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RECURSIVE UTILITY AND THE SOLUTION TO THE BELLMAN
EQUATION

MASAYUKI YAO

Abstract. This study infinite-horizon deterministic dynamic programming problems

based on recursive utility in discrete time. Under a small number of conditions, we show

that the Bellman operator has a fixed point using Knaster–Tarski’s fixed point theorem.

We also show the fixed point of the Bellman operator can be computed by iteration

from the initial function between the lower boundary and the fixed point. To show the

convergence theorem, we use Tarski–Kantorovitch’s fixed point theorem.

1. Introduction

Dynamic programming has become an important tool in economic theory, particularly

since Stokey and Lucas (1989). Due to technical reasons, many dynamic economic models

are based on time additive separable utility with a constant discount rate. However,

these models have been criticized with respect to consistency with economic situations.

Becker (1980) examines the long-run behavior of economy in a one-good model based

on time additive separable utility with a constant discount rate of dynamic equilibrium

with heterogeneous households. He discussed that unless all of the households have the

same discount rate, the household which has the lowest discount rate owns all the capital

in the long-run and all the others consume nothing using their labor income to service

their dept. So, Lucas and Stokey (1984) tackles this problem using recursive utility.

Recently, recursive utility has attracted attention, replacing time additive utility with

a constant discount rate. Recursive utility comprises a wide class of representations of

utility including time additive utility with a constant discount rate. 1
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Recursive utility as introduced by Koopmans (1960) formalizes a method used by Fisher

(1907). Many researchers have proposed solutions to the problem of dynamic program-

ming on recursive utility, often using an aggregator function constructed from recursive

utility functions to solve the problem. The aggregator method was first proposed by Lucas

and Stoky (1984). Important studies with the aggregator function are the method based

on the contraction mapping theorem used by Lucas and Stokey (1984), the weighted con-

traction method used by Boyd (1990), the partial sum method used for all aggregators

by Le Van and Vailakis (2005), k-contraction used by Ricón-Zapatero and Rodŕıguez-

Palmero (2007) and Biconvergence condition used by Streufert (1990, 1992). Becker and

Boyd (1997) and Boyd (2006) give a good exposition of these studies. With the excep-

tion of Streufert’s method, these approaches assume a variant of the Lipschitz condition

to the aggregator function. Streufert’s (1990, 1992) method is unique compared to the

other approaches, as it does not use any fixed point theorem. Streufert (1998) provides a

detailed exposition of these results and methods.

However, these contributions heavily rely on topological assumptions, such as continu-

ity of a utility function and continuity of a feasible correspondence. Kamihigashi (2014)

establishes some elementary results on fixed points of the Bellman operator without topo-

logical assumptions in a dynamic economic model based on time additive separable utility

with a constant discount rate.

This paper is motivated by the method of Streufert (1992) and the idea of Kamihigashi

(2014). The goal is to obtain some results on the solution to the Bellman equation – or

fixed points of the Bellman operator – without topological assumptions in the dynamic

economic model based on recursive utility.

As in Kamihigashi’s (2014) approach, we use a fixed point theorem of an ordered

space instead of a variant of the contraction mapping theorem to solve the problem.

Kamihigashi (2014) uses the Knaster–Tarski fixed point theorem, which is a sort of a

fixed point theorem of an ordered space. However, the Knaster–Tarski fixed point theorem

only shows existence of a fixed point; it does not show that some sequence converges to

the fixed point. We show a fixed point theorem for the Bellman operator using Tarski-

Kantrovitch’s fixed point theorem2 3,. Using the theorem, we show that a fixed point of

the Bellman operator can be computed by iteration starting from some boundary function
4.

Our main results are as follows. Given order interval of functions that is mapped

into itself by the Bellman operator, if the aggregator has certain properties, then (a) the

Bellman operator has a fixed point in the order interval and (b) the fixed point can be

computed iteratively starting from the lower boundary of the order interval. Under some

2In some research field, the fixed point theorem is called Kleene’s fixed point theorem, for example see
Baranga (1991)
3Knaster–Tarski fixed point theorem is sometimes used in macro-economic theory. See, for example,
Datta and Reffett (2006).
4Kamihigashi, Reffet and Yao (2015), Kamihigashi and Yao (2015a) and Kamihigashi and Yao (2015b)
use similar approach of this paper in the model of time addtive separable utility.
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topological assumptions, if an upper boundary with certain properties exists, then (i)

the Bellman operator has a fixed point in the order interval, (ii) this fixed point can be

computed iteratively starting from the upper boundary of the order interval. Using this

result, we can construct an alternative proof of Theorem 2.3 (a) in Streufert (1998).

