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SOME UNIFIED RESULTS FOR CLASSICAL AND MONOTONE
MARKOV CHAIN THEORY

TAKASHI KAMIHIGASHI AND JOHN STACHURSKI

ABSTRACT. This paper expedites integration of two strands of the literature on
stability of Markov chains: conventional, total variation based results and more re-
cent order-theoretic results. First we introduce a complete metric on the set of Borel
probability measures based on “partial” stochastic dominance. We then show that
many conventional results framed in the setting of total variation distance have
natural generalizations to the partially ordered setting when this metric is adopted.
The conventional results can be recovered as a special case.
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1. INTRODUCTION

Many classical results in Markov chain theory are based on fundamental connec-
tions between total variation distance, Markov chains and couplings, as illumi-
nated by Wolfgang Doeblin [4, 5, 6] and many subsequent authors (for overviews
see, e.g., [7, 32, 18, 23, 27, 21]). One foundation stone for this theory is the simple
coupling inequality

(1) ‖µ− ν‖ 6 2P{X 6= Y},

where µ and ν are probability measures, ‖ · ‖ is total variation distance and X and
Y are random elements with distributions µ and ν respectively. This inequality can
be applied directly bound the distance between the time t distributions µt and νt

of Markov chains {Xt} and {Yt}with common laws of motion. Moreover, Doeblin
showed that (1) can easily be improved to the more significant bound

(2) ‖µt − νt‖ 6 2P{Xj 6= Yj for any j 6 t}.
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(See, e.g., [4, 33, 22, 18, 32].) Even when the state space is uncountable, the right
hand side of (2) can often be shown to converge to zero by manipulating the joint
distribution of (Xj, Yj) to increase the chance of a meeting. The work of Deoblin
was built upon by Doob [8], Harris [13], Orey [24], Pitman [25] and many other
authors.

While these and related convergence results based around total variation distance
(see, e.g., chapters 13–16 of [21]) have clear and enduring importance, there are
fields and applications where their assumptions feel excessive. To give an exam-
ple from the field of economics, consider a model of household wealth with state
spaceR+ (see, e.g., [28]). On one hand, bounding the right hand side of (2) usually
requires mixing assumptions framed in terms of irreducibility that have no natural
economic interpretation. On the other hand, for this kind of application, it is natu-
ral to consider mixing conditions that are framed in terms of order. For example,
do initially poor households become richer than initially rich households over a
given time horizon with positive probability? Is the converse also true?

Recognizing the value of order theoretic treatments for applications such as the
one described above, many authors have studied the stability of Markov chains
and Markov processes using order theoretic methods. Examples include [9, 34, 1,
19, 19, 15, 30]. It should be noted that none of these results deliver total variation
convergence, and indeed their assumptions are insufficient to do so. Rather, they
deliver weaker modes of convergence.

In this paper we develop order theoretic results that recover several existing find-
ings from both the conventional and monotone Markov chain literature as spe-
cial cases, as well as generating several new implications. The starting point is
introduction of what is shown to be a complete metric γ on the set of Borel prob-
ability measures. This metric can be thought of as a natural extension of total
variation distance. We then show that many fundamental concepts from conven-
tional Markov chain theory using total variation distance and coupling have direct
generalizations to the partially ordered setting when this new metric is adopted.

To give one example, when the Markov kernel is monotone, we can construct ver-
sions of {Xt} and {Yt} such that

(3) γ(µt, νt) 6 P{Xj � Yj for any j 6 t}+P{Yj � Xj for any j 6 t}.
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Here γ is the metric discussed above and � is a partial order on the state space.
The right hand side of (3) is no larger than the right hand side of (2) and can be
much smaller. To give some feeling for how (3) can be used in applications, con-
sider again a model of household wealth, where {Xt} and {Yt} track the wealth
of two households taking values in R+. Let � be the usual order 6. Intuitively, if
dynamics are such that initially rich households will become poorer than initially
poor households with a sufficiently long sequence of bad luck, then the right hand
side of (3) will converge to zero in t.

One interesting facet of the results in this paper is that, in addition to encompassing
some of the more familiar results in monotone Markov chain theory, they also en-
compass significant elements of the traditional theory. In every result we present,
a standard result from the classical theory can be recovered by setting the partial
order to equality. For example, if we take � to be equality (x � y iff x = y), then γ

reduces to ordinary total variation (see below) and (3) reduces to (2).

After preliminaries, we begin with a discussion of “ordered” affinity, which gen-
eralizes the usual notion of affinity for measures. The concept of ordered affinity
is then used to define the total ordered variation metric. Throughout the paper,
longer proofs are deferred to the appendix. The conclusion contains many sugges-
tions for future work.

2. PRELIMINARIES

Let S be a Polish (i.e., separable and completely metrizable) space, let O be the
open sets, let C be the closed sets and let B be the Borel sets. Let Ms denote the
set of all finite signed measures on (S,B). In other words, Ms is all countably
additive set functions from B to R. Let M and P be the finite measures and
probability measures in Ms respectively. If κ and λ are in Ms, then κ 6 λ means
that κ(B) 6 λ(B) for all B ∈ B.

Let bS be the set of all bounded B-measurable functions from S into R. If h ∈ bS
and λ ∈Ms, then λ(h) :=

∫
h dλ. The total variation norm of λ ∈Ms is

‖λ‖ := sup
h∈H
|λ(h)|.

For f and g in bS, the statement f 6 g means that f (x) 6 g(x) for all x ∈ S. Let

H := {h ∈ bS : −1 6 h 6 1} and H0 := {h ∈ bS : 0 6 h 6 1}.
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Given µ and ν in P , a random element (X, Y) taking values in S× S and defined
on a common probability space (Ω, F ,P) is called a coupling of (µ, ν) if µ = P ◦
X−1 and ν = P ◦ Y−1 (i.e., if the distribution of (X, Y) has marginals µ and ν

respectively—see, e.g., [18] or [32]). The set of all couplings of (µ, ν) is denoted
below by C (µ, ν).

A sequence {µn} ⊂ P converges to µ ∈ P weakly if µn(h) → µ(h) as n → ∞ for
all continuous h ∈ bS. In this case we write µn

w→ µ.

Given µ and ν ∈M , their measure theoretic infimum µ∧ ν is the largest element of
M dominated by both µ and ν. It can be defined by taking f and g to be densities
of µ and ν respectively under the dominating measure λ := µ + ν and defining
µ ∧ ν by (µ ∧ ν)(B) :=

∫
B min{ f (x), g(x)}λ(dx) for all B ∈ B. The total variation

distance between µ and ν is related to µ ∧ ν via ‖µ− ν‖ = ‖µ‖+ ‖ν‖ − 2‖µ ∧ ν‖.
See, for example, [26]. For probability measures we also have

(4) sup
B∈B
{µ(B)− ν(B)} = sup

B∈B
|µ(B)− ν(B)| = ‖µ− ν‖/2.

The affinity between two measures µ, ν in M is the value

α(µ, ν) := (µ ∧ ν)(S).

The following properties are elementary:

Lemma 2.1. For all (µ, ν) ∈M ×M we have

(a) 0 6 α(µ, ν) 6 min{µ(S), ν(S)}
(b) α(µ, ν) = µ(S) = ν(S) if and only if µ = ν.

(c) α(cµ, cν) = cα(µ, ν) for all c > 0.

There are several other common representations of affinity. For example, when µ

and ν are both probability measures, we have

(5) α(µ, ν) = 1− sup
B∈B
|µ(B)− ν(B)| = max

(X,Y)∈C (µ,ν)
P{X = Y}.

