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Abstract

We establish a simple no-bubble theorem that applies to a wide
range of deterministic sequential economies with infinitely lived agents.
In particular, we show that asset bubbles never arise if at least one
agent can reduce his asset holdings permanently from some period
onward. Our no-bubble theorem is based on the optimal behavior
of a single agent, requiring virtually no assumption beyond the strict
monotonicity of preferences. The theorem is a substantial generaliza-
tion of Kocherlakota’s (1992, Journal of Economic Theory 57, 245–
256) result on asset bubbles and short sales constraints.
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1 Introduction

Since the global financial crisis of 2007-2008, there has been a surge of inter-
est in rational asset pricing bubbles, or simply “asset bubbles.” Numerous
economic mechanisms that give rise to asset bubbles are still being proposed.
In constructing models of asset bubbles, it is important to understand the
conditions under which asset bubbles do or do not exist. While the condi-
tions for the existence of bubbles are mostly restricted to specific models,
some general conditions for nonexistence are known.

Most of the results on the nonexistence of bubbles, or no-bubble theo-
rems, for general equilibrium models can be grouped into two categories. A
no-bubble theorem of the first category typically states that asset bubbles
never arise if the present value of the aggregate endowment process is finite.
Wilson’s (1981, Theorem 2) result on the existence of a competitive equilib-
rium can be viewed as an earlier example of a no-bubble theorem of the first
category. Santos and Woodford (1997, Theorems 3.1, 3.3) established cele-
brated no-bubble theorems of this category, which were extended by Huang
and Werner (2000, Theorem 6.1) and Werner (2014, Remark 1, Theorem 1)
to different settings.

Unlike these results, no-bubble theorems of the second category are mostly
based on the optimal behavior of a single agent without relying on the present
value of the aggregate endowment process. For example, in a determinis-
tic economy with finitely many agents, Kocherlakota (1992, Proposition 3)
showed that asset bubbles can be ruled out if at least one agent can reduce
his asset holdings permanently from some period onward.1 Obstfeld and Ro-
goff (1986) used a similar idea earlier to rule out deflationary equilibria in a
money-in-the-utility-function model.2 These results rely on the necessity of
a transversality condition, and a fairly general no-bubble theorem based on
the necessity of a transversality condition was shown by Kamihigashi (2001,
p. 1007) for deterministic representative-agent models in continuous time.3

In this paper we establish a simple no-bubble theorem of the second
category that can be used to rule out asset bubbles in an extremely wide
range of deterministic models. We consider the problem of a single agent who

1Santos (2006) showed a similar result on the value of money in a general cash-in-
advance economy.

2See Kamihigashi (2008a, 2008b) for results on asset bubbles in related models.
3See Kamihigashi (2002, 2003, 2005) for further results on necessity of transversality

conditions.
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faces sequential budget constraints and has strictly monotone preferences.
We show that asset bubbles never arise if the agent can reduce his asset
holdings permanently from some period onward. This result is a substantial
generalization of Proposition 3 in Kocherlakota (1992). Our contribution is to
show that this no-bubble theorem holds under extremely general conditions.

The rest of the paper is organized as follows. In Section 2 we present
a single agent’s problem along with necessary assumptions, and formally
define asset bubbles. In Section 3 we offer several examples satisfying our
assumptions. In Section 4 we state our no-bubble theorem and show several
consequences. In Section 6 we offer some concluding comments. Longer
proofs are relegated to the appendices.

2 The General Framework

2.1 Feasibility and Optimality

Time is discrete and denoted by t ∈ Z+. There is one consumption good and
one asset that pays a dividend of dt units of the consumption good in each
period t ∈ Z+. Let pt be the price of the asset in period t ∈ Z+. Consider
an infinitely lived agent who faces the following constraints:

ct + ptst = yt + (pt + dt)st−1, ct ≥ 0, ∀t ∈ Z+, (2.1)

s ∈ S(s−1, y, p, d), (2.2)

where ct is consumption in period t, yt ∈ R is (net) income in period t,
st is asset holdings at the end of period t with s−1 historically given, and
S(s−1, y, p, d) is a set of sequences in R with s = {st}∞t=0, y = {yt}∞t=0,
p = {pt}∞t=0, and d = {dt}∞t=0. We offer several examples of (2.2) in Subsection
3.1.