The remainder of this article is organized as follows. In Section 2, we prepare some

mathematical tools. In Section 3, we describe the model based on Streufert’s (1992)

without topological assumptions of the state space and find a fixed point of Bellman

operator. In Section 4, we show that the fixed point operator can be computed iteratively

starting from the upper boundary of the order interval with some assumption about

continuity of the Bellman operator or topological assumptions. In Appendix A, we state

proofs on our results.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers, by Z+ the set of

nonnegative integers, by R the set of real numbers and by R+ the set of positive real

numbers.

A partially ordered set is pair (P,≤), where P is nonempty set and ≤ is a relation in

P which is reflexive (p ≤ p for all p ∈ P ), antisymmetric (for p, q ∈ P , p ≤ q and q ≤ p

implies p = q) and transitive (for p, q, r ∈ P , p ≤ and q ≤ r implies p ≤ r). Let (P ;≤) be

a partially ordered set and M ⊂ P be a nonempty subset. An upper (resp. lower) bound

for M is an element p ∈ P with m ≤ p (resp. m ≤ p) for each m ∈ M . The least (resp.

greatest) element of M ⊂ P is an element p ∈ M satisfying p ≤ m (resp. m ≤ p) forall

m ∈ M . The supremum (resp. infimum) of M ⊂ P denoted as supM (resp. infM), is

the least upper bound (resp. greatest lower bound) of M . A partially ordered set (P ;≤)

is complete lattice if every subset M of P has both the supremum and infimum in (P,≤).

M ⊂ P is said to be a chain if for p, q ∈ M , either p ≤ q or q ≤ p. A sequence {pn}n∈N
is called increasing (resp. decreasing) if pn ≤ pn+1 (resp. pn+1 ≤ pn) for all n ∈ N. A

mapping F : P → P is said to be monotone if for p, q ∈ P , p ≤ q implies F (p) ≤ F (q).

Theorem 2.1 (Knaster–Tarski). Let (P,≤) be a partially ordered set and T : P → P

monotone. Assume that there is a p0 ∈ P such that

(i) p0 ≤ T (p0); and

(ii) every chain in P0 ≡ {p ∈ P : p0 ≤ p} has a supremum.

Then T has a fixed point in P0.

Proof. See Aliprantis and Border (2006), p16. □

Using the inverse ordering and infimum, we have the following dual version of Theorem

2.1.

Corollary 2.1. Let (P,≤) be a partially ordered set and T : P → P monotone. Assume

that there is a p0 ∈ P such that
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(i) T (p0) ≤ p0; and

(ii) every chain in P0 ≡ {p ∈ P : p ≤ p0} has a infimum.

Then T has a fixed point in P0.

A mapping F from a partially ordered set (P,≤) into itself is said to be s-order contin-

uous (resp. i-order continuous) if for every countable chain C ⊂ P having a supremum

(resp. infimum), the image F (C) has a supremum (resp. infimum) and

(1) supF (C) = F (supC) (resp. inf F (C) = F (inf C)).

It is clear that s-order continuous (resp. i-order continuous) is monotone.

Theorem 2.2 (Tarski–Kantorovitch). Let (P,≤) be a partially ordered set and T : P → P

s–order continuous. Assume that there is a p0 ∈ P such that

(i) p0 ≤ T (p0); and

(ii) every countable chain in P0 ≡ {p ∈ P : p0 ≤ p} has a supremum.

Then T has a fixed point p∗ = supn∈N T
np0 and p∗ is the infimum of the set of the fixed

points of T in P0.

Proof. See Granas and Dugundji (2003), p26. □

Using the inverse ordering and infimum, we have the following dual version of Theorem

2.2.

Corollary 2.2. Let (P,≤) be a partially ordered set and T : P → P i–order continuous.

Assume that there is a p0 ∈ P such that

(i) T (p0) ≤ p0; and

(ii) every countable chain in P0 ≡ {p ∈ P : p ≤ p0} has a infimum.

Then T has a fixed point p∗ = infn∈N T
np0 and p∗ is the supremum of the set of the fixed

points of T in P0.