(See, e.g., [26, 18].) The second equality in (5) states that, if (X, Y) ∈ C (µ, ν), then
P{X = Y} 6 α(µ, ν), and, moreover, there exists a (X, Y) ∈ C (µ, ν) such that
equality is attained. Any such coupling is called a maximal or gamma coupling. See
theorem 5.2 of [18]. From (4) and (5) we obtain

(6) ‖µ− ν‖ = 2(1− α(µ, ν)).
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3. ORDERED AFFINITY

We next introduce a generalization of affinity when S has a partial order. We in-
vestigate its properties in detail, since both our metric and the stability theory pre-
sented below rely on this concept.

3.1. Preliminaries. As before, let S be a Polish space. A closed partial order � on
S is a partial order � such that its graph

G := {(x, y) ∈ S× S : x � y}

is closed in the product topology. In the sequel, a partially ordered Polish space is any
such pair (S,�), where S is nonempty and Polish, and � is a closed partial order
on S. When no confusion arises, we denote it simply by S.

For such a space S, we call I ⊂ S increasing if x ∈ I and x � y implies y ∈ I. We
call h : S → R increasing if x � y implies h(x) 6 h(y). We let iB, iO and iC denote
the increasing Borel, open and closed sets respectively, while ibS is the increasing
functions in bS. In addition,

• iH := H ∩ ibS = {h ∈ ibS : −1 6 h 6 1} and

• iH0 := H0 ∩ ibS = {h ∈ ibS : 0 6 h 6 1}.

If B ∈ B, then i(B) is all y ∈ S such that x � y for some x ∈ B, while d(B) is
all y ∈ S such that y � x for some x ∈ B. Given µ and ν in M , we say that µ is
stochastically dominated by ν and write µ �sd ν if µ(S) = ν(S) and µ(I) 6 ν(I) for
all I ∈ iB. We can equivalently say that µ(S) = ν(S) and µ(h) 6 ν(h) for all h in
either iH or iH0.

Remark 3.1. Since S is a partially ordered Polish space, for any µ, ν in P we have
µ = ν whenever µ(C) = ν(C) for all C ∈ iC, or, equivalently, µ(h) = ν(h) for all
continuous h ∈ ibS. See [16, lemma 1]. One implication is that µ �sd ν and ν �sd µ

together imply µ = ν.

Remark 3.2. We consider several alternative specifications for the partial order �
on S. One important special case is when � is equality, so that x � y if and only if
x = y. Then iB = B, ibS = bS, iH = H, iH0 = H0 and µ �sd ν if and only if µ = ν.
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Lemma 3.1. If λ ∈Ms, then supI∈iB λ(I) = suph∈iH0
λ(h) and

(7) sup
h∈iH
|λ(h)| = max

{
sup
h∈iH

λ(h), sup
h∈iH

(−λ)(h)

}
.

One can easily check that

(8) λ ∈Ms and λ(S) = 0 =⇒ sup
h∈iH

λ(h) = 2 sup
h∈iH0

λ(h).

3.2. Definition of Ordered Affinity. For each pair (µ, ν) ∈M ×M , let

Φ(µ, ν) := {(µ′, ν′) ∈M ×M : µ′ 6 µ, ν′ 6 ν, µ′ �sd ν′}.

We call Φ(µ, ν) the set of ordered component pairs for (µ, ν). Here “ordered” means
ordered by stochastic dominance. The set of ordered component pairs is always
nonempty. For example, (µ ∧ ν, µ ∧ ν) is an element of Φ(µ, ν). In the case where
µ �sd ν we have (µ, ν) ∈ Φ(µ, ν).

We call an ordered component pair (µ′, ν′) ∈ Φ(µ, ν) a maximal ordered component
pair if it has greater mass than all others; that is, if

µ′′(S) 6 µ′(S) for all (µ′′, ν′′) ∈ Φ(µ, ν).

(We can restate this by replacing µ′(S) and µ′′(S) with ν′(S) and ν′′(S) respectively,
since the mass of ordered component pairs is equal by the definition of stochastic
dominance.) We let Φ∗(µ, ν) denote the set of maximal ordered component pairs
for (µ, ν). Thus, if

(9) αO(µ, ν) := sup{µ′(S) : (µ′, ν′) ∈ Φ(µ, ν)}.

then
Φ∗(µ, ν) = {(µ′, ν′) ∈ Φ(µ, ν) : µ′(S) = αO(µ, ν)}.

Using the Polish space assumption, one can show that maximal ordered compo-
nent pairs always exist:

Proposition 3.1. The set Φ∗(µ, ν) is nonempty for all (µ, ν) ∈M ×M .

Proof. Fix (µ, ν) ∈ M ×M and let s := αO(µ, ν). From the definition, we can
take sequences {µ′n} and {ν′n} in M such that (µ′n, ν′n) ∈ Φ(µ, ν) for all n ∈ N
and µ′n(S) ↑ s. Since µ′n 6 µ and ν′n 6 ν for all n ∈ N, Prohorov’s theorem [10,
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theorem 11.5.4] implies that these sequences have convergent subsequences with
µ′nk

w→ µ′ and ν′nk

w→ ν′ for some µ′, ν′ ∈ M . We claim that (µ′, ν′) is a maximal
ordered component pair.

Using µ′n 6 µ and ν′n 6 ν for all n ∈ N and theorem 1.5.5 of [14], we can strengthen
weak convergence setwise convergence over B. It follows that, for any B ∈ B,
we have µ′(B) 6 µ(B) and ν′(B) 6 ν(B). Moreover, the definition of Φ(µ, ν)

and stochastic dominance imply that µ′n(S) = ν′n(S) for all n ∈ N, and therefore
µ′(S) = ν′(S). Also, for any I ∈ iB, the fact that µ′n(I) 6 ν′n(I) for all n ∈ N gives
us µ′(I) 6 ν′(I). Thus, µ′ �sd ν′. Finally, µ′(S) = s, since µ′n(S) ↑ s. Hence (µ′, ν′)

lies in Φ∗(µ, ν). �

The value αO(µ, ν) defined in (9) gives the mass of the maximal ordered component
pair. We call it the ordered affinity from µ to ν. On an intuitive level, we can think
of αO(µ, ν) as the “degree” to which µ is dominated by ν in the sense of stochastic
dominance. Since the pair (µ ∧ ν, µ ∧ ν) is an ordered component pair for (µ, ν),
we always have

(10) 0 6 α(µ, ν) 6 αO(µ, ν),

where α(µ, ν) is the standard affinity defined in section 2. In fact αO(µ, ν) general-
izes the standard the notion of affinity by extending it to arbitrary partial orders,
as shown in the next lemma.

Lemma 3.2. If � is equality, then αO = α on M ×M .

Proof. Fix (µ, ν) ∈ M ×M and let � be equality (x � y iff x = y). Then �sd is
also equality, from which it follows that the supremum in (9) is attained by µ ∧ ν.
Hence αO(µ, ν) = α(µ, ν). �

3.3. Properties of Ordered Affinity. Let’s list some elementary properties of αO.
The following list should be compared with lemma 2.1. It shows that analogous
results hold for αO as hold for α. (Lemma 2.1 is in fact a special case of lemma 3.3
with the partial order taken to be equality.)

Lemma 3.3. For all (µ, ν) ∈M ×M , we have

(a) 0 6 αO(µ, ν) 6 min{µ(S), ν(S)},
(b) αO(µ, ν) = µ(S) = ν(S) if and only if µ �sd ν, and
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(c) cαO(µ, ν) = αO(cµ, cν) whenever c > 0.