Let C be the set of sequences {ct}∞t=0 in R+. For any c ∈ C, we let {ct}∞t=0

denote the sequence representation of c, and vice versa. We therefore use c
and {ct}∞t=0 interchangeably; likewise we use s and {st}∞t=0 interchangeably,
and so on. The inequalities < and ≤ on the set of sequences in R (which
includes C) are defined as follows:

c ≤ c′ ⇔ ∀t ∈ Zt, ct ≤ c′t, (2.3)

c < c′ ⇔ c ≤ c′ and ∃t ∈ Z+, ct < c′t. (2.4)
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The agent’s preferences are represented by a binary relation ≺ on C. More
concretely, for any c, c′ ∈ C, the agent strictly prefers c′ to c if and only if
c ≺ c′. Assumptions 2.1 and 2.2, stated below, are maintained throughout
the paper.

Assumption 2.1. dt ≥ 0 and pt > 0 for all t ∈ Z+.

We say that a pair of sequences c = {ct}∞t=0 and s = {st}∞t=0 in R is a
plan; that a plan (c, s) is feasible if it satisfies (2.1) and (2.2); and that a
feasible plan (c∗, s∗) is optimal if there exists no feasible plan (c, s) such that
c∗ ≺ c. Whenever we take an optimal plan (c∗, s∗) as given, we assume the
following.

Assumption 2.2. For any c ∈ C with c∗ < c, we have c∗ ≺ c.

This assumption holds if ≺ is strictly monotone in the sense that for any
c, c′ ∈ C with c < c′, we have c ≺ c′. While this latter requirement may
seem reasonable, there is an important case in which it is not satisfied; see
Example 3.2.

2.2 Asset Bubbles

In this subsection we define the fundamental value of the asset and the bubble
component of the asset price in period t ∈ Z+ using the period t prices of the
consumption goods in periods t, t+1, . . .. To be more concrete, let q0,t be the
period 0 price of the consumption good in period t ∈ Z+. It is well known
(e.g., Huang and Werner, 2000, (8)) that the absence of arbitrage implies
that there exists a price sequence {q0,t} such that

∀t ∈ Z+, q0,tpt = q0,t+1(pt+1 + dt+1), (2.5)

∀t ∈ N, q0,t > 0, (2.6)

q0 = 1. (2.7)

Under Assumption 2.1, conditions (2.5) and (2.7) uniquely determine the
price sequence {q0,t}. For the rest of the paper, we consider the price sequence
{q0,t} given by (2.5) and (2.7).

For t ∈ N and i ∈ Z+, we define

qt,t+i = q0,t+i/q0,t, (2.8)
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which is the period t price of consumption in period t+ i. Note that

∀i, j, t ∈ Z+, qt,t+iqt+i,t+i+j =
q0,t+i
q0,t

q0,t+i+j
q0,t+i

= qt,t+i+j. (2.9)

Let t ∈ Z+. Equations (2.5) and (2.8) give us pt = qt,t+1(pt+1 + dt+1). By
repeatedly applying this equality and (2.9), we obtain

pt = qt,t+1dt+1 + qt,t+1pt+1 (2.10)

= qt,t+1dt+1 + qt,t+1qt+1,t+2(pt+2 + dt+2) (2.11)

= qt,t+1dt+1 + qt,t+2dt+2 + qt,t+2pt+2 (2.12)

... (2.13)

=
n∑
i=1

qt,t+idt+i + qt,t+npt+n, ∀n ∈ N. (2.14)

Since the above finite sum is increasing in n ∈ N,4 it follows that

pt =
∞∑
i=1

qt,t+idt+i + lim
n↑∞

qt,t+npt+n. (2.15)

As is commonly done in the literature, we define the fundamental value of
the asset in period t as the present discounted value of the dividend stream
from period t+ 1 onward:

ft =
∞∑
i=1

qt,t+idt+i. (2.16)

