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Abstract

We study the international transmission of bubble crashes by ana-
lyzing stationary sunspot equilibria in a two-country overlapping gen-
erations exchange economy with stochastic bubbles. We consider two
cases of sunspot shocks. In the first case, we assume that only the
foreign country receives a sunspot shock, while in the second, we as-
sume that both countries independently receive sunspot shocks. In the
first case, a bubble crash in the foreign country is always accompanied
by a bubble crash in the home country. In the second case, a bub-
ble crash in the foreign country can have a positive or negative effect
on the home bubble. We also show that there exists a unique locally
isolated stationary sunspot equilibrium, and that it is locally unstable.
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1 Introduction

The history of financial markets overflows with episodes of asset bubbles
(e.g., Kindleberger and Aliber, 2005). Due to global financial integration
over the past few decades, financial markets are now highly interdependent
across countries (e.g., Tsutsui and Hirayama, 2010; Ehrmann et al., 2011;
Madaleno and Pinho, 2012). As a consequence, the bursting of an asset
bubble in one country can have significant impacts on financial markets in
other countries. This is what may have happened during the global financial
crisis of 2007-2008.

Since this event, the macroeconomic literature on asset bubbles has been
growing rapidly. Much of the recent literature considers models of bubbles
based on financial frictions and examines the real effects of bubbles; see,
e.g., Farhi and Tirole (2012), Martin and Ventura (2012), and Miao and
Wang (2012a, 2012b).1 On the other hand, somewhat surprisingly, very little
theoretical work has been done on the international transmission of bubble
crashes in highly integrated financial markets.

There have of course been some closely related studies. For example, Ven-
tura (2012) showed that bubbles may comove across countries in an overlap-
ping generations model consisting of multiple countries with different levels
of productivity. However, in his model, financial markets in different coun-
tries are completely segregated. Tandon and Wang (2003) studied currency
substitution in a small open overlapping generations model by analyzing the
dynamics of a stochastic bubble, but their analysis was restricted to the de-
terministic dynamics of the bubble prior to its burst. A recent paper by
Martin and Ventura (2015) considers the international transmission of credit
bubbles, but in their model the bubbles are affected by a common state
variable and assumed to comove.

The purpose of this paper is to analyze the international transmission
of bubble crashes in fully integrated financial markets. In other words, we
wish to understand the effect of the bursting of a bubble in one country on a
bubble in another. For example, if a bubble in one country bursts, then what
happens to a bubble in another country when the relevant financial markets
are fully integrated? This type of question cannot be answered if the bubbles
are assumed to comove at the outset.

1See Miao (2014) for a recent survey. See Kamihigashi (2001, 2008, 2015) and the
references therein for discussion on the earlier literature on bubbles.
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For this purpose we construct a two-country version of the overlapping-
generations exchange economy developed by Weil (1987).2 The countries,
called “home” and “foreign,” are perfectly symmetric in terms of fundamen-
tals. There is a unique consumption good worldwide, and each country has
an intrinsically useless asset, or a “bubble.” The good and asset markets are
fully integrated internationally; agents in either country have full access to
the good and asset markets in both countries.

In this setting, we consider two cases of sunspot shocks. In the first case,
we assume that only the foreign country receives a sunspot shock, which has
no direct influence on the fundamentals of the economy. A sunspot shock
occurs only once over the infinite horizon, with a constant probability in
each period. We assume that the bubble in the foreign country bursts if a
sunspot shock occurs, and remains at a constant level otherwise. How does
the bubble in the home country react to the bursting of the foreign bubble
when the home bubble is not required to react at all? We show that the
home bubble inevitably bursts simultaneously in response to the bursting of
the foreign bubble.

In the second case, we assume that both countries receive sunspot shocks
independently. In each country, a sunspot shock occurs only once over the
infinite horizon with a constant probability in each period. But this probabil-
ity is assumed to differ across countries. As in the previous case, we assume
that the foreign bubble bursts if a sunspot shock occurs in the foreign coun-
try. Likewise, the home bubble bursts if a sunspot shock occurs in the home
country. We show that if the foreign bubble bursts, then the home bubble
either bursts simultaneously or jumps to a higher level. Hence, unlike in the
previous case, a bubble crash in one country can have a positive or negative
effect on the bubble in the other country.

The stationary sunspot equilibrium in which a bubble crash in one country
has a positive effect on the bubble in the other country is locally isolated.
Any other stationary sunspot equilibrium shown in this paper belongs to a
continuum of stationary sunspot equilibria. Analyzing the local dynamics
around the locally isolated stationary sunspot equilibrium, we show that
this equilibrium is locally unstable. Thus to achieve this stationary sunspot
equilibrium, the economy must initially jump to this equilibrium.

