⋂
S⊂N

|S|=|N |−1

RS(x)

by Lemma 3.1. By a similar reasoning, it follows for some S ⊂ N with |S| = |N | − 1
that xS is not a CPNE of the corresponding reduced game. This implies that x is
not self-enforcing; a contradiction.

Although the definition of CPNE eliminates vertical conflicts of interest, there
may still be horizontal conflicts of interest. By definition, there can be no horizontal
conflict of interest between a coalition and its subcoalitions. A horizontal conflict of
interest arises between two coalitions with a non-empty intersection. And it can arise
as soon as the game has three players. Consider, as an example, the following normal
form game given in Table 4. There exist two coalitions A = {1, 2} and B = {2, 3}
with the corresponding sets of rational responses: RA((y1, y2, x3)) = {(x1, z2, ·)} and
RB((y1, y2, x3)) = {(·, x2, y3)}. Surely, these sets have an empty intersection. Player 2
in this example belongs to both coalitions A and B, and each coalition requires him
or her to behave differently than the other coalition requires. In other words, Player 2
faces a horizontal conflict of interest because he or she has no way of choosing an
action that simultaneously meets the requirements of both coalitions.

Table 4

x3

z1 1, 5, 8 0, 2, 0 7, 2, 3
y1 0, 0, 3 5, 1, 8 4, 0, 0
x1 0, 4, 3 0, 7, 3 7, 7, 0

x2 y2 z2

y3

z1 2, 0, 4 0, 1, 0 0, 0, 0
y1 0, 2, 9 1, 0, 4 0, 0, 0
x1 2, 0, 9 0, 0, 0 6, 6, 2

x2 y2 z2

Since a horizontal conflict of interest arises between coalitions with a non-empty
intersection, an easy way to eliminate this type of conflicts of interest would be
to restrict coalition formation in such a way that all active coalitions are mutually
disjoint. We have no need, however, to impose such a restrictive requirement: if an
active coalition is a proper subset of another active coalition, these coalitions would
still be unencumbered by horizontal conflicts of interest between them.

To sum up, if (i) one uses a similar formulation to R(·) above, and if (ii) any pair
of active coalitions is either disjoint or includes one coalition as a subset of the other,
then neither vertical nor horizontal conflicts of interest arise. Accordingly, we say
that a collection S of coalitions in N is conflict-free if for any A,B ∈ S , we have
one of the following three properties: (i) A ∩B = ∅; (ii) A ⊂ B; or (iii) B ⊂ A.
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Proposition 3.3. Let S be a collection of coalitions in N and assume that it includes
all singleton coalitions. Then S is conflict-free if and only if there exists a finite
sequence O = {P0, P1, . . . , Pk} of partitions of N with the following properties:

(a) For any S ∈ S , there exists P ∈ O with S ∈ P .

(b) For any i ∈ {0, . . . , k − 1}, Pi is finer than Pi+1.

Proof. Assume that S is conflict-free. We now construct a finite sequence O sat-
isfying the properties above. First, let P0 consist of all singleton coalitions. Let P1

include all two-player coalitions in S . For some i ∈ N , if i /∈ S for some S ∈ P1,
then let {i} be included in P1 as well. Then P1 turns out to be a partition of N .
Let P2 include all three-player coalitions in S . For some S ∈ P1, if S 6⊂ S ′ for some
S ′ ∈ P2, then let S be included in P2 as well. Then P2 turns out to be a partition
of N . This process continues until there is no coalition remaining in S . Accordingly,
both (a) and (b) are satisfied by construction.

Conversely, take any two coalitions S and S ′ such that S ∈ P and S ′ ∈ P ′ for
some P, P ′ ∈ O. If P = P ′, then S ∩ S ′ = ∅. If P 6= P ′, then one of them is finer
than the other. Without loss of generality, assume that P is finer than P ′. Then
there exists S ′′ ∈ P ′ such that S ⊂ S ′′. If S ′ = S ′′, then S ⊂ S ′. If not, noting that
S ′ ∩ S ′′ = ∅, we have S ∩ S ′ = ∅. Hence S is conflict-free.

We define an organization O = {P0, P1, . . . , Pk} of N as an ordered collection
of partitions of N with properties (a) and (b) above, where P0 = {{1}, . . . , {|N |}}.
Now, for a given organization O = {P0, P1, . . . , Pk}, let

S O = {S ⊂ N | ∃P ∈ O such that S ∈ P}. (3.3)

Given a partition P ∈ O, let P− be the coarsest partition in O that is finer than P
and let P+ be the finest partition in O that is coarser than P . To put it differently,
P− is the layer just below P and P+ is the layer just above P .