The following result is from Kamihigashi (2008).

Lemma 2.1. Let Y and Z be sets. Let Ω ⊂ Y × Z, and let f ; Ω → R. For any y ∈ Y

and z ∈ Z, define

Ωy = {z ∈ Z : (y, z) ∈ Ω},(2)

Ωz = {y ∈ Y : (y, z) ∈ Ω}.(3)

Then sup(y,z)∈Ω f(y, z) = supy∈Y supz∈Ωy
f(y, z) = supy∈Z supy∈Ωz

f(y, z).

Proof. See Lemma 1 in Kamihigashi (2008). □

The following results are elementary but plays an important role in this paper.

Lemma 2.2. Let f be a monotone and lower semicontinuous function from R into itself

and let A ⊂ R. Then, we have

(4) sup f(A) = f(supA).
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Proof. See Appendix A. □

By similar proof, we have the following dual version of Lemma 2.2

Corollary 2.3. Let f be a monotone and upper semicontinuous function from R into

itself and let A ⊂ R. Then, we have

(5) inf f(A) = f(inf A).

3. The Model and Results

Let X be a nonempty set. An infinite sequence of elements of X will be denoted by

{xt}∞t=0, with x ∈ X for all t ∈ Z+. The space of these sequence is denoted by X∞. Let

Γ be a nonempty correspondence from X to X. Let U : X∞ → R where R = [−∞,∞].

In the optimization problem introduced below, t ∈ Z+ is a discrete time period, X is a

state space, Γ is the feasible correspondence and U is a utility function.

Example 3.1. In the one–sector growth model, today’s state (consuming and saving)

x = (c, s) ∈ R2
+ is feasible if c + s does not exceed the income F (s0) determined by

yesterday’s saving s0. There we define X = R2
+ with x = (c, s), assume that F : R+ → R+,

and define Γ : X → 2X by Γ(x0) = {x = (c, s) ∈ X : c+ s ≤ F (x0)}.

Let S denote the shift operator defined by S({xt}∞t=0) = {xt}∞t=1.

We assume that there exists an aggregator W : X × R → R defined by

(A1) ∀{xt}∞t=0 ∈ X∞,

(6) U({xt}∞t=0) = W (x0, U(S({xt}∞t=0)))

We call such U a recursive utility function. We also assume that

(A2) W is weakly increasing in its second argument, that is, for all x ∈ X and all

y, z ∈ R with y ≤ z, W (x, y) ≤ W (x, z).

The followings are the examples of a recursive utility function in one–sector growth

model.

Example 3.2 (the discounted TAS utility). A simple example of a recursive utility func-

tion is the discounted time additive separable (TAS) form

(7) U({ct}∞t=0) =
∞∑
t=0

βtu(ct)

which has an aggregator W (c0, U({ct}∞t=1)) = u(c0) + β
∑∞

t=1 β
t−1u(ct), a return function

u : R+ → [−∞,∞) and a discount factor β ∈ (0, 1).

Example 3.3 (the CEIS aggregator, the additive CRRA utility). The aggregator W

exhibits constant elasticity of intertemporal substitution (CEIS) if

(8) W (x, y) = (x1−1/γ + βy1−1/γ)
1

1−1/γ ,
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where γ > 0 is the elasticity of intertemporal substitution and β > 0 is the discount factor.

If the return function u(c) = c and γ = 1/δ, we have the standard additive CRRA utility

function as follows:

(9) U({ct}∞t=0) = (
∞∑
t=0

βtc1−δ
t )

1
1−δ .

Example 3.4 (the EHU aggregator). A non-TAS utility is given by 5

(10) U({ct}∞t=0) = −
∞∑
t=0

exp(−[
t∑

τ=0

u(cτ )]).

This function has return function u and aggregator

(11) W (x, y) = (−1 + y) exp(−u(x)).

We refer to it Epstein-Hynes-Uzawa (EHU) aggregator.

Let Π and Π(x0) denote the set of feasible paths and that the set of feasible paths from

an initial state x0 ∈ X respectively.

(12) Π = {{xt}∞t=0 ∈ X∞ : xt+1 ∈ Γ(xt) (∀t ∈ Z+)},

(13) Π(x0) = {{xt}∞t=1 ∈ X∞ : {xt}∞t=0 ∈ Π}, ∀x0 ∈ X.