Proof. Fix (µ, ν) ∈ M ×M . Claim (a) follows directly from the definitions. Re-
garding claim (b), suppose first that µ �sd ν. Then (µ, ν) ∈ Φ(µ, ν) and hence
αO(µ, ν) = µ(S). Conversely, if αO(µ, ν) = µ(S), then, since the only component
µ′ 6 µ with µ′(S) = µ(S) is µ itself, we must have (µ, ν′) ∈ Φ(µ, ν′) for some
ν′ 6 ν with µ �sd ν′. But then µ(I) 6 ν′(I) 6 ν(I) for any I ∈ iB. Hence µ �sd ν.

Claim (c) is trivial if c = 0, so suppose instead that c > 0. Fix (µ′, ν′) ∈ Φ(µ, ν)

such that αO(µ, ν) = µ′(S). It is clear that (cµ′, cν′) ∈ Φ(cµ, cν), implying that

(11) cαO(µ, ν) = cµ′(S) 6 αO(cµ, cν).

For reverse inequality, we can apply (11) again to get

αO(cµ, cν) = c(1/c)αO(cµ, cν) 6 cαO(µ, ν). �

3.4. Equivalent Representations. In (5) we noted that the affinity between two
measures has several alternative representations. In our setting these results gen-
eralize as follows:

Theorem 3.1. For all (µ, ν) ∈P ×P , we have

(12) αO(µ, ν) = 1− sup
I∈iB
{µ(I)− ν(I)} = max

(X,Y)∈C (µ,ν)
P{X � Y}.

Evidently (5) is a special case of (12) because (12) reduces to (5) when � is set to
equality. For example, when � is equality,

sup
I∈iB
{µ(I)− ν(I)} = sup

B∈B
{µ(B)− ν(B)} = sup

B∈B
|µ(B)− ν(B)|.

where the last step is from (4). Note also that, as shown in the proof of theorem 3.1,
the supremum can also be written in terms of the open increasing sets iO or the
closed decreasing sets dC. In particular,

sup
I∈iB
{µ(I)− ν(I)} = sup

I∈iO
{µ(I)− ν(I)} = sup

D∈dC
{ν(D)− µ(D)}.

One of the assertions of theorem 3.1 is the existence of a coupling (X, Y) ∈ C (µ, ν)

attaining P{X � Y} = αO(µ, ν). Let us refer to any such coupling as an order
maximal coupling for (µ, ν).
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Example 3.1. Let δz be the dirac probability concentrated on z. For (x, y) ∈ S× S,
We have

αO(δx, δy) = 1{x � y} = 1G(x, y),

as can easily be verified from the definition or either of the alternative representa-
tions in (12). The map (x, y) 7→ 1G(x, y) is measurable due to the Polish assump-
tion. As a result, for any (X, Y) ∈ C (µ, ν) we have

E αO(δX, δY) = P{X � Y} 6 αO(µ, ν),

with equality when (X, Y) is an order maximal coupling.

4. TOTAL ORDERED VARIATION

Consider the function on P ×P given by

(13) γ(µ, ν) := 2− αO(µ, ν)− αO(ν, µ).

We call γ(µ, ν) the total ordered variation distance between µ and ν. The natural
comparison is with (6), which renders the same value if αO is replaced by α. In
particular, when� is equality, ordered affinity reduces to affinity, and total ordered
variation distance reduces to total variation distance.

Since ordered affinities dominate affinities (see (10)), we have

γ(µ, ν) 6 ‖µ− ν‖ for all (µ, ν) ∈P ×P .

Other, equivalent, representations are available. For example, in view of (12), for
any (µ, ν) ∈P ×P we have

(14) γ(µ, ν) = sup
I∈iB

(µ− ν)(I) + sup
I∈iB

(ν− µ)(I),

By combining lemma 3.1 and (8), we also have

(15) 2γ(µ, ν) = sup
h∈iH

(µ− ν)(h) + sup
h∈iH

(ν− µ)(h).

It is straightforward to show that

(16) sup
I∈iB
|µ(I)− ν(I)| 6 γ(µ, ν) and sup

D∈dB
|µ(D)− ν(D)| 6 γ(µ, ν).

Lemma 4.1. The function γ is a metric on P .
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Proof. The claim that γ is a metric follows in a straightforward way from the def-
inition or the alternative representation (14). For example, the triangle inequal-
ity is easy to verify using (14). Also, γ(µ, ν) = 0 implies µ = ν by (14) and re-
mark 3.1. �

4.1. Connection to Other Modes of Convergence. As well as total variation, the
metric γ is closely related to the so-called Bhattacharya metric, which is given by

(17) β(µ, ν) := sup
h∈iH
|µ(h)− ν(h)|.

See [1, 2]. (In [2] the metric is defined by taking the supremum over iH0 rather than
iH, but the two definitions differ only by a positive scalar.) The Bhattacharya met-
ric can be thought of as an alternative way to generalize total variation distance,
in the sense that, like γ, the metric β reduces to total variation distance when the
partial order � is equality (since iH equals H in this setting). From (7) we have

(18)
1
2

[
sup
h∈iH

λ(h) + sup
h∈iH

(−λ)(h)

]
6 sup

h∈iH
|λ(h)| 6 sup

h∈iH
λ(h) + sup

h∈iH
(−λ)(h),

and from this and (15) we have

(19) γ(µ, ν) 6 β(µ, ν) 6 2γ(µ, ν).

Hence β and γ are equivalent metrics.

The metric γ is also connected to the Wasserstein metric [11, 12]. If ρ metrizes the
topology on S, then the Wasserstein distance between probability measures µ and
ν is

w(µ, ν) := inf
(X,Y)∈C (µ,ν)

E ρ(X, Y).

The total ordered variation metric can be compared as follows. Consider the ”di-
rected semimetric” ρ̂(x, y) := 1{x � y}. In view of (12) we have

γ(µ, ν) = inf
(X,Y)∈C (µ,ν)

E ρ̂(X, Y) + inf
(X,Y)∈C (µ,ν)

E ρ̂(Y, X).

Thus, γ(µ, ν) is found by summing two partial, “directed Wasserstein deviations.”
Summing the two directed differences from opposite directions yields a metric.

Finally, here is one useful connection between γ and weak convergence:

Proposition 4.1. If {µn} ⊂P is tight and γ(µn, µ)→ 0 for some µ ∈P , then µn
w→ µ.
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Proof. Let {µn} and µ satisfy the conditions of the proposition. Take any subse-
quence of {µn} and observe that by Prohorov’s theorem, this subsequence has a
subsubsequence converging weakly to some ν ∈ P . Along this subsubsequence,
for any continuous h ∈ ibS we have both µn(h) → µ(h) and µn(h) → ν(h). This is
sufficient for ν = µ by remark 3.1. Thus, every subsequence of {µn} has a subsub-
sequence converging weakly to µ, and hence so does the entire sequence. �

4.2. Completeness. To obtain completeness of (P , γ), we adopt the following ad-
ditional assumption.

Assumption 4.1. If K ⊂ S is compact, then i(K) ∩ d(K) is also compact.

Assumption 4.1 is satisfied if, say, compact sets are order bounded (i.e., lie in or-
der intervals) and order intervals are compact. For example, Rn with the usual
pointwise partial order has this property.

Theorem 4.1. If assumption 4.1 holds, then (P , γ) is complete.

Remark 4.1. In [2] it was shown that β is a complete metric when S = R
n. Due

to equivalence of the metrics, theorem 4.1 extends this result to partially ordered
Polish spaces where assumption 4.1 is satisfied.