Moreover, given a partition P ∈ O and a coalition S ∈ P , we define suborganiza-
tion OS∈P as an ordered collection {P ′0, P ′1, . . . , P ′−} of partitions of S such that for
each partition P ′t therein, we have P ′t ⊂ Pt. Finally, we define

ρO(S, P ) = {C ∈ S O | C ∈ P− and C ⊂ S}, (3.4)

to be the coarsest partition in OS∈P ; which is indeed a partition of S.
For a concrete example, consider the organization illustrated in Figure 1. Let

O = {P0, P1, P2, P3} where

P0 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}},
P1 = {{1, 2, 3}, {4, 5}, {6, 7, 8}, {9, 10}, {11}},
P2 = {{1, 2, 3, 4, 5}, {6, 7, 8}, {9, 10}, {11}}, and
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1 2 3 4 5 6 7 8 9 10 11 P0

1 2 3 4 5 6 7 8 9 10 11 P1

1 2 3 4 5 6 7 8 9 10 11 P2

1 2 3 4 5 6 7 8 9 10 11 P3

Figure 1: Example of an Organization

P3 = {{1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11}}.

Moreover, if we consider S = {1, 2, 3, 4, 5, 6, 7, 8} and P = P3, then the corresponding
suborganization is OS∈P = {P ′0, P ′1, P ′−} such that

P ′0 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}},
P ′1 = {{1, 2, 3}, {4, 5}, {6, 7, 8}}, and

P ′− = {{1, 2, 3, 4, 5}, {6, 7, 8}}.

3.2 Organizational Nash Equilibrium

In this subsection, we present a new refinement of Nash equilibrium with no vertical
or horizontal conflict of interest. Consider a normal form game Γ and an organization
O = {P0, P1, . . . , Pk}. Take any strategy profile x ∈ X. For any player i ∈ N , define
ROi (x) = Bi(x,Xi). Then for any coalition S ∈ P1, the sets EOS (x) and ROS (x) are
defined as follows:

EOS (x) =

{
y ∈ X

∣∣∣ (yS, x−S) ∈
⋂

{i}∈ρO(S,P )

ROi ((yS, x−S))

}
ROS (x) = BS

(
x,
[
EOS (x)

]
S

)
Moreover, for any coalition S ∈ S O \ P1, the sets EOS (x) and ROS (x) are inductively
defined as follows:

EOS (x) =

{
y ∈ X

∣∣∣ (yS, x−S) ∈
⋂

C∈ρO(S,P )

ROC ((yS, x−S))

}
ROS (x) = BS

(
x,
[
EOS (x)

]
S

)
12



Accordingly, for any x ∈ X, define

RO(x) =
⋂

S∈SO

ROS (x).

We call a strategy profile x ∈ X satisfying x ∈ RO(x) an O-organizational Nash
equilibrium, or simply an organizational Nash equilibrium. Let ONEO(Γ) denote the
set of O-organizational Nash equilibria of Γ.

We first show that ONE is indeed a refinement of Nash equilibrium.

Proposition 3.4. For any normal form game Γ and any organization O,

ONEO(Γ) ⊂ NE(Γ)

Proof. Omitted.

Note that given two organizations, the respective equilibrium sets may turn out
to be very different. Yet as we show in the following, the sets of ONE coincide for
equivalent organizations.

Definition 3.1. Two organizations O and O′ are equivalent if S O = S O′ .

Remark 3.1. Given a normal form game Γ and two equivalent organizations O,O′:

ONEO(Γ) = ONEO
′
(Γ).

Proof. Consider any coalition S ∈ S O. Since O and O′ are equivalent, S ∈ S O′ .
Moreover for each subcoalition C ⊂ S, if C ∈ S O, then C ∈ S O′ . This implies
that in organizations O and O′, the coalition S considers the rational responses of
the same subcoalitions when making a joint decision. Then ROS ≡ RO

′
S . Since S is

arbitrarily chosen, it follows that RO ≡ RO
′
. Hence the sets of ONE coincide.

We now focus on the elimination of vertical and horizontal conflicts of interest.
Although the former result in Proposition 3.5 is also valid for CPNE, the latter is
only valid for ONE. The reason is that CPNE eliminates only vertical conflicts of
interest, whereas ONE can eliminate both types of conflict of interest.

Proposition 3.5. For any normal form game Γ and any organization O, there exists
neither (i) vertical nor (ii) horizontal conflicts of interest within the analysis of ONE.
Formally, (i) given two coalitions S, S ′ ∈ S O such that S ′ ( S, if (yS, ·) ∈ ROS (x) for
some x ∈ X, then (yS′ , ·) ∈ ROS′(yS, x−S); and (ii) given two coalitions S, S ′ ∈ S O

such that S ′ 6⊂ S and S 6⊂ S ′, for any x ∈ X: ROS (x) ∩ROS′(x) 6= ∅.