As discussed above, this paper builds upon the work of Weil (1987) and

2See Wigniolle (2014) for a recent extension of Weil’s model based on a rank-dependent
utility function.
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is most closely related to the literature on asset bubbles. Another strand of
literature related to this paper is that on sunspot equilibria in two-country
overlapping models initiated by Spear (1989) and Manuelli and Peck (1990).
In particular, our model is similar to that of Manuelli and Peck, and shares
some properties including a common portfolio across countries. However,
this literature mostly focuses on exchange rate fluctuations without explicitly
considering bubble crashes; see, e.g., Barnett (1992), Betts and Smith (1997),
and Russell (2003). To our knowledge, very little is known as to how a bubble
crash in one country affects a bubble in the other country. Focusing on this
particular issue, this paper seems to be distinct.

A large body of literature in international finance emphasizes the roles of
fundamentals (e.g., Kaminsky and Reinhart, 2000), imperfect or asymmet-
ric information (e.g, Allen and Gale, 2000), and financial constraints (e.g.,
Devereux and Yetman, 2009) as potential sources of international transmis-
sion of financial crises and shocks. This paper complements this literature by
showing that the international transmission of bubble crashes is an inevitable
consequence of financial integration within a simple framework without in-
troducing any friction or fundamental uncertainty.

The rest of the paper is organized as follows. In Section 2 we review
the case of a closed economy and show some preliminary results. In Sec-
tion 3 we introduce the two-country economy, define equilibria, and show
some basic results. In Section 4 we assume that only the foreign country
receives a sunspot shock. In Section 5 we assume that both countries receive
sunspot shocks. In Section 6 we study the local stability of the unique locally
isolated stationary sunspot equilibrium. In Section 7 we provide some con-
cluding remarks and discuss possible extensions. All omitted proofs appear
in appendices unless otherwise noted.

2 The Closed Economy

In this section, we consider a closed economy that is essentially the same
as the exchange economy of Weil (1987). The results in this section are
presented for later reference; we do not claim originality here.
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2.1 General Structure

In each period t ∈ Z+, a new generation of homogeneous two-period-lived
agents are born. They are called young in the first period of their life, and
old in the second period. There is no population growth, and the population
of each generation is normalized to one. There is a single consumption good,
and each agent is endowed with e1 > 0 units of the good when young, and
e2 > 0 units when old. There is also an intrinsically useless asset that agents
can buy when young, and sell when old. We regard this asset as a bubble
whenever its market price is strictly positive.

Each agent born in period t ∈ Z+ solves the following maximization
problem:

max
ct,xt,dt+1≥0

u(ct) + Etv(dt+1) (2.1)

s.t. ct + btxt = e1, (2.2)

dt+1 = e2 + bt+1xt, (2.3)

where ct is consumption when young, dt+1 is consumption when old, u, v :
R+ → [−∞,∞) are the utility functions for the first and second periods,
respectively, bt is the price of the asset, xt is asset holdings at the end of
period t as well as at the beginning of period t+ 1, and Et is the expectation
conditional on the information set in period t (to be specified below).3 An
old agent in period 0 simply consumes all his wealth:

d0 = e2 + b0x−1. (2.4)

The market-clearing conditions for the consumption good and the asset
are as follows:

ct + dt = e1 + e2, ∀t ∈ Z+, (2.5)

xt = 1, ∀t ∈ Z+. (2.6)

Throughout the paper we assume the following.

3Formally, let (Ω,F , P ) be a probability space, and let {Ft}t∈Z+
be a filtration. The

conditional expectation Et at time t is defined as the expectation conditional on Ft. All
stochastic processes indexed by t ∈ Z+, including the sunspot processes defined below, are
assumed to be adapted to this filtration.

4



Assumption 2.1. u, v : R+ → [−∞,∞) are continuous, C1 on (0,∞), and
strictly increasing. Furthermore

lim
c↓0

u′(c) =∞. (2.7)

Given x−1 = 1, an equilibrium of this economy is defined as a set of non-
negative stochastic processes {ct, dt, xt, bt}t∈Z+ such that (i) the pair (d0, x−1)
satisfies (2.4), (ii) for each t ∈ Z+, the triple (ct, xt, dt+1) solves the maxi-
mization problem (2.1)–(2.3), and (iii) the market-clearing conditions (2.5)
and (2.6) hold.