The bubble component of the asset price in period t is the part of pt that is
not accounted for by the fundamental value:

bt = pt − ft. (2.17)

It follows from (2.15)–(2.17) that

bt = lim
n↑∞

qt,t+npt+n. (2.18)

4In this paper, “increasing” means “nondecreasing,” and ”decreasing” means “nonin-
creasing.”
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Using (2.9) we see that

q0,t lim
n↑∞

qt,t+npt+n = lim
n↑∞

q0,t+npt+n = lim
i↑∞

q0,ipi. (2.19)

Hence, (2.18) and (2.6) give us

lim
i↑∞

q0,ipi = 0 ⇔ ∀t ∈ Z+, bt = 0. (2.20)

3 Examples

In this section we present several examples of (2.2) as well as examples of
preferences that satisfy Assumption 2.2. Some of the examples are used in
Section 4.

3.1 Constraints on Asset Holdings

The simplest example of (2.2) would be the following:

∀t ∈ Z+, st ≥ 0. (3.1)

This constraint is often used in representative-agent models; see, e.g., Lucas
(1978) and Kamihigashi (1998).

Kocherlakota (1992) uses a more general version of (3.1):

∀t ∈ Z+, st ≥ σ, (3.2)

where σ ∈ R. If σ < 0, then the above constraint is called a short sales
constraint. The following constraint is even more general:

∀t ∈ Z+, st ≥ σt, (3.3)

where σt ∈ R for all t ∈ Z+. Note that (3.2) is a special case of (3.3) with
σt = σ for all t ∈ Z+.

Santos and Woodford (1997, p. 24) consider a (state-dependent) borrow-
ing constraint that reduces to the following in our single-asset setting:

∀t ∈ Z+, ptst ≥ −ξt, (3.4)

where ξt ∈ R for all t ∈ Z+. This constraint is a special case of (3.3) with
σt = −ξt/pt.
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The (state-dependent) debt constraint considered by Werner (2014) and
LeRoy and Werner (2014, p. 313) reduces to the following in our setting:

∀t ∈ Z+, (pt+1 + dt+1)st ≥ −ξt+1. (3.5)

This constraint is another special case of (3.3) with

σt = −ξt+1/(pt+1 + dt+1). (3.6)

In addition to (3.2), Kocherlakota (1992) considers the following wealth
constraint:

∀t ∈ Z+, ptst +
∞∑
i=1

qt,t+iyt+i ≥ 0, (3.7)

which is another example of (2.2). The left-hand side above is the period
t value of the agent’s current asset holdings and future income. Note that
(3.7) is yet another special case of (3.3) with

∀t ∈ Z+, σt = −
∞∑
i=1

qt,t+iyt+i/pt. (3.8)

See Wright (1987) and Huang and Werner (2000) for related discussion.

3.2 Preferences

Example 3.1. A typical objective function in an agent’s maximization prob-
lem takes the form

∞∑
t=0

βtu(ct), (3.9)

where β ∈ (0, 1) and u : R+ → R is a strictly increasing bounded function.
Define the binary relation ≺ by

c ≺ c′ ⇔
∞∑
t=0

βtu(ct) <
∞∑
t=0

βtu(c′t). (3.10)

Then ≺ clearly satisfies Assumption 2.2.
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Example 3.2. If u is allowed to be unbounded below in Example 3.1, then
the binary relation defined by (3.10) may not satisfy Assumption 2.2. To deal
with this problem, let ut : R+ → [−∞,∞) be a strictly increasing function
for t ∈ Z+. Consider the binary relation ≺ defined by

c ≺ c′ ⇔ lim
n↑∞

n∑
t=0

[ut(ct)− ut(c′t)] < 0, (3.11)

where we follow the convention that (−∞) − (−∞) = 0; see Dana and Le
Van (2006) for related optimality criteria. The binary relation ≺ defined
above clearly satisfies Assumption 2.2.