Proof. For (i), consider any coalition S ∈ P1 and set S ′ = {i} for some member i ∈ S.
Take any x ∈ X and any (yS, ·) ∈ ROS (x). Noting that ROS (x) = BS

(
x,
[
EOS (x)

]
S

)
by

definition, we find that

(yS, ·) ∈
⋂
i∈S

ROi ((yS, x−S)).

13



This implies that (yS′ , ·) ∈ ROS′(yS, x−S).
Now, consider any coalition S ∈ P2. If S ′ ⊂ S is a singleton, then the result

similarly follows. If not, then S ′ ∈ P1. Take any x ∈ X and any (yS, ·) ∈ ROS (x).
Noting that ROS (x) = BS

(
x,
[
EOS (x)

]
S

)
by definition, we find that

(yS, ·) ∈
⋂
C(S

C∈P0∪P1

ROC ((yS, x−S)).

This implies that (yS′ , ·) ∈ ROS′(yS, x−S).
The rest follows recursively.

As for (ii), consider two coalitions S, S ′ ∈ S O such that S ′ 6⊂ S and S 6⊂ S ′. By
the definition of organizations, S and S ′ must be disjoint. The proof concludes with
the observation that each ROS concerns only the relevant part of the strategy profiles
for S; i.e., if (yS, y−S) ∈ ROS (x), then for every y′−S ∈ X−S: (yS, y

′
−S) ∈ ROS (x).

According to the definition of SNE, any coalition of players can jointly deviate to
any of their joint strategy profiles. On the other hand, our organizational refinement
restricts the set of coalitions that can deviate and the set of strategy profiles to which
a particular coalition can deviate. Accordingly, our notion of ONE turns out to be
weaker than the notion of SNE.8

Proposition 3.6. For any normal form game Γ and organization O = {P0, P1, . . . , Pk},

SNE(Γ) ⊂ ONEO(Γ).

Proof. Take any x∗ ∈ SNE(Γ). Suppose that x∗ is not an O-organizational Nash
equilibrium of Γ. We then see that there should exist some partition(s) Pt ∈ O such
that there exists some S ∈ Pt satisfying x∗S /∈ ROS (x∗). We take the one with the
smallest t and denote it by P̄ . The corresponding coalition is denoted by S̄.

Then for every S ′ ∈ P̄− with S ′ ⊂ S̄:

x∗S′ ∈ ONE
OS′∈P̄− (ΓS′|x∗−S′

).

We thus obtain yS̄ ∈ XS̄ such that

(i) ∀i ∈ S̄ : ui(yS̄, x
∗
−S̄) > ui(x

∗) and

(ii) ∀S ′ ∈ P̄− with S ′ ⊂ S̄ : yS′ ∈ ONE
OS′∈P̄− (ΓS′ |x∗−S′

).

We then conclude that x∗
S̄

is not Pareto optimal for S̄, given that the complementary
coalition chooses x∗−S̄. This is a contradiction; which completes the proof that x∗ is
an O-organizational Nash equilibrium.

8This also implies that an ONE exists for every normal form game that possesses a SNE.
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3.3 Illustrative Examples

From Proposition 3.6, we understand the relation between the predictions of ONE
and SNE. In this section we consider two examples of normal form games to better
understand how ONE refines the set of Nash equilibria and how the predictions of
ONE differ from the predictions of CPNE. We will further discuss the insights gained
from these equilibrium analyses later, in our Concluding Remarks.

We first recall the three-player normal form game given in Table 4, where we ob-
served horizontal conflicts of interest. This game has three Nash equilibria: (z1, x2, x3),
(y1, y2, x3), and (x1, z2, y3). The coalition {1, 2} deviates from the first and the sec-
ond, the coalition {2, 3} deviates from the second and the third, and the coalition
{1, 3} deviates from the first and the third. Further note that all of these deviations
are self-enforcing. Therefore, this game possesses no SNE or CPNE.

Table 4 [Revisited]

x3

z1 1, 5, 8 0, 2, 0 7, 2, 3
y1 0, 0, 3 5, 1, 8 4, 0, 0
x1 0, 4, 3 0, 7, 3 7, 7, 0

x2 y2 z2

y3

z1 2, 0, 4 0, 1, 0 0, 0, 0
y1 0, 2, 9 1, 0, 4 0, 0, 0
x1 2, 0, 9 0, 0, 0 6, 6, 2

x2 y2 z2

In this example, we consider

O1 = {P0, {{1, 2}, {3}}, {N}},
O2 = {P0, {{1}, {2, 3}}, {N}},
O3 = {P0, {{1, 3}, {2}}, {N}};

and we find the following sets of ONE:

ONEO1(·) = {(x1, z2, y3)},
ONEO2(·) = {(z1, x2, x3)},
ONEO3(·) = {(y1, y2, x3)}.