Given x0 ∈ X, consider the following optimization problem:

(14) sup
{xt}∞t=1∈Π(x0)

U({xt}∞t=0).

The value function v∗ : X → R is defined by

(15) v∗(x0) = sup
{xt}∞t=1∈Π(x0)

U({xt}∞t=0), ∀x0 ∈ X.

Let V be the set of functions v : X → R, and let v, w ∈ V . We define the partial order

≤ on V in the usual way:

(16) v ≤ v′ ⇒ v(x) ≤ v′(x), ∀x ∈ X.

If v ≤ v′, we define the order interval [v, v′] by

(17) [v, v′] = {f ∈ V : v ≤ f ≤ v′}.

The order interval [v, v∞] means [v(x), v∞(x)] with v∞(x) = ∞ for all x ∈ X.

The Bellman operator B from V into itself is defined by

(18) Bv(x) = sup
y∈Γ(x)

W (x, v(y)),∀x ∈ X, v ∈ V.

From assumption (A2) and (18), B is a monotone operator:

(19) v ≤ v′ ⇒ Bv ≤ Bv′

5The utility is discrete-time version of the modified Uzawa (1964) utility by Epstein and Hynes (1983).
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We now present some fixed point theorems for the Bellman operator.

Proposition 3.1. Assume that there exists v ∈ V such that

(20) v ≤ Bv

Then, there exist a fixed point of B in [v, v∞].

Proof. See the Appendix A. □

As a direct consequence of Proposition 3.1 and Corollary 2.1, we have the following

corollary:

Corollary 3.1. Assume that there exists v ∈ V such that

(21) Bv ≤ v

Then, there exist a fixed point of B in [v−∞, v].

By Proposition 3.2 and Corollary 2.2, we have the following corollary.

Corollary 3.2. Assume that there exists v, v ∈ V such that

v ≤ Bv(22)

Bv ≤ v(23)

v ≤ v.(24)

Then, there exist a fixed point of B in [v, v].

The following proposition shows that the value function v∗ is fixed point of B in V .

Proposition 3.2. Assume that

(LC) W is lower semicontinuous in its second argument.

Then v∗ ∈ V is a fixed point of B.

Proof. See the Appendix A. □

As stated above, we know that the Bellman operator has a fixed point if there exists

some boundary function and the value function is the fixed point of the Bellman operator.

These are merely the discussion about the existence of a fixed point. From a practical

perspective, we need a method to calculate the fixed point of the Bellman operator. In

the next result, we solve the problem to add some assumption to aggregator.

Theorem 3.1. Assume (LC), and that there exists v ∈ V such that

(25) v ≤ Bv.

Then the following conclusions hold:

(a) v∗ ≡ supn∈N(B
nv) is the least fixed point of B in [v, v∞].

(b) The increasing sequence {Bnv}n∈N convergences to v∗ pointwise.
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Proof. See the Appendix A. □

As a direct consequence of Theorem 3.1, we have the following corollary:

Corollary 3.3. Assume (LC), and that there exist v, v ∈ V such that

v ≤ Bv,(26)

Bv ≤ v,(27)

v ≤ v.(28)

Then the following conclusions hold:

(a) v∗ ≡ supn∈N(B
nv) is the least fixed point of B in [v, v].

(b) The increasing sequence {Bnv}n∈N convergences to v∗ pointwise.

Theorem 3.1 and Corollary 3.3 say that the fixed point of the Bellman operator can

be computed by iteration starting from the lower boundary v which satisfies suitable

conditions. This approach has the applicability to a wide class of the dynamic optimization

problem. However, there is a problem that how should we find such boundary. The next

result is a partial answer of the problem.

Proposition 3.3. Assume (LC), and that there exists v ∈ V such that

(29) v ≤ Bv.

Then the following conclusions hold:

(a) v∗ ≡ supn∈N(B
nv) is the least fixed point of B in [v, v∞].

(b’) For all v0 ∈ [v, v∗], the increasing sequence {Bnv0}n∈N convergences to v∗ point-

wise.

Proof. See the Appendix A. □

With respect to the precondition and the conclusion (a), Proposition 3.3 is the same as

Theorem 3.1. Conclusion (b’) in Proposition 3.3 say that an arbitrary function v0 between

the boundary function v and the least fixed point v∗ converges to v∗ pointwise. If there

exists the boundary function, it means that the initial function that you start iteration

can be chosen freely to some extent.