Suppose further that (2.2) is given by (3.1), that each ut is differentiable
on R++, and that there exists an optimal plan (c∗, s∗) such that

∀t ∈ Z+, c∗t > 0, s∗t = 1. (3.12)

Then the standard Euler equation holds:

u′t(c
∗
t )pt = u′t+1(c

∗
t+1)(pt+1 + dt+1), ∀t ∈ Z+. (3.13)

In view of (2.5) and (2.7), the price sequence {q0,t} is given by

q0,t =
u′t(c

∗
t )

u′0(c
∗
0)
, ∀t ∈ Z+. (3.14)

The fundamental value ft takes the familiar form:

ft =
∞∑
i=1

u′t+i(c
∗
t+i)

u′t(c
∗
t )

dt+i, ∀t ∈ Z+. (3.15)

Example 3.3. Let v : C → R be a strictly increasing function. Define the
binary relation ≺ by

c ≺ c′ ⇔ v(c0, c1, c2, . . .) < v(c′0, c
′
1, c
′
2, . . .). (3.16)

Note that (3.16) satisfies Assumption 2.2 without any additional condition on
v. For example, v can be a recursive utility function (see, e.g., Boyd, 1990).
As in Example 3.2, suppose that (2.2) is given by (3.1), that v(c0, c1, . . .) is
differentiable in each ci > 0, and that there exists an optimal plan (c∗, s∗)
satisfying (3.12). For i ∈ Z+ define

vi(c
∗) =

∂v(c∗0, c
∗
1, . . . , )

∂c∗i
. (3.17)
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Then it is easy to see that the following version of the Euler equation holds:

vt(c
∗)pt = vt+1(c

∗)(pt+1 + dt+1), ∀t ∈ Z+. (3.18)

As in Example 3.2, for all t ∈ Zt we have

q0,t =
vt(c

∗)

v0(c∗)
, (3.19)

ft =
∞∑
i=1

vt+i(c
∗)

vt(c∗)
dt+i. (3.20)

4 Implications of Feasibility and Optimality

4.1 A No-Bubble Theorem

To state our no-bubble theorem, we need to introduce some notation. Given
any sequence {s∗t}∞t=0 in R, τ ∈ Z+, and ε > 0, let Sτ,ε(s∗) be the set of
sequences {st}∞t=0 in R such that

st

{
= s∗t if t < τ ,

∈ [s∗t − ε, s∗t ] if t ≥ τ .
(4.1)

In other words, a sequence {st} in Sτ,ε(s∗) coincides with {s∗t} up to period
τ − 1 and is required to satisfy s∗t − ε ≤ st ≤ s∗t from period τ onward. Now
we are ready to state the main result of this paper.

Theorem 4.1. Let (c∗, s∗) be an optimal plan. Suppose that there exist
τ ∈ Z+ and ε > 0 such that

Sτ,ε(s∗) ⊂ S(s−1, y, p, d). (4.2)

Then bt = 0 for all t ∈ Z+.

Proof. See Appendix A.

The proof of Theorem 4.1 is based on a simple idea. If the left equality in
(2.20) is violated, we can construct the following alternative plan. Let δ > 0,
and let sτ = s∗τ − δ and cτ = c∗τ + pτδ, where τ is given by the statement
of the theorem. For t 6= τ , let st be determined by the budget constraint
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(2.1) with ct = c∗t . This alternative plan provides the same consumption
sequence except in period τ , where consumption is increased by pτδ > 0.
The plan, therefore, is strictly preferred over the original plan (c∗, s∗). We
derive a contradiction by showing that the alternative plan is feasible for a
sufficiently small δ > 0.

Huang and Werner (2000, Theorems 5.1, 6.1) use similar constructions
as “Ponzi schemes,” but their constructions are not directly linked to the
nonexistence of asset bubbles. Santos and Woodford (1997, Lemma 3.8) also
use a somewhat similar construction, but their argument requires a sufficient
degree of impatience on the agent’s preferences. By contrast, Theorem 4.1
does not require any form of impatience.

It seems remarkable that asset bubbles can be ruled out by a simple
condition such as (4.2). No explicit utility function is assumed, and the
only requirement on the binary relation ≺ is Assumption 2.2, which merely
requires strict monotonicity at the given optimal consumption plan c∗.