The arguments are as follows: In O1, the only active two-player coalition is {1, 2}.
This coalition deviates from (z1, x2, x3) and (y1, y2, x3), but not from (x1, z2, y3). Nei-
ther of the other two-player coalitions can deviate from these strategy profiles, since
they are not formed. Noting that every Nash equilibrium is Pareto optimal for the
grand coalition, we conclude that (x1, z2, y3) is the unique coalitionally stable outcome
for this particular organization. As for O2 and O3, similar reasoning applies.

Note here that, as the example above illustrates, it may be the case that each Nash
equilibrium is supported by some organizational structure as the unique coalitionally
stable outcome. This does not necessarily hold, however, for all normal form games,
given that the notions of ONE and CPNE coincide in two-player games:
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Remark 3.2. ONE and CPNE coincide in a two-player normal form game because
the only non-trivial organization includes all possible coalitions.

We now provide an example in which the non-empty sets of CPNE and ONE
are disjoint. This observation implies that one equilibrium set does not necessarily
include the other. To illustrate, we revisit the normal form game given in Table 1:

Table 1 [Revisited]

x3

y1 0, 0, 0 0, 0, 0
x1 1, 1, 1 0, 0, 0

x2 y2

y3

y1 0, 0, 0 2, 2, 2
x1 3, 3, 0 0, 0, 0

x2 y2

Recall that there are two Nash equilibria: (x1, x2, x3) and (y1, y2, y3). And there
exists a unique CPNE: (x1, x2, x3), since the coalition {1, 2} makes a self-enforcing
deviation from (y1, y2, y3); whereas the subcoalition {1, 2} blocks the deviation of
the grand coalition from (x1, x2, x3) to (y1, y2, y3), as the subcoalition would further
deviate from (y1, y2, y3). On the other hand, if we analyze ONE of this game for the
organization {P0, {{1}, {2, 3}}, {N}}, the unique ONE turns out to be (y1, y2, y3).
This result follows because now that the coalition {1, 2} is inactive, they would not
deviate from (y1, y2, y3) and could not block the deviation of the grand coalition from
(x1, x2, x3) to (y1, y2, y3). By a similar reasoning, the unique ONE of this game would
be (y1, y2, y3) also for the organizations {P0, {{1, 3}, {2}}, {N}} and {P0, {N}}. Note
also how this example highlights the importance and usefulness of our organizational
refinement. Apparently, the unique ONE strictly Pareto dominates the unique CPNE.

4 The Results

4.1 Existence of Equilibrium

Although the formulation of our organizational refinement eliminates both types of
conflicts of interest, a normal form game might not have an ONE for some organiza-
tions. For an example, consider the normal form game given in Table 5 which has a
unique Nash equilibrium: x ≡ (x1, x2, x3).

Table 5

x3

y1 0, 0, 0 2, 2, 0
x1 1, 1, 1 0, 0, 0

x2 y2

y3

y1 0, 1, 1 1, 0, 1
x1 1, 0, 0 0, 1, 1

x2 y2
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Considering the organization O = {P0, {{1, 2}, {3}}}, we have RO1 (x) = (x1, ·, ·),
RO2 (x) = (·, x2, ·), and RO{1,2}(x) = (y1, y2, ·). Then RO(x) = ∅. Since x is the unique
Nash equilibrium, the non-existence of ONE follows.

The foregoing observation naturally compels us to find classes of normal form
games where an ONE exists. In this section of the paper, we prove the existence of
our organizational refinement in a subclass of games with strategic complementarities
(see Topkis, 1998; Amir, 2005; Vives, 2005, among others).9 The following are the
definitions that will be utilized throughout this subsection.

A set is a lattice if it contains the supremum and the infimum of every pair of
its elements. A lattice is complete if each non-empty subset has a supremum and an
infimum.10 Moreover, a subset Y of a lattice X is a subcomplete sublattice of X if for
every non-empty subset Y ′ of Y , the supremum of Y ′ and the infimum of Y ′ exist
and are contained in Y . Let X be a lattice and T be a partial order. A function
f : X → R is called quasi-supermodular if for every x, y ∈ X: f(x) ≥ f(x∧y) implies
that f(x ∨ y) ≥ f(y) and f(x) > f(x ∧ y) implies that f(x ∨ y) ≥ f(y). We say
that a function f : X × T → R satisfies the single crossing property in (x, t) if for
every x, x′ ∈ X and t, t ∈ T with x > x′ and t > t′: f(x, t′) ≥ f(x′, t′) implies that
f(x, t) ≥ f(x′, t) and f(x, t′) > f(x′, t′) implies that f(x, t) > f(x′, t).

The following definition of games with strategic complementarities is provided by
Milgrom and Shannon (1994) and Milgrom and Roberts (1996).

Definition 4.1. A normal form game Γ is a game with strategic complemen-
tarities if for every i ∈ N : (i) Xi is a non-empty complete lattice; (ii) ui is upper
semi-continuous in xi and continuous in x−i; and (iii) ui is quasi-supermodular in xi
and has the single crossing property in (xi, x−i).