5. APPLICATIONS

In this section we show that certain results in classical and monotone Markov
chain theory, hitherto treated separately, can be derived from the same set of re-
sults based around total ordered variation and ordered affinity. (As in [21], we use
the term “Markov chain” to refer to a stochastic process with discrete time param-
eter and general state space.)

5.1. Applications of Theorem 3.1. First we make some comments on theorem 3.1,
which states the existence of an order maximal coupling for any pair of proba-
bilities (µ, ν); that is, a (X, Y) ∈ C (µ, ν) such that P{X � Y} = αO(µ, ν). The
existence of an order maximal coupling implies two well-known results that are
usually treated separately.

The first is the Nachbin–Strassen theorem (see, e.g., thm. 1 of [17] or ch. IV of [18]),
which states the existence of a coupling (X, Y) ∈ C (µ, ν) attaining P{X � Y} = 1



12 TAKASHI KAMIHIGASHI AND JOHN STACHURSKI

whenever µ �sd ν. The existence of an order maximal coupling for each (µ, ν) in
P ×P implies this statement, since, under the hypothesis that µ �sd ν, we also
have αO(µ, ν) = 1. Hence any order maximal coupling satisfies P{X � Y} = 1.

The other familiar result implied by existence of an order maximal coupling is
is existence of a maximal coupling in the standard sense (see the discussion of
maximal couplings after (5) and the result on p. 19 of [18]). Indeed, if we take � to
be equality, then (12) reduces to (5), as already discussed.

5.2. Markov Kernels. Let {Si} be partially ordered Polish spaces over i = 0, 1, 2, . . .,
with Borel sets Bi, bounded Borel measurable functions bSi, probability measures
Pi and so on. To simplify notation we use� for the partial order�i on any of these
spaces. On finite and infinite products of these spaces we use the product topology
and partial order. For example, if (x0, x1) and (y0, y1) are points in S0 × S1, then
(x0, x1) � (y0, y1) means that x0 � y0 and x1 � y1. Note that, once again, the same
symbol � is used for the partial order. No confusion should arise.

A function P : (S0,B1)→ [0, 1] is called a Markov kernel from S0 to S1 if x 7→ P(x, B)
is B0-measurable for each B ∈ B1 and B 7→ P(x, B) is in P1 for all x ∈ S0. If
S0 = S1 = S, we will simply call P are Markov kernel on S, or just a Markov
kernel. Following standard conventions, for any Markov kernel P from S0 to S1,
any h ∈ bS1 and µ ∈P0, we define µP ∈P1 and Ph ∈ bS0 via

(µP)(B) =
∫

P(x, B)µ(dx) and (Ph)(x) =
∫

h(y)P(x, dy).

Also, µ⊗ P denotes the joint distribution on S0 × S1 defined by

(µ⊗ P)(A× B) =
∫

A
P(x, B)µ(dx).

To simplify notation, we frequently use Px to represent the measure δxP = P(x, ·).
Also, Pm is the m-th composition of P with itself.

5.3. Order Affinity and Monotone Markov Kernels. Let S be a partially ordered
Polish space. A Markov kernel P is called monotone if Ph ∈ ibS0 whenever h ∈ ibS1.
An equivalent condition is that µP �sd νP whenever µ �sd ν; or just P(x, ·) �sd

P(y, ·) whenever x � y. It is well-known (see, e.g., proposition 1 of [17]) that if
µ �sd ν and P is monotone, then µ ⊗ P �sd ν ⊗ P. Note that, when the partial
order is equality, every Markov kernel is monotone.
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Lemma 5.1. If P is a monotone Markov kernel from S0 to S1 and µ, µ′, ν and ν′ are
probabilities in P0, then

µ′ �sd µ and ν �sd ν′ =⇒ αO(µP, νP) 6 αO(µ
′P, ν′P).

Proof. Let P, µ, µ′, ν and ν′ have the stated properties. In view of the equivalently
representation in (12), the claim will be established if

sup
I∈iB
{(µP)(I)− (νP)(I)} > sup

I∈iB
{(µ′P)(I)− (ν′P)(I)}.

This holds by the monotonicity of P and the order of µ, µ′, ν and ν′. �

Lemma 5.2. If P is a monotone Markov kernel from S0 to S1, then, for any µ, ν in P0,

αO(µP, νP) > αO(µ, ν).

Proof. Fix µ, ν in P0 and let (µ̂, ν̂) be a maximal ordered component pair for (µ, ν).
From monotonicity of P and the fact the Markov kernels preserve the mass of mea-
sures, it is clear that (µ̂P, ν̂P) is an ordered component pair for (µP, νP). Hence

αO(µP, νP) > (µ̂P)(S) = µ̂(S) = αO(µ, ν). �

On the other hand, for the joint distribution, the ordered affinity of the initial pair
is preserved.

Lemma 5.3. If P is a monotone Markov kernel from S0 to S1, then, for any µ, ν in P0,

αO(µ⊗ P, ν⊗ P) = αO(µ, ν).

Proof. Fix µ, ν in P0 and let (X0, X1) and (Y0, Y1) be random pairs with distribu-
tions µ⊗ P and ν⊗ P respectively. We have

P{(X0, X1) � (Y0, Y1)} 6 P{X0 � Y0} 6 αO(µ, ν).

Taking the supremum over all couplings in C (µ ⊗ P, ν ⊗ P) shows that αO(µ ⊗
P, ν⊗ P) is dominated by αO(µ, ν).

To see the reverse inequality, let (µ̂, ν̂) be a maximal ordered component pair for
(µ, ν). Monotonicity of P now gives µ̂⊗ P �sd ν̂⊗ P. Using this and the fact the
Markov kernels preserve the mass of measures, we see that (µ̂ ⊗ P, ν̂ ⊗ P) is an
ordered component pair for (µ⊗ P, ν⊗ P). Hence

αO(µP, νP) > (µ̂⊗ P)(S0 × S1) = µ̂(S0) = αO(µ, ν). �
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5.4. Monotone Markov Chains. Given µ ∈ P and Markov kernel P on S, a sto-
chastic process {Xt}t>0 taking values in S∞ := ×∞

t=0S will be called a Markov chain
with initial distribution µ and kernel P if the distribution of {Xt} on S∞ is

Qµ := µ⊗ P⊗ P⊗ P⊗ · · ·

(The meaning of the right hand side is clarified in, e.g., §III.8 of [18], p. 903 of [17],
§3.4 of [21].) If P is a monotone Markov kernel, then (x, B) 7→ Qx(B) := Qδx(B) is
a monotone Markov kernel from S to S∞. See propositions 1 and 2 of [17].

There are various useful results about representations of Markov chains that are
ordered almost surely. One is that, if the initial conditions satisfy µ �sd ν and P is
a monotone Markov kernel, then we can find Markov chains {Xt} and {Yt} with
initial distributions µ and ν and kernel P such that Xt � Yt for all t almost surely.
(See, e.g., theorem 2 of [17].) This result can be generalized beyond the case where
µ and ν are stochastically ordered, using the results presented above. For example,
let µ and ν be arbitrary initial distributions and let P be monotone, so that Qx is
likewise monotone. By lemma 5.3 we have

αO(Qµ, Qν) = αO(µ⊗Qx, ν⊗Qx) = αO(µ, ν).

In other words, the ordered affinity of the entire processes is given by the ordered
affinity of the initial distributions. It now follows from theorem 3.1 that there exist
Markov chains {Xt} and {Yt}with initial distributions µ and ν and Markov kernel
P such that

P{Xt � Yt, ∀t > 0} = αO(µ, ν).