Intuitively, condition (4.2) ensures that the agent can sell a small fraction
of the asset in any period t ≥ τ . By selling, say, one unit of the asset in
period t ≥ τ , he gains pt, while he loses the dividend stream from period t+1
onward, whose present discounted value is ft. This suggests that pt ≤ ft if the
agent’s current plan is optimal. This intuitive argument can be formalized if
the binary relation ≺ is sufficiently smooth and well behaved. As discussed
above, however, the actual proof of Theorem 4.1 is more involved since it
assumes very little on the binary relation.

4.2 Consequences of Theorem 4.1

In this subsection we provide several consequences of Theorem 4.1. Through-
out this subsection we take an optimal plan (c∗, s∗) as given. We start with a
simple result assuming that the feasibility constraint on asset holdings (2.2)
is given by a sequence of constraints of the form (3.3). As discussed in Sub-
section 3.1, this simple form covers various constraints on borrowing, debt,
and wealth.

Corollary 4.1. Suppose that (2.2) is given by (3.3) with σt ∈ R for all
t ∈ Z+. Suppose further that

lim
t↑∞

(s∗t − σt) > 0. (4.3)

Then the conclusion of Theorem 4.1 holds.
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Proof. Assume (4.3). Let ε ∈ (0, limt↑∞(s∗t − σt)). Then there exists τ ∈ Z+

such that s∗t − σt ≥ ε, or s∗t − ε ≥ σt, for all t ≥ τ . This implies (4.2). The
conclusion of Theorem 4.1 therefore holds.

If there is a constant lower bound on asset holdings st, the above result
reduces to the following.

Corollary 4.2. Suppose that (2.2) is given by (3.2) for some σ ∈ R. Suppose
further that limt↑∞ s

∗
t > σ. Then the conclusion of Theorem 4.1 holds.

Kocherlakota (1992, Proposition 3) in effect shows a special case of the
above result under the following additional assumptions: (i) the binary rela-
tion ≺ is represented by (3.10); (ii) u is continuously differentiable on R++,
strictly increasing, concave, and bounded above or below; and (iii) the opti-
mal plan (c∗, s∗) satisfies

∀t ∈ Z+, c∗t > 0, (4.4)∣∣∣∣∣
∞∑
t=0

βtu(c∗t )

∣∣∣∣∣ <∞. (4.5)

Since Corollary 4.2 requires none of these additional assumptions, it is a
substantial generalization of Proposition 3 in Kocherlakota (1992). He uses
the extra assumptions mostly to derive a transversality condition, which is
crucial to his approach. By contrast, Corollary 4.2 is based on our Theorem
4.1, which is proved by an elementary perturbation argument that fully ex-
ploits the structure of sequential budget constraints. Since Corollary 4.1 and
Theorem 4.1 are even more general, they can also be viewed as generaliza-
tions of Kocherlakota’s result.

Next we present an extremely general no-bubble theorem for representative-
agent models.

Proposition 4.1. Suppose that (2.2) is given by (3.1). Suppose further that

∀t ∈ Z+, s∗t = 1. (4.6)

Then the conclusion of Theorem 4.1 holds.

Proof. Note that (4.6) and (3.1) imply (4.2) with τ = 0 and ε = 1. The
conclusion of Theorem 4.1 therefore holds.
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To our knowledge, there is no result in the literature that covers the
above result in its full generality. As an immediate consequent, we obtain
the familiar asset-pricing formula in the setup of Example 3.2.

Corollary 4.3. In the setup of Example 3.2 (including (3.13)–(3.15)), we
have

∀t ∈ Z+, pt =
∞∑
i=1

u′t+i(c
∗
t+i)

u′t(c
∗
t )

dt+i. (4.7)

It is known that a stochastic version of Corollary 4.3 requires addi-
tional assumptions; see Kamihigashi (1998) and Montrucchio and Privileggi
(2001).5 Kamihigashi (2001, Section 4.2.1) shows a result similar to Corol-
lary 4.3 for a continuous-time model with a nonlinear constraint. Corollary
4.3 seems useful since the exact assumptions required for the asset-pricing
formula (4.7) in the setup of Example 3.2 are not documented in the litera-
ture.

The following result is another immediate consequence of Proposition 4.1.