Milgrom and Shannon (1994) show that the smallest and the largest serially un-
dominated strategy profiles11 exist in a game with strategic complementarities and
are respectively the smallest and the largest Nash equilibria of the game (see their
Theorem 12). Furthermore, as shown by Milgrom and Roberts (1996), an addi-
tional monotonicity assumption would suffice for the existence of CPNE in a subclass
of games with strategic complementarities. In particular, these authors assume that
each utility function ui is non-decreasing/non-increasing in x−i (see their Theorem 2).
In the following, we prove the existence of our organizational refinement by weakening
this monotonicity assumption.

9Games with strategic complemetarities are commonly utilized in the literature both for the
existence of Nash equilibrium (see Zhou, 1994; Echenique, 2005; Calciano, 2007; Keskin et al.,
2014, among others) and for the existence of some of the refinements of Nash equilibrium; such
as minimally altruistic Nash equilibrium (see Karagozoglu et al., 2013), perfect equilibrium (see
Carbonell-Nicolau and McLean, 2014), and strong Berge equilibrium (see Keskin and Saglam, 2014).

10Note that a complete lattice X is compact in its interval topology which is the topology generated
by taking the closed intervals, [y, z] = {x ∈ X : y ≤ x ≤ z} with y, z ∈ X as a subbasis of closed
sets (see Birkhoff (1967)).

11A strategy profile is said to be serially undominated if it survives the iterated elimination of
strictly dominated strategies.
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Proposition 4.1. Consider a game with strategic complementarities Γ and an orga-
nization O. Assume that for every i ∈ N and every S ∈ S O that includes i: either
(i) ui is non-decreasing in x−S, or (ii) ui is non-increasing in x−S. Then there exists
an O-organizational Nash equilibrium for this game.

Proof. Assume case (i) above and consider the largest Nash equilibrium of the game,
denoted by x∗. As we know from Milgrom and Shannon (1994), x∗ is also the largest
serially undominated strategy profile in this game. Consider any coalition S ∈ P1 and
the corresponding reduced game ΓS|x∗−S

= (S, (Xi)i∈S, (vi)i∈S). By definition, this is
a reduced game with strategic complementarities in which each vi is non-decreasing
in x−i. We also know that x∗S is a Nash equilibrium for ΓS|x∗−S

; which means that x∗S
would survive the iterated elimination of strictly dominated strategies in the reduced
game. As a matter of fact, x∗S turns out to be the largest serially undominated strategy
profile in this game.12 It then follows from Milgrom and Shannon (1994) that x∗S is the
largest Nash equilibrium for the reduced game. Applying Theorem A2 from Milgrom
and Roberts (1996), each subcoalition C ⊂ S prefers playing x∗C to any other strategy
profile in the reduced game. Their theorem surely applies to the coalition S itself.
Accordingly, for any Nash equilibrium yS of the reduced game ΓS|x∗−S

, we have for
every i ∈ S: ui(yS, x

∗
−S) ≤ ui(x

∗
S). Therefore, x∗S is a coalitional best response for S.

Since S is arbitrarily chosen, for every coalition S ∈ P1: (x∗S, ·) ∈ ROS (x∗).
Now, consider any coalition S ′ ∈ P2 and the corresponding reduced game ΓS′ |x∗−S′

.

Noting that OS′∈P2 is the suborganization for this coalition and considering the argu-
ments above, we know that x∗S′ is an OS′∈P2-organizational Nash equilibrium of this
game. This follows because for every member i ∈ S ′: (x∗i , ·) ∈ ROi (x∗) as well as for
every active subcoalition C ′ ⊂ S ′ in this suborganization: (x∗C′ , ·) ∈ ROC′(x∗). Apply-
ing Theorem A2 from Milgrom and Roberts (1996) once again, we conclude that the
coalition S ′ prefers playing x∗S′ to any other ONE in the reduced game ΓS′ |x∗−S′

. It

similarly follows that for every coalition S ′ ∈ P2: (x∗S′ , ·) ∈ ROS′(x∗).
Finally, it recursively follows that for every coalition S ′′ ∈ S O: (x∗S′′ , ·) ∈ ROS′′(x∗).

Hence, x∗ ∈ RO(x∗), which in turn implies that x∗ ∈ ONE(Γ).
Arguments for case (ii) similarly follow.