The standard result is a special case, since µ �sd ν implies αO(µ, ν) = 1, and hence
the sequences are ordered almost surely.

5.5. Nonexpansiveness. It is well-known that every Markov kernel is nonexpan-
sive with respect to total variation norm, so that

(20) ‖µP− νP‖ 6 ‖µ− ν‖ for all (µ, ν) ∈P ×P .

An analogous result is true for γ when P is monotone. That is,

(21) γ(µP, νP) 6 γ(µ, ν) for all (µ, ν) ∈P ×P .

The bound (21) follows directly from lemma 5.2. Evidently (20) be recovered from
(21) by setting � to equality.
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Nonexpansiveness is interesting partly in its own right (we apply it in proofs be-
low) and partly because it suggests that, with some additional assumptions, we
can strengthen it to contractiveness. We expand on this idea below.

5.6. An Order Coupling Bound for Markov Chains. We now turn to the claim
that, given a monotone Markov kernel P on S and arbitrary µ, ν ∈ P , we can
construct Markov chains {Xt} and {Yt} with common kernel P and respective
initial conditions µ and ν such that (3) holds. In proving (3), we need only show
that

(22) 1− αO(µPt, νPt) 6 P{Xj � Yj for any j 6 t},

since, with (22) is established, we can reverse the roles of {Xt} and {Yt} in (22) to
obtain 1− αO(νPt, µPt) 6 P{Yj � Xj for any j 6 t} and then add this inequality
to (22) to produce (3).

If {Xt} and {Yt} are Markov chains with kernel P and initial conditions µ and ν,
then (12) yields αO(µPt, νPt) > P{Xt � Yt}. Therefore, we need only construct
such chains with the additional property that

(23) P{Xj � Yj for any j 6 t} = P{Xt � Yt}.

Intuitively we can do so by using a “conditional” version of the Nachbin–Strassen
theorem, producing chains that, once ordered, remain ordered almost surely. This
can be formalized as follows: By [19, theorem 2.3], there exists a Markov kernel M
on S× S such thatG is absorbing for M (i.e., M((x, y),G) = 1 for all (x, y) inG),

P(x, A) = M((x, y), A× S) and P(y, B) = M((x, y), S× B)

for all (x, y) ∈ S× S and all A, B ∈ B. Given M, let η be a distribution on S× S
with marginals µ and ν, let Qη := η ⊗M⊗M⊗ · · · be the induced joint distribu-
tion, and let {(Xt, Yt)} have distribution Qη on (S× S)∞. By construction, Xt has
distribution µPt and Yt has distribution νPt. Moreover, (23) is valid because G is
absorbing for M, and hence P{(Xj, Yj) /∈ G for any j 6 t} = P{(Xt, Yt) /∈ G}.

5.7. Uniform Ergodicity. Let S be a partially ordered Polish space satisfying assmp-
tion 4.1, and let P be a monotone Markov kernel on S. A distribution π is called
stationary for P if πP = π. Consider the value

σ(P) := inf
(x,y)∈S×S

αO(Px, Py),
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which can be understood as an order-theoretic extension of the Markov–Dobrushin
coefficient of ergodicity [3, 29]. It reduces to the usual notion when � is equality.

Theorem 5.1. If P is monotone, then

(24) γ(µP, νP) 6 (1− σ(P)) γ(µ, ν) for all (µ, ν) ∈P ×P .

Thus, strict positivity of σ(P) implies that µ 7→ µP is a contraction map on (P , γ).
Moreover, in many settings, the bound in (24) cannot be improved upon. For ex-
ample,

Lemma 5.4. If P is monotone, S is not a singleton and any x, y in S have a lower bound
in S, then

(25) ∀ ξ > σ(P), ∃ µ, ν ∈P s.t. γ(µP, νP) > (1− ξ) γ(µ, ν).

The significance of theorem 5.1 is summarized in the next corollary.

Corollary 5.1. Let P be monotone and let S satisfy assumption 4.1. If there exists an
m ∈ N such that σ(Pm) > 0, then P has a unique stationary distribution π in P , and

(26) γ(µPt, π) 6 (1− σ(Pm))bt/mc γ(µ, π) for all µ ∈P , t > 0.

Here bxc is the largest n ∈ Nwith n 6 x.

Proof. Let P and µ be as in the statement of the theorem. The existence of a fixed
point of µ 7→ µP, and hence a stationary distribution π ∈ P , follows from theo-
rem 5.1 applied to Pm, Banach’s contraction mapping theorem, and the complete-
ness of (P , γ) shown in theorem 4.1. The bound in (26) follows from (24) applied
to Pm and the nonexpansiveness of P in the metric γ (see (21)). �

As a first application of these results, consider the standard notion of uniform er-
godicity. A Markov kernel P on S is called uniformly ergodic if it has a stationary
distribution π and supx∈S ‖Pt

x − π‖ → 0 as t → ∞. Uniform ergodicity was stud-
ied by Markov [20] in a countable state space and by Doeblin [5], Yoshida and
Kakutani [35], Doob [8] and many subsequent authors in a general state space. It
is defined and reviewed in chapter 16 of [21]. One of the most familiar equivalent
conditions for uniform ergodicity [21, thm. 16.0.2] is the existence of an m ∈ N and
a nontrivial φ ∈M such that Pm

x > φ for all x in S.
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One can recover this result using corollary 5.1. Take � to be equality, in which
case every Markov operator is monotone, γ is total variation distance and assump-
tion 4.1 is always satisfied. Moreover, σ(Pm) reduces to the ordinary ergodicity
coefficient of Pm, evaluated using the standard notion of affinity, and hence

σ(Pm) = inf
(x,y)∈S×S

α(Pm
x , Pm

y ) = inf
(x,y)∈S×S

(Pm
x ∧ Pm

y )(S) > φ(S) > 0.

Thus, all the conditions of corollary 5.1 are satisfied, and

sup
x∈S
‖Pt

x − π‖ = sup
x∈S

γ(Pt
x , π) 6 2(1− σ(Pm))bt/mc → 0 (t→ ∞).

Now consider the setting of Bhattacharya and Lee [1], where S = R
n, � is the

usual pointwise partial order 6 for vectors, and {gt} is a sequence of IID random
maps from S to itself, generating {Xt} via Xt = gt(Xt−1) = gt ◦ · · · ◦ g1(X0). The
corresponding Markov kernel is P(x, B) = P{g1(x) ∈ B}. The random maps are
assumed to be order preserving on S, so that P is monotone. Bhattacharya and Lee
use a “splitting condition,” which assumes existence of a x̄ ∈ S and m ∈ N such
that

(a) s1 := P{gm ◦ · · · ◦ g1(y) 6 x̄, ∀y ∈ S} > 0 and

(b) s2 := P{gm ◦ · · · ◦ g1(y) > x̄, ∀y ∈ S} > 0.

Under these assumptions, they show that supx∈S β(Pt
x, π) converges to zero ex-

ponentially fast in t, where β is the Bhattacharya metric introduced in (17). This
finding extends earlier results by Dubins and Freedman [9] and Yahav [34] to mul-
tiple dimensions.

This result can be obtained as a special case of corollary 5.1. Certainly S is a par-
tially ordered Polish space and assumption 4.1 is satisfied. Moreover, the ordered
ergodicity coefficient σ(Pm) is strictly positive. To see this, suppose that the split-
ting condition is satisfied at m ∈ N. Pick any x, y ∈ S and let {Xt} and {Yt} be
independent copies of the Markov chain, starting at x and y respectively. We have

σ(Pm) > P{Xm 6 Ym} > P{Xm 6 x̄ 6 Ym} = P{Xm 6 x̄}P{x̄ 6 Ym} > s1s2.