Proposition 4.2. In the setup of Example 3.3, we have

∀t ∈ Z+, pt =
∞∑
i=1

vt+i(c
∗)

vt(c∗)
dt+i. (4.8)

This result can be shown using Boyd’s (1990) result on a transversality
condition if v(0, 0, . . .) = 0 and if v is recursive, concave, and satisfies a
certain growth condition. Proposition 4.2 shows that none of these conditions
is needed for the asset-pricing formula (4.8).6

5 An Application to a Ramsey Model with

Heterogeneous Agents

It should be clear that our results so far can be used to rule out asset bubbles
in general or partial equilibrium economies with multiple agents and multiple
assets. Indeed, as long as at least one agent can reduce his holdings of one

5See Kamihigashi (2011) for sample-path properties of stochastic asset bubbles.
6See Duffie and Zame (1989) for the corresponding formula for stochastic continuous-

time economies with recursive preferences.
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asset permanently from some period onward, Theorem 4.1 guarantees that
there is no asset bubble on that particular asset. To show such a result, one
can reduce the agent’s budget constraint to the form of (2.1) by letting yt
include all the other assets.

Our results also apply to models with capital accumulation. For example,
consider the model of Becker et al. (2014). There are heterogeneous agents
indexed by j ∈ J , where J is a finite set. Each agent j solves the following
maximization problem:

max
{cj,t,lj,t,kj,t+1}∞t=0

∞∑
t=0

βtjuj(cj,t, 1− lj,t) (5.1)

s.t. ∀t ∈ Z+, cj,t + kj,t+1 = (1 + rt − δ)kj,t + wtlj,t, (5.2)

cj,t ≥ 0, lj,t ∈ [0, 1], kj,t+1 ≥ 0, (5.3)

kj,0 ≥ 0 given, (5.4)

where βj ∈ (0, 1) is agent j’s discount factor, uj : R+ × [0, 1] → [−∞,∞) is
agent j’s utility function, cj,t, lj,t, and kj,t are agent j’s consumption, labor
supply, and capital stock, respectively, rt is the rental rate on capital, δ ∈
(0, 1) is the depreciation rate of capital, and wt is the wage rate.

We could simply borrow the production side and market-clearing condi-
tions of the economy from Becker et al. (2014), but we can present a mean-
ingful result without specifying them. For this purpose we take rt and wt as
given for all t ∈ Z+.

We assume that agent j’s utility function uj(c, 1− l) is strictly increasing
in c ∈ R+ for any l ∈ [0, 1), and that rt − δ ≥ 0 and wt ≥ 0 for all t ∈ Z+.
Given a sequence {lj,t}∞t=0 of labor supply, we define the binary relation ≺
on C by (3.11). We also define qi,t for i, t ∈ Z+ by (2.5)–(2.7) with pt = 1
and dt = rt− δ. Then both Assumptions 2.1 and 2.2 hold under (5.5) below.
The following result is essentially a restatement of Corollary 4.2 with σ = 0.

Proposition 5.1. Suppose that there exists an agent j ∈ J with an optimal
plan {cj,t, lj,t, kj,t+1}∞t=0 such that

∀t ≥ Z+, lj,t ∈ [0, 1), (5.5)

lim
t↑∞

kj,t > 0. (5.6)
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Then

lim
i↑∞

q0,i = 0, (5.7)

∀t ∈ Z+,

∞∑
i=1

qt,t+i(rt − δ) = 1. (5.8)

Becker et al. (2014) show the following under their assumptions:

lim
i↑∞

q0,i(1− δ)i = 0. (5.9)

Note that (5.7) implies (5.9).
One can show the existence of an agent j ∈ J satisfying (5.5) and (5.6)

under appropriate assumptions on the production function and the utility
functions; see Bosi and Seegmuller (2010). Proposition 5.1 can be combined
with such assumptions to conclude (5.7) and (5.8) as equilibrium properties.

6 Concluding Comments

In this paper we established a simple no-bubble theorem that applies to a
wide range of deterministic economies with infinitely lived agents facing se-
quential budget constraints. In particular, we showed that asset bubbles can
be ruled out if at least one agent can reduce his asset holdings permanently
from some period onward. This is a substantial generalization of Kocher-
lakota’s (1992) result on asset bubbles and short sales constraints.