In the following normal form game given in Table 6, we can demonstrate how the
existence result works:

Table 6

x3

y1 3, 4, 0 5, 5, 0
x1 4, 4, 1 5, 3, 3

x2 y2

y3

y1 0, 1, 1 2, 2, 2
x1 1, 1, 0 1, 0, 2

x2 y2

12The reader is referred to the Appendix for the proof of this claim.
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This example is a game with strategic complementarities since each utility function
ui is quasi-supermodular in xi and has the single crossing property in (xi, x−i). Fur-
thermore, u1 is non-decreasing in x2 and u2 is non-decreasing in x1. Also note that
u3 is not monotone in x1 or x2, since (x1, y2, x3) yields the highest utility for Player 3.
Accordingly, this normal form game satisfies the conditions of our existence result
for the organization O∗ = {P0, {{1, 2}, {3}}}, but not for the other possible organi-
zations. Neither does it satisfy the conditions for the existence of CPNE provided
by Milgrom and Roberts (1996). There are two Nash equilibria: (x1, x2, x3) and
(y1, y2, y3). Now, analyzing the set of O∗-organizational Nash equilibria, we see that
the coalition {1, 2} deviates from (x1, x2, x3) to (y1, y2) when Player 3 sticks to x3.
Noting that they would not deviate from the other Nash equilibrium, we find that
(y1, y2, y3) is the unique ONE for this game. We also know, meanwhile, that no CPNE
exists, because (i) the coalition {1, 2} still makes the aforementioned deviation and
(ii) the coalition {1, 3} makes a self-enforcing deviation from (y1, y2, y3) to (x1, x3)
when Player 2 sticks to y2.

Table 7

x3

y1 3, 3, 2, 0 3, 3, 0, 2
y4 x1 3, 3, 2, 0 3, 3, 2, 0

x2 y2

y3

y1 1, 0, 1, 1 2, 2, 1, 2
x1 0, 0, 1, 1 0, 1, 1, 1

x2 y2

x3

y1 2, 5, 1, 1 5, 5, 1, 0
x4 x1 4, 4, 1, 1 5, 2, 1, 1

x2 y2

y3

y1 4, 3, 0, 0 5, 5, 0, 0
x1 3, 3, 0, 0 3, 4, 0, 0

x2 y2

As another example satisfying the conditions of Proposition 4.1, consider the four-
player normal form game given in Table 7. Once again, u1 is non-decreasing in x2 and
u2 is non-decreasing in x1. We can also see that neither u3 nor u4 is monotone in either
of the other players’ strategies. This game has two Nash equilibria: (x1, x2, x3, x4)
and (y1, y2, y3, y4). Considering the organization O∗ above, we note that the coalition
{1,2} deviates from (x1, x2, x3, x4) to (y1, y2) when Players 3 and 4 stick to (x3, x4),
and we find that (y1, y2, y3, y4) is the unique ONE for this game. Now, if we consider a
greater organization by adding P2 = {{1, 2, 3}, {4}} into the existing organization O∗,
we see that the unique ONE ceases to exist. This is because the coalition {1, 2, 3}
deviates from (y1, y2, y3, y4) to (x1, x2, x3) when Player 4 sticks to y4. As we see in
this particular example, adding a new coalition for which the utility functions of its
members do not have a monotonicity relation as described in Proposition 4.1 might
lead to the non-existence of equilibrium.

Another interesting note regarding this example is that if one considers the or-
ganization {P0, {{1, 2, 3}, {4}}}, then the weakly Pareto optimal Nash equilibrium
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(x1, x2, x3, x4) is realized as the unique ONE. Accordingly, we can claim that removing
small coalitions from an organization or replacing small coalitions in an organization
with larger coalitions might turn out to be socially beneficial.

4.2 A Monotonicity Property

We start with a nice result indicating that the introduced refinement structures follow
in a monotonic fashion. In a normal form game, given two organizations O and O′,
we say that O is greater than O′ if (i) P ∈ O′ implies that P ∈ O and (ii)

[
P ′ ∈ O

and P ′ /∈ O′
]

implies that P ′ is coarser than the coarsest partition in O′. We now
show that the equilibrium set is more refined for greater organizations.13

Proposition 4.2. For any normal form game Γ, if an organization O is greater than
another organization O′, then

ONEO(Γ) ⊂ ONEO
′
(Γ).

Proof. Take any x∗ ∈ ONEO(Γ). By definition, x∗ ∈ RO(x∗). This implies that
for every S ∈ S O: (x∗S, ·) ∈ ROS (x∗). Since O is greater than O′, we know that
S O′ ⊂ S O and that for every S ∈ S O \ S O′ : @S ′ ∈ S O′ such that S ⊂ S ′.
Accordingly, for every S ′ ∈ S O′ : (x∗S′ , ·) ∈ RO

′

S′ (x
∗). Therefore, x∗ ∈ RO

′
(x∗); i.e.,

x∗ ∈ ONEO
′
(Γ). It thus follows that ONEO(Γ) ⊂ ONEO

′
(Γ).

This monotonicity property leads to the following observation.

Corollary 4.1. Consider a normal form game Γ that possesses a Nash equilibrium.
Take any increasing sequence of organizations O1,O2, . . . ,Ot such that O1 = {P0}
and for any i ∈ {1, . . . , t− 1}: Oi+1 is greater than Oi. We have

ONEOi+1(Γ) ⊂ ONEOi(Γ)

for any i ∈ {1, . . . , t− 1}. In addition, the sequence has a maximum organization for
which the set of ONE is non-empty.