The last term is strictly positive by assumption. Hence all the conditions of corol-
lary 5.1 are satisfied, a unique stationary distribution π exists, and supx∈S γ(Pt

x, π)

converges to zero exponentially fast in t. We showed in (19) that β 6 2γ, so the
same convergence holds for the Bhattacharya metric.
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We can also recover a related convergence result due to Hopenhayn and Prescott
[15, theorem 2] that is routinely applied to stochastic stability problems in econom-
ics. They assume that S is a compact metric space with a closed partial order and a
least element a and greatest element b. They suppose that P is monotone, and that
there exists an x̄ in S and an m ∈ N such that

(27) Pm(a, [x̄, b]) > 0 and Pm(b, [a, x̄]) > 0.

In this setting, they show that P has a unique stationary distribution π and µPt w→
π for any µ ∈ P as t → ∞. This result can be obtained from corollary 5.1.
Under the stated assumptions, S is Polish and assumption 4.1 is satisfied. The
coefficient σ(Pm) is strictly positive because, if we let {Xt} and {Yt} be inde-
pendent copies of the Markov chain starting at b and a respectively, then, since
(Xm, Ym) ∈ C (Pm

b , Pm
a ), we have

αO(Pm
b , Pm

a ) > P{Xm 6 Ym} > P{Xm 6 x̄ 6 Ym} = P{Xm 6 x̄}P{x̄ 6 Ym}.

The last term is strictly positive by (27). Positivity of σ(Pm) now follows from
lemma 5.1, since a � x, y � b for all x, y ∈ S. Hence, by corollary 5.1, there exists a
unique stationary distribution π and γ(µPt, π)→ 0 as t→ ∞ for any µ ∈P . This
convergence implies weak convergence by proposition 4.1 and compactness of S.

6. FINAL COMMENTS

The conditions for uniform ergodicity (see section 5.7) are often excessively strict
when S is unbounded. This led to the study, initiated by Harris [13], of Markov
chains that, regardless of their starting point, return to some set C ⊂ S infinitely
often, and where, for some δ > 0 and m ∈ N, we have α(Pm

x , Pm
y ) > δ whenever

(x, y) ∈ C × C. The idea is that, provided aperiodicity also holds, independent
copies {Xt} and {Yt} of the Markov chain will return to C at the same time in-
finitely often, providing infinitely many opportunities to obtain Xt = Yt with a
probability at least as large as δ. Stability results can then be obtained via (2).

It seems likely that these ideas can also be extended to the order theoretic setting
of the present paper if α is replaced by α0 in the paragraph above, and Xt = Yt is
replaced with Xt � Yt. In particular, both Xt � Yt and Yt � Xt will be true with
high probability when t is large, and a stability result using the metric γ can be
obtained via (3).
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Apart from Harris chains, there are various other notions of and results on ergodic-
ity that use the total variation metric, such as f -ergodicity and geometry ergodicity
(see, e.g., chapters 13–16 of [21]). It seems likely that, just as for uniform ergodic-
ity, many of these notions and results have natural extensions to the order theoretic
context, replacing total variation with total order variation. All of these conjectures
are left for future research.

7. APPENDIX

The appendix collects remaining proofs. Throughout, in addition to notation de-
fined above, cbS0 denotes all continuous functions h : S→ [0, 1], while

g(µ, ν) := ‖µ‖ − αO(µ, ν)

for each µ, ν ∈M .

7.1. Proofs of Section 3 Results.

Proof of lemma 3.1. For the first equality, fix λ ∈Ms and let

s(λ) := sup
I∈iB

λ(I) and b(λ) := sup
h∈iH0

λ(h).

Since 1I ∈ ibS for all I ∈ iB, we have b(λ) > s(λ). To see the reverse inequality, let
h ∈ iH0. Fix n ∈ N. Let rj := j/n for j = 0, . . . , n. Define hn ∈ iH0 by

hn(x) = max{r ∈ {r0, . . . , rn} : r 6 h(x)}.

Since h 6 hn + 1/n, we have

(28) λ(h) 6 λ(hn) +
‖λ‖

n
.

For j = 0, . . . , n, let Ij := {x ∈ S : hn(x) > rj} ∈ iB. Note that

(29) In = {x ∈ S : hn(x) = 1} ⊂ In−1 ⊂ · · · ⊂ I0 = S.

We have

λ(hn) = λ(In) +
n

∑
j=1

rn−jλ(In−j \ In−j+1).

We define f0, . . . , fn−1 ∈ iH0 and A0, . . . , An−1 ∈ iB as follows. Define f0 = hn and
A0 = In. We trivially have

λ( f0) > λ(hn), ∀x ∈ A0, f0(x) = 1, ∀x ∈ In−1 \ A0, f0(x) = rn−1.
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Now suppose that for some j ∈ {0, 1, . . . , n− 2}, we have

(30) λ( f j) > λ(hn), ∀x ∈ Aj, f j(x) = 1, ∀x ∈ In−j−1 \ Aj, f j(x) = rn−j−1.

If λ(In−j−1 \ Aj) > 0, then define

f j+1(x) =

1 if x ∈ In−j−1 \ Aj,

f j(x) otherwise,
and Aj+1 = In−j−1.

Note that in this case

λ( f j+1)− λ( f j) = (1− rn−j−1)λ(In−j−1 \ Aj) > 0,

∀x ∈ In−j−2 \ Aj+1, f j+1(x) = rn−j−2.

If λ(In−j−1 \ Aj) 6 0, then define

f j+1(x) =

rn−j−2 if x ∈ In−j−1 \ Aj,

f j(x) otherwise,
and Aj+1 = Aj.

In this case we have

λ( f j+1)− λ( f j) = (rn−j−2 − rn−j−1)λ(In−j−1 \ Aj) > 0.

We also have (7.1) by construction. Thus in both cases, we have (30) with j replaced
by j + 1. Continuing this way, we see that (30) holds for all j = 0, . . . , n− 1.

Let j = n− 1 in (30). From the definition of rj and (29) we have r0 = 0 and I0 = S.
Thus

λ( fn−1) > λ(hn), ∀x ∈ An−1, fn−1(x) = 1, ∀x ∈ S \ An−1, fn−1(x) = 0.

Since fn−1 = 1An−1 and An−1 = Ij for some j ∈ {0, . . . , n − 1}, recalling (28) we
have

λ(h)− ‖λ‖
n
6 λ(hn) 6 λ(An−1) 6 s(λ).

Applying suph∈iH0
to the leftmost side, we see that b(λ)− 1/n 6 s(λ). Since this

is true for any n ∈ N, we obtain b(λ) 6 s(λ).

The claim (7) follows from |a| = max{a,−a} and interchange of max and sup. �

Proof of theorem 3.1. Let (X, Y) be a coupling of (µ, ν), and define

µ′(B) := P{X ∈ B, X � Y} and ν′(B) := P{Y ∈ B, X � Y}.
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Clearly µ′ 6 µ, ν′ 6 ν and µ′(S) = P{X � Y} = ν′(S). Moreover, for any
increasing set I ∈ B we clearly have µ′(I) = ν′(I). Hence (µ′, ν′) ∈ Φ(µ, ν) and
P{X � Y} = µ′(S) 6 αO(µ, ν). We now exhibit a coupling such that equality is
attained. In doing so, we can assume that a := αO(µ, ν) > 0.1

To begin, observe that, by proposition 3.1, there exists a pair (µ′, ν′) ∈ Φ(µ, ν) with
µ′(S) = ν′(S) = a. Let µr := µ−µ′

1−a and νr := ν−ν′
1−a . By construction, µr, νr, µ′/a and

ν′/a are probability measures satisfying

µ = (1− a)µr + a(µ′/a) and ν = (1− a)νr + a(ν′/a).