4. The convergence from the upper boundary

In the previous section, we show that the fixed point of the Bellman operator can

be computed by iteration starting from the lower boundary. The natural question is,

can the fixed point be computed by iteration starting from the upper boundary of the

order interval just as in Theorem 3.1. The answer is no under our assumptions, even if the

aggregator function W has some assumption as (AS). In the standard case of the bounded

returns, the fixed point of the Bellman equation can be computed by iteration starting

from any function. But, in this case, that sup and inf cannot be replaced in general is the
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cause of iteration starting from the upper boundary of the order interval not holding. In

this section, we tackle the problem.

At first, we assume that B is i–order continuous. Then we have the following result.

Theorem 4.1. Assume that there exists v ∈ V such that

(30) Bv ≤ v.

and that B is i–order continuous on [v−∞, v]. Then the following conclusions hold:

(a) v∗ ≡ infn∈N(B
nv) is the greatest fixed point of B in [v−∞, v].

(b) The decreasing sequence {Bnv}n∈N convergences to v∗ pointwise.

Proof. See the Appendix A. □

The conclusions in Theorem 4.1 may be regarded as a dual version of the conclusion

in Theorem 3.1. However, i-order continuity of the Bellman operator does not hold in

general since it means that for all x ∈ X and all {vn}n∈N ⊂ [v−∞, v],

(31) inf
n∈N

sup
y∈Γ(x)

W (x, vn(y)) = sup
y∈Γ(x)

inf
n∈N

W (x, vn(y)).

That is, the cause that the dual version of Theorem 3.1 does not hold is due to the fact

that the Bellman operator is defined by supremum.

We make the following topological assumptions:

(i) the state space is a topological space;

(ii) the feasible correspondence is upper hemicontinuous and compact-valued; and

(iii) the aggregator function is upper semicontinuous for both arguments.

That is,

Assumption 4.1. X is a topological space, Γ is upper hemicontinuous and compact-valued

and W is upper semicontinuous for both arguments.

To show the next theorem, we prepare the following two lemmas. The first lemma is

standard result.

Lemma 4.1. Let v be any upper semicontinuous function in V . Then, the following

conditions hold under assumption 4.1:

(i) for all x ∈ X, maxy∈Γ(x) W (x, v(y)) exists;

(ii) Bv is upper semicontinuous and Bv ∈ V ; and

(iii) for all n ∈ N, Bn is upper semicontinuous and Bn ∈ V .

Proof. See the Appendix A. □

The following lemma is a variant of Sion’s minimax theorem (Sion (1958)) and the proof

is inspired by Komiya’s elementary proof of Sion’s minimax theorem (Komiya (1988)).
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Lemma 4.2. Let C be a nonempty compact subset of a topological space, and let {fn}n∈N
be a wealy decreasing sequence of an upper semicontinuous functions. Then

(32) max
x∈C

inf
n∈N

fn(x) = inf
n∈N

max
x∈C

fn(x)

Proof. See the Appendix A.6 □

Let V u denote the set of upper semicontinous functions from X into R where X is

a topological space. It is clear that V u ⊂ V . Using above lemmas, we can prove the

following fixed point theorem.

Theorem 4.2. Under Assumption 4.1, assume that there exists v ∈ V u such that

(33) Bv ≤ v.

Then, the following conditions hold:

(a) v∗ ≡ infn∈N(B
nv) is the greatest fixed point of B in [v−∞, v] and v∗ is upper

semicontinuous.

(b) The decreasing sequence {Bnv}n∈N convergences to v∗ pointwise.

Proof. See the Appendix A. □

Using Theorem 4.1, we can construct an an alternative proof of Theorem 2.3 (a) in

Streufert (1998).

Appendix A. Proofs

A.1. Proof of Lemma 2.2. At first we show that sup f(A) ≤ f(supA). For all a ∈ A,

a ≤ supA. By monotonicity of f , we have f(x) ≤ f(supA). Then we have sup f(A) ≤
f(supA).

To show that the inverse inequality, we proceed by cases.

Case 1: supA ∈ R.
Let α = supA. For all n ∈ N, there exists an ∈ A such that

(34) an > α + 1/n.