Our no-bubble theorem is based on the optimal behavior of a single agent,
requiring virtually no assumption beyond the strict monotonicity of prefer-
ences. One of the useful consequences of the theorem is the asset-pricing
formula (4.8) for a representative-agent economy with a non-time-additive,
non-recursive utility function. Additional results can be shown by using the
results presented in this paper in conjunction with other arguments based on
market-clearing and aggregation.

Appendix A Proof of Theorem 4.1

Let (c∗, s∗) be an optimal plan. Recalling (2.20), it suffices to verify that

lim
i↑∞

q0,ipi = 0. (A.1)
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Suppose by way of contradiction that

lim
i↑∞

q0,ipi > 0. (A.2)

Then since q0,ipi > 0 for all i ∈ Z+ by Assumption 2.1 and (2.6), it follows
that there exists b > 0 such that

∀i ∈ Z+, q0,ipi ≥ b. (A.3)

Equivalently, we have 1/pi ≤ q0,i/b for all i ∈ Z+. Multiplying through by di
and summing over i ∈ N, we obtain

∞∑
i=1

di
pi
≤

∞∑
i=1

q0,idi
b

=
f0
b
<∞, (A.4)

where the equality uses (2.16)7 and the last inequality holds by (2.17).
Let τ ∈ Z+ and ε > 0 be given by (4.2). For each δ ∈ (0, ε) we construct

an alternative plan (cδ, sδ) as follows:

cδt =

{
c∗t if t 6= τ ,

c∗τ + pτδ if t = τ ,
(A.5)

sδt =


s∗t if t ≤ τ − 1,

s∗τ − δ if t = τ ,

[yt + (pt + dt)s
δ
t−1 − c∗t ]/pt if τ ≥ τ + 1.

(A.6)

It suffices to show that (cδ, sδ) is feasible for δ > 0 sufficiently small; for then,
we have c∗ ≺ cδ by (A.5) and Assumption 2.2, contradicting the optimality
of (c∗, s∗).

Note that (cδ, sδ) satisfies (2.1) by construction. By (2.1) and (A.5) we
have

∀t ≥ τ + 1, pt(s
∗
t − sδt ) = (pt + dt)(s

∗
t−1 − sδt−1). (A.7)

For t ≥ τ define

δt = s∗t − sδt . (A.8)

7An arguments similar to (A.4) is used by Montrucchio (2004, Theorem 2).
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Note that δτ = δ by (A.6). We have ptδt = (pt + dt)δt−1 for all t > τ by
(A.7). Thus for any t > τ we have

0 ≤ δt =
pt + dt
pt

δt−1 =
pt + dt
pt

pt−1 + dt−1
pt−1

δt−2 = · · · (A.9)

= δ
t∏

i=τ+1

pi + di
pi

≤ δ
∞∏
i=1

pi + di
pi

, (A.10)

where the equality in (A.10) holds since δτ = δ, and the inequality in (A.10)
holds since dt ≥ 0 for all t ∈ Z+ by Assumption 2.1.8

To show that (cδ, sδ) is feasible, it suffices to verify that δt ≤ ε for all
t ≥ τ ; for then, we have s ∈ S(s−1, y, p, d) by (4.2), (A.9), and (A.8). For
this purpose, note from (A.4) that

f0
b
≥

∞∑
i=1

di
pi
≥

∞∑
i=1

ln

(
1 +

di
pi

)
(A.11)

=
∞∑
i=1

ln

(
pi + di
pi

)
= ln

(
∞∏
i=1

pi + di
pi

)
. (A.12)

It follows that
∞∏
i=1

pi + di
pi

<∞. (A.13)

Using this and recalling (A.9)–(A.10), we can choose δ > 0 small enough
that 0 ≤ δt ≤ ε for all t ≥ τ . For such δ, (cδ, sδ) is feasible, contradicting the
optimality of (c∗, s∗). We have verified (A.1), which implies the conclusion
of the theorem.
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