In normal form games with multiple equilibria, one can form the second layer of
an organization in order to decrease the number of equilibria. If the multiplicity is
still preserved, one can continue with the upper layers of the organization until the
organization is about to become “too big” such that it will fail to take an action (or,
reach an equilibrium). The corollary above indicates that the formation process stops
at a unique point before an ONE ceases to exist. The following example demonstrates.

13It is important here that we do not compare any particular partitions when comparing two
organizations. Our definition of “being greater” indicates that an organization is greater than
another if the former completely preserves the structure of the latter and additionally includes
coarser partitions. Alternative definitions may yield different results.
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Example 4.1. Consider the five-player normal form game given in Table 8 for which
there are three Nash equilibria: (x1, x2, y3, y4, x5), (y1, y2, x3, y4, x5), (y1, y2, y3, x4, x5).
We now set

P0 = {{1}, {2}, {3}, {4}, {5}},
P1 = {{1, 2}, {3}, {4}, {5}},
P2 = {{1, 2, 3}, {4}, {5}}, and

P3 = {{1, 2, 3, 4}, {5}}.

Table 8

x3

y1 1, 0, 1, 0, 0 0, 1, 1, 0, 0

y4 x1 0, 1, 1, 0, 0 1, 0, 1, 0, 0

x2 y2

y3

y1 1, 0, 0, 1, 0 0, 1, 0, 1, 0

x1 0, 1, 0, 1, 0 1, 0, 0, 1, 0

x2 y2

x3

y1 1, 0, 0, 1, 0 0, 1, 0, 1, 0

y5 x4 x1 0, 1, 0, 1, 2 1, 0, 0, 1, 0

x2 y2

y3

y1 1, 0, 1, 0, 0 0, 1, 1, 0, 0

x1 0, 1, 1, 0, 0 1, 0, 1, 0, 0

x2 y2

x3

y1 0, 0, 0, 1, 1 1, 1, 1, 1, 1

y4 x1 2, 2, 0, 0, 1 0, 0, 0, 1, 1

x2 y2

y3

y1 0, 0, 1, 0, 1 1, 1, 0, 1, 1

x1 3, 3, 3, 3, 1 0, 0, 1, 0, 1

x2 y2

x3

y1 0, 0, 1, 0, 1 2, 2, 0, 0, 1

x5 x4 x1 4, 4, 4, 4, 1 0, 0, 1, 0, 1

x2 y2

y3

y1 0, 0, 0, 1, 1 2, 2, 2, 2, 1

x1 1, 1, 0, 0, 1 0, 0, 0, 1, 1

x2 y2

First consider O1 = {P0}. Here, the set of ONE surely coincides with the set of Nash
equilibria. Next, consider O2 = {P0, P1}. We see that the coalition {1, 2} deviates
to (x1, x2) when Players 3, 4, and 5 stick to (x3, y4, x5). Since there is no further
deviation, (y1, y2, x3, y4, x5) is not coalitionally stable in the sense of ONE. And since
there is no other deviation, the remaining two Nash equilibria turn out to be ONE
for this game:

(x1, x2, y3, y4, x5), (y1, y2, y3, x4, x5).

If we consider O3 = {P0, P1, P2}, we see that the coalition {1, 2, 3} deviates to
(x1, x2, x3) when Players 4 and 5 stick to (x4, x5). Since there is no further devi-
ation, (y1, y2, y3, x4, x5) is not coalitionally stable in the sense of ONE. And since
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there is no other deviation, there exists a unique ONE:

(x1, x2, y3, y4, x5).

Finally, when we consider O4 = {P0, P1, P2, P3}, the coalition {1, 2, 3, 4} deviates to
(x1, x2, x3, x4) when Player 5 sticks to x5. Since there is no further deviation, the set
of ONE turns out to be empty.

It is also worth noting that out of all of the deviations above, the five-player
normal form game has neither a SNE nor a CPNE.

The following observation utilizes a different perspective.

Corollary 4.2. Consider a normal form game Γ that possesses a Nash equilibrium.
Take any organization Ō and any decreasing sequence of organizations O1,O2, . . . ,Ot
such that O1 = Ō, Ot = {P0}, and for any i ∈ {2, . . . , t}: Oi is greater than Oi−1.
We have

ONEOi−1(Γ) ⊂ ONEOi(Γ)

for any i ∈ {2, . . . , t}. In addition, the sequence has a maximum organization for
which the set of ONE is non-empty.

In some normal form games, there may exist a “too big” organization that will
fail to take an action (or, reach an equilibrium). In such cases, it might help to
dissolve all of the coalitions in the final layer of the organization and play the game
as a smaller organization. The corollary above indicates that the dissolving process
stops at a unique point for which the normal form game possesses an ONE.