By definition of supremum, an ≤ α. Then, an → α as n → ∞. So,

f(supA) = f(α)(35)

≤ lim inf
n→∞

f(an)(36)

≤ sup
n∈N

f(an)(37)

≤ sup f(A),(38)

6After completing proof, we find similar result and it is often called Dini–Cartan theorem. See Dellacherie
and Meyer (2011), p98.
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where (36) holds since f is a lower semicontinuous function. Then we have f(supA) ≤
sup f(A).

Case 2: supA = ∞. Let α = supA. For all n ∈ N, there exists an ∈ A such that

an > max{n, an−1}.

Then an → α as n → ∞. By the same argument of the Case 1, we have f(supA) ≤
sup f(A).

Case 3: supA = −∞. Then, a = −∞ for all a ∈ A. Form the left hand side of (4), we

have

(39) sup f(A) = sup
x∈A

f(x) = f(−∞).

Form the right hand side of (4), we have

(40) f(supA) = f(−∞).

By (39) and (40), we obtain (4).

A.2. Proof of Proposition 3.1. Since [v, v∞] is complete lattice, the subset has supre-

rmum.in [v, v∞]. By the monotonicity of B and (20), B maps [v, v∞] into itself. Then

{Bnv} is the countable chain in [v, v∞]. Thus, [v, v∞] has a at most one chain and every

chain has suprermum in [v, v∞]. Therefore, B has fixed points in [v, v∞] by Theorem 2.1.

A.3. Proof of Proposition 3.2. Let A ⊂ R. For all b ∈ A, b ≤ supa∈A a. By the

monotonicity of B, we have W (x, b) ≤ W (x, supa∈A a) for all x ∈ X. Then, we obtain

supa∈A W (x, a) ≤ W (x, supa∈A a). By (LC), we have

(41) sup
a∈A

W (x, a) = W (x, sup
a∈A

a).

For all x0 ∈ X, we have

Bv∗(x0) = sup
x1∈Γ(x0)

W (x0, v
∗(x1))(42)

= sup
x1∈Γ(x0)

W (x0, sup
{xt}∞t=2∈Π(x1)

U({xt}∞t=1))(43)

= sup
x1∈Γ(x0)

sup
{xt}∞t=2∈Π(x1)

W (x0, U({xt}∞t=1))(44)

= sup
{xt}∞t=1∈Π(x0)

W (x0, U({xt}∞t=1))(45)

= v∗(x0)(46)

where (43) follows by definition of V ∗, (44) follows by (41) and that x1 is independent by

{xt}∞t=2 and (45) follows by Lemma 2.1. Since x0 is arbitrary in X, Bv∗ = v∗. That is, v∗

is fixed point of B in V .
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A.4. Proof of Theorem 3.1. By the monotonicity of B and (25), B maps [v, v∞] into

itself. We apply Theorem 2.2 to B : [v, v∞] → [v, v∞]. For this purpose, it suffices to show

that every countable chain in [v, v∞] has superemum and that B is s–order continuous on

[v, v∞].

Since [v, v∞] is complete lattice, every subset of [v, v∞] has supremum. Then To see

that every countable chain in [v, v∞] has superemum.

To see that B is s–order continuous, let {vn}n∈N be a countable chain in [v, v∞]. Let

x ∈ X. By the monotonicity of B, we have W (x, vn(y)) ≤ W (x, supn∈N vn(y)) for all

n ∈ N and all y ∈ X. Then, we obtain supn∈N W (x, supn∈N vn(y)) ≤ W (x, supn∈N vn(y)).

By (LC), we have

(47) sup
n∈N

W (x, vn(y)) = W (x, sup
n∈N

vn(y)).

Then, We have

[B(sup
n∈N

vn)](x) = sup
y∈Γ(x)

W (x, (sup
n∈N

vn)(y))(48)

= sup
y∈Γ(x)

sup
n∈N

W (x, vn(y))(49)

= sup
n∈N

sup
y∈Γ(x)

W (x, vn(y))(50)

= [sup
n∈N

(Bvn)](x)(51)

where (49) follows by (47), and (50) follows by Lemma 2.1. Since x is arbitrary, it follows

that B supn∈N vn = supn∈N Bvn. Thus, B is s–order continuous on [v, v∞].

Now by Theorem 2.2, conclusion (a) follows. To see (b), by the monotonicity of B and

(29), we have v ≤ Bv ≤ B2v ≤ · · · . Then {Bnv}n∈N is increasing. By Theorem 2.2,

supn∈N B
nv = v∗. Therefore, we have the desired result.