The following result shows that the equilibria of this economy are charac-
terized by the Euler equation for the maximization problem (2.1)–(2.3) along
with the budget constraints and the market-clearing conditions.

Lemma 2.1. A set of nonnegative stochastic processes {ct, dt, xt, bt}t∈Z+ is
an equilibrium if and only if it satisfies (2.2)–(2.6) and

e1 − bt > 0, ∀t ∈ Z+. (2.8)

u′(e1 − bt)bt = Etv′(e2 + bt+1)bt+1, ∀t ∈ Z+. (2.9)

We call a nonnegative stochastic process {bt}t∈Z+ an equilibrium bubble
process if there exist nonnegative stochastic processes {ct, xt, dt}t∈Z+ such
that {ct, xt, dt, bt} is an equilibrium. The following result characterizes equi-
librium bubble processes.

Lemma 2.2. A nonnegative stochastic process {bt}t∈Z+ is an equilibrium
bubble process if and only if it satisfies (2.8) and (2.9).

Proof. The “only if” part follows from Lemma 2.1. To see the “if” part,
define {xt} by (2.6). Define {ct} and {dt} using (2.2)–(2.4). Then (2.5)
holds. Since we already have (2.8) and (2.9), it follows by Lemma 2.1 that
{ct, dt, xt, bt} is an equilibrium.

2.2 Stationary Sunspot Equilibria

To define stationary sunspot equilibria of the type studied by Weil (1987),
we assume that there is a two-state sunspot process {st}t∈Z+ obeying the
following:

st = 0 ⇒ st+1 =

{
0 with probability q,

1 with probability 1− q,
(2.10)

st = 1 ⇒ st+1 = 1, (2.11)
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where q ∈ (0, 1) is a constant. Following Weil (1987), we can interpret state
0 as meaning “no sunspot” and 1 as “sunspots,” though this interpretation
is not necessary for our results.

Given the sunspot process defined by (2.10) and (2.11), consider an equi-
librium {ct, dt, xt, bt}t∈Z+ such that for some constant b > 0, we have

bt =

{
b if st = 0,

0 if st = 1.
(2.12)

An equilibrium of this type is often called a stationary sunspot equilibrium.
Equation (2.12) means that the bubble bt is constant until a sunspot shock
occurs (i.e., st switches from 0 to 1), when it collapses to zero and never
reappears.

Note from (2.2), (2.3), and (2.6) that under (2.12) we have

st = 0 ⇒

{
ct = e1 − b,
dt = e2 + b,

(2.13)

st = 1 ⇒

{
ct = e1,

dt = e2.
(2.14)

It follows from (2.9) and (2.12) that

u′(e1 − b) = qv′(e2 + b). (2.15)

It is easy to see that this equation has a solution b∗ > 0 if and only if

q > u′(e1)/v′(e2). (2.16)

The solution is unique by strict concavity of u and v.
The preceeding discussion together with Lemma 2.2 establishes the fol-

lowing result.

Proposition 2.1. There exists an equilibrium bubble process {bt} satisfying
(2.12) if and only if (2.16) holds. Under (2.16), any equilibrium bubble pro-
cess {bt} satisfying (2.12) satisfies b = b∗, where b∗ is the unique solution to
(2.15).

Essentially the same result is shown by Weil (1987, Proposition 1). We
refer to Weil (1987) for further discussion of asset bubbles in this closed
economy.
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3 The Two-Country Model

Consider a world economy consisting of two countries indexed by i ∈ {H,F},
where H and F stand for “home” and “foreign,” respectively. There is a
single consumption good worldwide, while there is an intrinsically useless
asset in each country. The markets for the consumption good and the assets
are fully integrated internationally, and the countries are entirely symmetric
in terms of fundamentals.

Each agent born in period t ∈ Z+ in country i ∈ {H,F} solves the
following maximization problem:

max
cit,x

i,i
t ,xi,jt ,dit+1≥0

Et[u(cit) + v(dit+1)] (3.1)

s.t. cit + bitx
i,i
t + bjtx

i,j
t = e1, (3.2)

dit+1 = e2 + bit+1x
i,i
t + bjt+1x

i,j
t , (3.3)

where cit is consumption when young, dit+1 is consumption when old, bkt with

k ∈ {H,F} is the price of the asset in country k, xi,kt with k ∈ {H,F}
is holdings of the asset in country k, and j is given by j ∈ {H,F} with
j 6= i; unless otherwise specified, we maintain this definition of j whenever
i ∈ {H,F} is given. An old agent in period 0 in country i ∈ {H,F} simply
consumes all his wealth:

di0 = e2 + bi0x
i,i
−1 + bj0x

i,j
−1. (3.4)