5 Concluding Remarks

We have studied cases in which some coalitions are not or cannot be formed. Tak-
ing the organizational structures as given, we have introduced a refinement of Nash
equilibrium. We have showed the existence of equilibria in certain classes of games.
Moreover, through remarks and examples, we have further analyzed how our notion
refines the set of Nash equilibria.

Organizational refinements can lead to many interesting and fruitful questions.
First, one can study the robustness of equilibrium. More precisely, some Nash equi-
libria may remain to be an equilibrium for any given organization, whereas some
others may fail to be an equilibrium as soon as any organization is formed. One can
therefore consider the former to be the most robust Nash equilibrium, and the latter
to be the least robust. In that sense, any two Nash equilibria can be compared in
terms of robustness to organizational deviations. Such an analysis may also provide
general insights for certain classes of games.

Second, one can study the endogenous formation of organizations. There can
be several methods for this exercise. Either (i) players may have pre-defined pref-
erences over the set of coalitions/organizations that somehow induce organizational
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structures; or (ii) as the set of equilibria is now known for any given organization,
players may form coalitions/organizations strategically by opting for organizational
structures that yield the best set of equilibria. As an example, recall the game given
in Table 4. Either of the three Nash equilibria can be captured by a certain or-
ganization. Among the three Nash equilibria, (x1, z2, y3) is Pareto optimal for the
coalition {1, 2}. And Players 1 and 2 are able to reach there by forming the two-player
coalition, thereby blocking the formation of {1, 3} and {2, 3}.

Third, one can analyze policy implications. Notice that the formation of coali-
tional/organizational structures does not have to be strategic (as described above).
For instance, a social planner may be interested in forming a socially optimal orga-
nization. As an example, recall the game given in Table 1. Given the existence of an
organization for which the unique ONE strictly Pareto dominates the unique CPNE,
a social planner would prefer to forbid the formation of {1, 2}.
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Appendix

We first note that for a player i ∈ N , a strategy xi ∈ Xi is strictly dominated if there
exists another strategy x′i ∈ Xi such that for every x−i ∈ X−i:

ui(x
′
i, x−i) > ui(xi, x−i).

The following lemma is used in the proof of Proposition 4.1.

Lemma 5.1. In a normal form game Γ, let x∗ be a Nash equilibrium which is also
the largest serially undominated strategy profile. Then x∗S turns out to be the largest
serially undominated strategy profile of the reduced game ΓS|x∗−S

for any coalition
S ⊂ N .

Proof. Take any coalition S ⊂ N . Note that x∗S is a Nash equilibrium of the reduced
game ΓS|x∗−S

. Thus, it is a serially undominated strategy profile.
We now describe a particular procedure of iterated elimination of strictly dom-

inated strategies: We start with Γ0 ≡ Γ. At stage 1, only Player 1’s dominated
strategies are eliminated. The resulting game is labeled as Γ1. At stage 2, only
Player 2’s dominated strategies are eliminated. The resulting game is labeled as Γ2.
After each player has one elimination stage, we reach Γn. From stage n+ 1 onwards,
the same procedure follows. More generally, for any k ∈ N0, only Player i’s dominated
strategies are eliminated in stage i+ kn. The procedure continues until Γ∞.

Without loss of generality, assume that Player 1 is a member of S and that x1 ∈ X1

is strictly dominated by some x′1 ∈ X1. In the reduced game ΓS|x∗−S
, we have

u1(x′1, xS\{1}, x
∗
−S) > u1(x1, xS\{1}, x

∗
−S)

for every xS\{1} ∈ XS\{1}. This shows that x1 remains to be strictly dominated in the
reduced game.

Now, we start with Γ0
S ≡ ΓS|x∗−S

. At stage 1, only Player 1’s dominated strategies

in Γ0 are eliminated. The resulting game is labeled as Γ1
S. Notice that Player 1 may

have additional dominated strategies in the reduced game, but even so, we do not
eliminate those at this stage. Notice further that Γ1

S is a reduced game of Γ1. For the
next stage, if Player 2 is a member of S, then only Player 2’s dominated strategies in
Γ1 are eliminated and the resulting game is labeled as Γ2

S; but if otherwise, then we
simply set Γ2

S = Γ1
S. Notice that, in either case, Γ2

S becomes a reduced game of Γ2.
This procedure eventually yields a reduced game Γ∞S of Γ∞.

Given a player i ∈ S, we know that whichever strategy yi � x∗i is eliminated in
some stage of the iterated elimination of strictly dominated strategies for Γ, the same
strategy should be eliminated in the corresponding stage of the iterated elimination
of strictly dominated strategies for ΓS|x∗−S

. Also knowing that x∗S is serially undomi-
nated, x∗S turns out to be the largest serially undominated strategy profile.
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