We construct a coupling (X, Y) as follows. Let U, X′, Y′, Xr and Yr be random
variables on a common probability space such that

(a) X′ D
= µ′/a, Y′ D

= ν′/a, Xr D
= µr and Yr D

= νr

(b) U is uniform on [0, 1] and independent of (X′, Y′, Xr, Yr) and

(c) P{X′ � Y′} = 1.

The pair in (c) can be constructed via the Nachbin–Strassen theorem [17, thm. 1],
since µ′/a �sd ν′/a. Now let

X := 1{U 6 a}X′ + 1{U > a}Xr and Y := 1{U 6 a}Y′ + 1{U > a}Yr.

Evidently (X, Y) ∈ C (µ, ν). Moreover, for this pair, we have

P{X � Y} > P{X � Y, U 6 a} = P{X′ � Y′, U 6 a}.

By independence the right hand side is equal to P{X′ � Y′}P{U 6 a} = a, so
P{X � Y} > a := αO(µ, ν). We conclude that

(31) αO(µ, ν) = max
(X,Y)∈C (µ,ν)

P{X � Y}.

Next, observe that, for any (X, Y) ∈ C (µ, ν) and h ∈ ibS, we have

µ(h)− ν(h) = E h(X)−E h(Y)

= E [h(X)− h(Y)]1{X � Y}+E [h(X)− h(Y)]1{X � Y}

6 E [h(X)− h(Y)]1{X � Y}.

1If not, then for any (X, Y) ∈ C (µ, ν) we have 0 6 P{X � Y} 6 αO(µ, ν) = 0.
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Specializing to h = 1I for some I ∈ iB, we have µ(I) − ν(I) 6 P{X � Y} =

1−P{X � Y}. From this bound and (31), the proof of (12) will be complete if we
can show that

(32) sup
(X,Y)∈C (µ,ν)

P{X � Y} > 1− sup
I∈iB
{µ(I)− ν(I)}.

To prove (32), let B ⊗ B be the product σ-algebra on S × S and let πi be the i-th
coordinate projection, so that π1(x, y) = x and π2(x, y) = y for any (x, y) ∈ S× S.
As usual, given Q ⊂ S × S, we let π1(Q) be all x ∈ S such that (x, y) ∈ Q, and
similarly for π2. Recall that C is the closed sets in S and dC is the decreasing sets in
C. Strassen’s theorem [31] implies that, for any ε > 0 and any closed set K ⊂ S× S,
there exists a probability measure ξ on (S× S,B ⊗B) with marginals µ and ν such
that ξ(K) > 1− ε whenever

ν(F) 6 µ(π1(K ∩ (S× F))) + ε, ∀ F ∈ C.

Note that if F ∈ C, then, since � is a closed partial order, so is the smallest decreas-
ing set d(F) that containts F. Let ε := supD∈dC{ν(D)− µ(D)}, so that

ε > sup
F∈C
{ν(d(F))− µ(d(F))} > sup

F∈C
{ν(F)− µ(d(F))}.

Noting that d(F) can be expressed as π1(G∩ (S× F)), it follows that, for any F ∈ C,

ν(F) 6 µ(π1(G∩ (S× F))) + ε.

Since � is closed, G is closed, and Strassen’s theorem applies. From this theorem
we obtain a probability measure ξ on the product space S × S such that ξ(G) >

1− ε and ξ has marginals µ and ν.

Because complements of increasing sets are decreasing and vice versa, we have

(33) sup
I∈iB
{µ(I)− ν(I)} > sup

D∈dC
{ν(D)− µ(D)} = ε > 1− ξ(G).

Now consider the probability space (Ω, F ,P) = (S× S,B ⊗ B, ξ), and let X = π1

and Y = π2. We then have ξ(G) = ξ{(x, y) ∈ S × S : x � y} = P{X � Y}.
Combining this equality with (33) implies (32). �
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7.2. Proofs of Section 4 Results. We begin with an elementary lemma:

Lemma 7.1. For any µ, ν ∈M , we have µ 6 ν whenever µ(h) 6 ν(h) for all h ∈ cbS0.

Proof. Suppose that µ(h) 6 ν(h) for all h ∈ cbS0. We claim that

(34) µ(F) 6 ν(F) for any closed set F ⊂ S.

To see this, let ρ be a metric compatible with the topology of S and let F be any
closed subset of S. Let fε(x) := max{1− ρ(x, F)/ε, 0} for ε > 0, x ∈ S, where
ρ(x, F) = infy∈F ρ(x, y). Since ρ(·, F) is continuous and 0 6 fε 6 1, we have
fε ∈ cbS0. Let Fε = {x ∈ S : ρ(x, F) < ε} for ε > 0. Note that fε(x) = 1 for all
x ∈ F, and that fε(x) = 0 for all x 6∈ Fε. Thus,

(35) µ(F) 6 µ( fε) 6 ν( fε) 6 ν(Fε).

Since F = ∩ε>0Fε, we have limε↓0 ν(Fε) = ν(F), so letting ε ↓ 0 in (35) yields
µ(F) 6 ν(F). Hence (34) holds.

Let B ∈ B and fix ε > 0. Since all probability measures on a Polish space are
regular, there exists a closed set F ⊂ B such that µ(B) 6 µ(F) + ε. Thus by (34), we
have µ(B) 6 µ(F) + ε 6 ν(F) + ε 6 ν(B) + ε. Since ε > 0 is arbitrary, this yields
µ(B) 6 ν(B). Hence µ 6 ν. �

Proof of theorem 4.1. Let {µn} be a Cauchy sequence in (P , γ). Our first claim is
that {µn} is tight. To show this, fix ε > 0. Let µ := µN be such that

(36) n > N =⇒ γ(µ, µn) < ε.

Let K be a compact subset of S such that µ(K) > 1− ε and let K̄ := i(K) ∩ d(K).
We have

µn(K̄c) = µn(i(K)c ∪ d(K)c) 6 µn(i(K)c) + µn(d(K)c).

For n > N, this bound, (16), (36) and the definition of K yield

µn(K̄c) < µ(i(K)c) + µ(d(K)c) + 2ε 6 µ(Kc) + µ(Kc) + 2ε 6 4ε.

Hence {µn}n>N is tight. It follows that {µn}n>1 is likewise tight. As a result, by
Prohorov’s theorem, it has a subsequence that converges weakly to some µ∗ ∈P .
We aim to show that γ(µn, µ∗)→ 0.

To this end, fix ε > 0 and let nε be such that γ(µm, µnε) < ε whenever m > nε. Fix
m > nε and let ν := µm. For all n > nε, we have γ(ν, µn) < ε. Fixing any such
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n > nε, we observe that since g(µn, ν) < ε, there exists (µ̃n, ν̃n) ∈ Φ(µn, ν) with
‖µ̃n‖ = ‖ν̃n‖ > 1− ε. Multiplying µ̃n and ν̃n by (1− ε)/‖µ̃n‖ < 1, denoting the
resulting measures by µ̃n and ν̃n again, we have

(37) µ̃n 6 µn, ν̃n 6 ν, ‖µ̃n‖ = ‖ν̃n‖ = 1− ε, µ̃n �sd ν̃n.