The market-clearing condition for the consumption good is

cHt + dHt + cFt + dFt = 2e1 + 2e2, ∀t ∈ Z+. (3.5)

Since each asset is intrinsically useless, its supply can be set to any value
without significantly affecting the analysis. For convenience we normalize
the supply of each asset to 2. Thus the market-clearing condition for the
asset in country k ∈ {H,F} is

xH,kt + xF,kt = 2, ∀t ∈ Z+. (3.6)

Given xi,k−1 ≥ 0 for i, k ∈ {H,F} such that xH,H−1 +xF,H−1 = xH,F−1 +xF,F−1 = 2,
an equilibrium of this two-country economy is defined as a set of nonnegative
stochastic processes {cit, dit, x

i,H
t , xi,Ft , bHt , b

F
t }t∈Z+,i∈{H,F} such that (i) for each
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i ∈ {H,F}, the triple (di0, x
i,i
−1, x

i,j
−1) satisfies (3.4), (ii) for each t ∈ Zt and

i ∈ {H,F}, the quadruple (cit, x
i,i
t , x

i,j
t , d

i
t+1) solves the maximization problem

(3.1)–(3.3), and (iii) the market-clearing conditions (3.5) and (3.6) hold.
Before we turn to stationary sunspot equilibria, it is useful to exploit the

implications of the symmetry of the countries:4

Lemma 3.1. A set of nonnegative stochastic processes {cit, dit, x
i,H
t , xi,Ft , bHt ,

bFt } satisfying (3.2)–(3.4) and (3.6) is an equilibrium if and only if for all
t ∈ Z+ we have

cHt = cFt = e1 − (bHt + bFt ) > 0, (3.7)

dHt+1 = dFt+1 = e2 + (bHt+1 + bFt+1), (3.8)

u′(cit)b
k
t = Etv′(dit+1)bkt+1, ∀i, k ∈ {H,F}. (3.9)

For an equilibrium {cit, dit, x
i,H
t , xi,Ft , bHt , b

F
t } such that the bubble processes

{bHt } and {bFt } are not perfectly correlated for any t ∈ Z+, it is possible
to show that xH,kt = xF,kt = 1 for each k ∈ {H,F}. However, since the
bubble processes can even be identical, the equilibrium values of xi,kt for i, k ∈
{H,F} are in general indeterminate. For example, there is an equilibrium
with bHt = bFt = 0 for all t ∈ Z+, in which case the values of xi,kt are
essentially irrelevant. Another case in point is an equilibrium in which both
{bHt } and {bFt } follow an identical stochastic process such as (2.12); in this
case the distinction between xi,Ht and xi,Ft is irrelevant for agents. Since we
are primarily interested in equilibrium bubble processes, we do not seek to
obtain a full characterization of asset holdings xi,kt .

We say that a pair of nonnegative stochastic processes {bHt , bFt }t∈Z+ is
a bivariate equilibrium bubble process if there exist nonnegative stochastic
processes {cit, dit, x

i,H
t , xi,Ft , } such that {cit, dit, x

i,H
t , xi,Ft , bHt , b

F
t } is an equilib-

rium. We close this section by showing a result that characterizes bivariate
equilibrium bubble processes. The following result is a two-country version
of Lemma 2.1.

Proposition 3.1. A bivariate nonnegative stochastic processe {bHt , bFt } is a
bivariate equilibrium bubble process if and only if for all t ∈ Z+ we have

bHt + bFt < e1, (3.10)

u′(e1 − (bHt + bFt ))bkt = Etv′(e2 + bHt+1 + bFt+1)bkt+1, ∀k ∈ {H,F}. (3.11)

4The same type of symmetric structure is exploited by Manuelli and Peck (1990).
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For the rest of the paper, we say that a bivariate nonnegative process
{bHt , bFt } satisfies (3.11) if it in fact satisfies both (3.10) and (3.11). This
convention applies to various versions of (3.11).

4 Sunspots Only in the Foreign Country

In this section we assume that there is a sunspot process obeying (2.10) and
(2.11) only in the foreign country; there is no other source of uncertainty.
We consider a stationary sunspot equilibrium such that

bFt =

{
bF if st = 0,

0 if st = 1,
(4.1)

bHt =

{
bH if st = 0,

b̃H if st = 1.
(4.2)

This is the simplest type of equilibrium in which the bursting of the foreign
bubble affects the home bubble. Equation (4.1) means that the foreign bubble
bursts when a sunspot shock occurs. The question is: How does this event
affect the home bubble? In (4.2), the home bubble is not forced to react to
this event since it is possible that bH = b̃H , in which case the home bubble
is not affected by the bursting of the foreign bubble at all. If 0 < b̃H < bH ,
then the home bubble partially collapses in response to the bursting of the
foreign bubble. It is even possible that bH < b̃H , in which case the home
bubble becomes larger when the foreign bubble collapses to zero.