A.5. Proof of Proposition 3.3. To see (b’), let v0 ∈ [v, v∗]. That is, v ≤ v0 ≤ v∗. By

the monotonicity of B, Bv ≤ Bv0 ≤ Bv∗ = v∗, and by induction Bnv ≤ Bnv0 ≤ v∗.

Since {Bnv}n∈N converges to v∗ pointwise, {Bnv0}n∈N also converges to v∗ pointwise by

the squeeze theorem.

A.6. Proof of Theorem 4.1. By the monotonicity of B and (30), B maps [v−∞, v] into

itself. By the assumption, B is i–order continous. Using similar argument in the proof of

Theorem 3.1, we have that every countable chain in [v−∞, v] has infimum Now by Corollary

2.2, conclusion (a) follows. To see (b), by the monotonicity of B and (30), we have

v ≥ Bv ≥ B2v ≥ · · · . Then {Bnv}n∈N is decreasing. By Corollary 2.2, infn∈N B
nv = v∗.

A.7. Proof of Lemma 4.1.

(i) By Assumption 4.1, W is upper semicontinuous for both arguments and Γ is

nonempty, compact-valued. Then maxy∈Γ(x) W (x, v(y)) exists for all x ∈ X by the

Weierstrass maximization theorem.
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(ii) By (i), for all x ∈ X,

(52) (Bv)(x) = max
y∈Γ(x)

W (x, v(y)).

Using the Berge maximization theorem, (Bv)(x) is upper semicontinuous for all

x ∈ X. Since x is arbitrary in X, Bv is upper semicontinuous. By the definition

of V , Bv ∈ V .

(iii) By the definition of V and the results of (i) and (ii), we have the desired result.

A.8. Proof of Lemma 4.2. It is obvious that maxx∈C infn∈N fn(x) ≤ infn∈N maxx∈C fn(x).

Hence, we show the reverse inequality. Let α ∈ R with α > maxx∈C infn∈N fn(x). We

define Cn = {x ∈ C : fn(x) ≥ α} for all n ∈ N. By upper semicontinuity of fn, Cn is com-

pact. Then
∩

n∈NCn = ∅, and hence there exist n1, · · · , nm ∈ N such that
∩m

i=1Cni
= ∅.

Thus we have α > maxx∈C min1≤i≤m f(x, ni). Without loss of generality, n1 ≥ · · · ≥ nm.

Since f is weakly decreasing in its second argument, f(x, n1) ≥ · · · ≥ f(x, nm) for all

x ∈ C. Let nm = n0. We have f(x, n0) = min1≤i≤m f(x, ni) for all x ∈ C. Then, there

exists n0 ∈ N with α > maxx∈C f(x, n0). Thus we obtain α > infn∈Nmaxx∈C f(x, n).

Therefore we have

(53) max
x∈C

inf
n∈N

f(x, n) ≥ inf
n∈N

max
x∈C

f(x, n).

A.9. Proof of Theorem 4.2. By the monotonicity of B and (33), B maps [v−∞, v] into

itself. We apply Theorem 2.2 to B : [v−∞, v] → [v−∞, v]. For this purpose, it suffices to

show that every countable chain in [v−∞, v] has infimum and that B is i–order continuous

on [v−∞, v].

Since [v−∞, v] is complete lattice, every subset of [v−∞, v] has supremum. Then to see

that every countable chain in [v−∞, v] has superemum.

To see that B is i–order continuous, let {vn}n∈N be a countable chain in [v−∞, v]. Since

B(vn) ⊂ [v−∞, v], infn∈N B(vn) ∈ [v−∞, v]. Let x ∈ X. By Lemma 4.1 and 4.2, we have

inf
n∈N

[B(vn)](x) = inf
n∈N

max
y∈Γ(x)

{W (x, vn(y))}(54)

= max
y∈Γ(x)

{W (x, inf
n∈N

vn(y))}(55)

= [B( inf
n∈N

vn)](x).(56)

Since x is arbitrary, it follows that B infn∈N vn = infn∈NBvn. Thus, B is i–order continuous

on [v−∞, v].

Now by Corollary 2.2, conclusion (a) follows. To see (b), by the monotonicity of B and

(33), we have v ≥ Bv ≥ B2v ≥ · · · . Then {Bnv}n∈N is decreasing. By Corollary 2.2,

infn∈NB
nv = v∗. Therefore, we have the desired result.
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