Note that {ν̃n} is tight. Since {µn} is tight, so is {µ̃n}. Thus there exist subse-
quences {µni}i∈N, {µ̃ni}i∈N, and {ν̃ni}i∈N of {µn}, {µ̃n}, and {ν̃n} respectively such
that, for some µ̃∗, ν̃∗ ∈M with ‖µ̃∗‖ = ‖ν̃∗‖ = 1− ε, we have

µni
w→ µ∗, µ̃ni

w→ µ̃∗, ν̃ni
w→ ν̃∗, ∀i ∈ N, µ̃ni �sd ν̃ni .

Given h ∈ cbS0, since µ̃ni(h) 6 µni(h) and ν̃ni(h) 6 ν(h) for all i ∈ N by (37), we
have µ̃∗(h) 6 µ∗(h) and ν̃∗(h) 6 ν(h) by weak convergence. Thus µ̃∗ 6 µ∗ and
ν̃∗ 6 ν by lemma 7.1. We have µ̃∗ �sd ν̃∗ by [17, proposition 3]. It follows that
(µ̃∗, ν̃∗) ∈ Φ(µ∗, ν). We have g(µ∗, ν) 6 1− ‖µ̃∗‖ = ε.

By a symmetric argument, we also have g(ν, µ∗) 6 ε. Hence γ(ν, µ∗) 6 2ε. Recall-
ing the definition of ν, we have now shown that, ∀m > nε, γ(µm, µ∗) 6 2ε. Since ε

was arbitrary this concludes the proof. �

7.3. Proofs of Section 5 Results. We begin with some lemmata.

Lemma 7.2. If P is monotone, then σ(P) = inf(µ,ν)∈P×P αO(µP, νP).

Proof. Let P be a monotone Markov kernel. It suffices to show that the inequality
σ(P) 6 inf(µ,ν)∈P×P αO(µP, νP) holds, since the reverse inequality is obvious. By
the definition of σ(P) and the identities in (12), the claim will be established if we
can show that

(38) sup
x,y

sup
I∈iB
{P(x, I)− P(y, I)} > sup

µ,ν
sup
I∈iB
{µP(I)− νP(I)}.

where x and y are chosen from S and µ and ν are chosen from P . Let s be the
value of the right hand side of (38) and let ε > 0. Fix µ, ν ∈P and I ∈ iB such that
µP(I)− νP(I) > s− ε, or, equivalently,∫

{P(x, I)− P(y, I)}(µ× ν)(dx, dy) > s− ε.

From this expression we see that there are x̄, ȳ ∈ S such that P(x̄, I) − P(ȳ, I) >

s− ε. Hence supx,y supI∈iB{P(x, I)− P(y, I)} > s, as was to be shown. �
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Lemma 7.3. If µ, ν ∈M and (µ̃, ν̃) is an ordered component pair of (µ, ν), then

g(µP, νP) 6 g((µ− µ̃)P, (ν− ν̃)P).

Proof. Fix µ, ν in M and (µ̃, ν̃) ∈ Φ(µ, ν). Consider the residual measures µ̂ :=
µ− µ̃ and ν̂ := ν− ν̃. Let (µ′, ν′) be a maximal ordered component pair of (µ̂P, ν̂P),
and define

µ∗ := µ′ + µ̃P and ν∗ := ν′ + ν̃P.

We claim that (µ∗, ν∗) is an ordered component pair for (µP, νP). To see this, note
that

µ∗ = µ′ + µ̃P 6 µ̂P + µ̃P = (µ̂ + µ̃)P = µP,

and, similarly, ν∗ 6 νP. The measures µ∗ and ν∗ also have the same mass, since

‖µ∗‖ = ‖µ′‖+ ‖µ̃P‖ = ‖µ′‖+ ‖µ̃‖ = ‖ν′‖+ ‖ν̃‖ = ‖ν′‖+ ‖ν̃P‖ = ‖ν∗‖.

Moreover, since µ̃ �sd ν̃ and P is monotone, we have µ̃P �sd ν̃P. Hence µ∗ �sd ν∗,
completing the claim that (µ∗, ν∗) is an ordered component pair for (µP, νP). As a
result,

g(µP, νP) 6 ‖µP‖ − ‖µ∗‖ = ‖µP‖ − ‖µ′‖ − ‖µ̃P‖

= ‖µ‖ − ‖µ′‖ − ‖µ̃‖ = ‖µ̂‖ − ‖µ′‖ = ‖µ̂P‖ − ‖µ′‖ = g(µ̂P, ν̂P). �

Proof of theorem 5.1. Let µ, ν ∈P . Let (µ̃, ν̃) be a maximal ordered component pair
for (µ, ν). Let µ̂ = µ− µ̃ and ν̂ = ν− ν̃ be the residuals. Since ‖µ̃‖ = ‖ν̃‖, we have
‖µ̂‖ = ‖ν̂‖. Suppose first that ‖µ̂‖ > 0. Then µ̂P/‖µ̂‖ and ν̂P/‖µ̂‖ are both in P .
Thus, by lemma 7.2,

1− αO(µ̂P/‖µ̂‖, ν̂P/‖µ̂‖) 6 1− σ(P).

Applying the positive homogeneity property in lemma 3.3 yields

‖µ̂‖ − αO(µ̂P, ν̂P) 6 (1− σ(P)) ‖µ̂‖,

Note that this inequality trivially holds if ‖µ̂‖ = 0. From the definition of g, we can
write the same inequality as g(µ̂P, ν̂P) 6 (1− σ(P))g(µ, ν). If we apply lemma 7.3
to the latter we obtain

g(µP, νP) 6 (1− σ(P))g(µ, ν).
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Reversing the roles of µ and ν, we also have g(νP, µP) 6 (1− σ(P))g(ν, µ). Thus

γ(µP, νP) = g(µP, νP) + g(νP, µP)

6 (1− σ(P))[g(µ, ν) + g(ν, µ)] = (1− σ(P))γ(µ, ν),

verifying the claim in (24). �

Proof of lemma 5.4. To see that (25) holds, fix ξ > σ(P) and suppose first that σ(P) =
1. Then (25) holds because the right hand side of (25) can be made strictly negative
by choosing µ, ν ∈ P to be distinct. Now suppose that σ(P) < 1 holds. It suffices
to show that

(39) ∀ ε > 0, ∃ x, y ∈ S such that y � x, x � y and α0(Px, Py) < σ(P) + ε.

Indeed, if we take (39) as valid, set ε := ξ − σ(P) and choose x and y to satisfy the
conditions in (39), then we have γ(Px, Py) = 2− α0(Px, Py)− α0(Py, Px) > 2− ξ −
1 = 1− ξ = (1− ξ)γ(δx, δy). Therefore (25) holds.

To show that (39) holds, fix ε > 0. We can use σ(P) < 1 and the definition of σ(P)
as an infimum to choose an δ ∈ (0, ε) and points x̄, ȳ ∈ S such that α0(Px̄, Pȳ) <

σ(P) + δ < 1. Note that x̄ � ȳ cannot hold here, because then α0(Px̄, Pȳ) = 1, a
contradiction. So suppose instead that x̄ � ȳ. Let y be a lower bound of x̄ and ȳ
and let x := x̄. We claim that (39) holds for the pair (x, y).

To see this, observe that, by the monotonicity result in lemma 5.1 and y � ȳ we
have α0(Px, Py) = α0(Px̄, Py) 6 α0(Px̄, Pȳ) < σ(P) + δ < σ(P) + ε. Moreover, y � x
because x = x̄ and y is by definition a lower bound of x̄. Finally, x � y because if
not then x̄ = x � y � ȳ, contradicting our assumption that x̄ � ȳ. �
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