To avoid trivial cases, in this section we assume the following unless
otherwise indicated:

bH > 0, bF > 0. (4.3)

A stationary sunspot equilibrium here consists of three nonnegative reals
bH , bF , and b̃H . We say that a triple (bH , bF , b̃H) ∈ R2

++×R+ is a stationary
sunspot equilibrium of the form (4.1)–(4.3) if the bivariate nonnegative pro-
cess {bHt , bFt } given by (4.1)–(4.2) is a bivariate equilibrium bubble process.
By Proposition 3.1, a stationary sunspot equilibrium (bH , bF , b̃H) of the form
(4.1)–(4.3) satisfies

u′(e1 − bW )bF = qv′(e2 + bW )bF , (4.4)

u′(e1 − bW )bH = qv′(e2 + bW )bH + (1− q)v′(e2 + b̃H)b̃H , (4.5)
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where bW is the world bubble:

bW = bH + bF . (4.6)

The following result shows that the home bubble inevitably bursts when
the foreign bubble bursts, as long as both bubbles are strictly positive until
a sunspot shock occurs.

Proposition 4.1. A triple (bH , bF , b̃H) ∈ R2
++ × R+ is a stationary sunspot

equilibrium of the form (4.1)–(4.3) if and only if it satisfies (4.4) and

b̃H = 0. (4.7)

While Proposition 4.1 characterizes stationary sunspot equilibria of the
form (4.1)–(4.3), the following result provides a necessary and sufficient con-
dition for existence of a stationary sunspot equilibrium of the same form.

Proposition 4.2. There exists a stationary sunspot equilibrium of the form
(4.1)–(4.3) if and only if (2.16) holds. Under (2.16), there exist a continuum
of stationary sunspot equilibria of the form (4.1)–(4.3). Specifically, under
(2.16), for any bH , bF > 0 satisfying

bH + bF = b∗, (4.8)

there exists a unique stationary sunspot equilibrium (bH , bF , b̃H) of the form
(4.1)–(4.3) (with b̃H = 0).

Note that (4.7) means that the home bubble bursts when the foreign
bubble bursts. In other words, both bubbles burst simultaneously. Hence
even though there are two bubbles in this economy, there is effectively only
one bubble under (4.7). Not surprisingly, the sum of the two bubbles must
be equal to b∗, which indicates that the economy here is effectively equivalent
to the closed economy studied in Subsection 2.2.

Although it is rather straightforward to show Proposition 4.1 based on
(4.4) and (4.5) (as in the proof in Appendix A.4), one can easily derive (4.7)
using a simple arbitrage argument as follows.5 Note from (4.1) and (4.2) that
the stochastic return on the foreign bubble is 0 if a sunspot shock occurs,
and is 1 otherwise. The return on the home bubble is also 1 if a sunspot

5We thank an anonymous referee for suggesting the following argument.
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shock does not occur. If the return on the home bubble were strictly positive
in the other event, then the home bubble would be a dominating asset. But
since both bubbles are held here, the return on the home bubble must also
be equal to 0 if a sunspot shock occurs.

Figure 1 shows three examples of bivariate equilibrium bubble processes
generated by stationary sunspot equilibria of the form (4.1)–(4.3).6 In all
three cases, the bursting of the foreign bubble is accompanied by that of the
home bubble. In particular, in panel (c), the foreign bubble is considerably
smaller than the home bubble before they burst. As discussed above, no-
arbitrage requires only the rates of returns on the two bubbles to be equated,
but has no bearing on their levels.

On the other hand, if the foreign bubble is not valued at all, then the
home bubble is not forced to burst even when a sunspot shock occurs in the
foreign country.

Proposition 4.3. Under (2.16), there exists a bivariate equilibrium bubble
process {bHt , bFt } such that bFt = 0 and bHt = b > b∗for all t ∈ Z+ for some
constant b > 0.

Proof. Since 1 > q > u′(e1)/v′(e2) by (2.16), there exists a unique solution
b ∈ (0, e1) to u′(e1 − b) = v′(e2 + b). Since q < 1, it is easy to see that b > b∗

(recall that b∗ solves (2.15)). With {bHt , bFt } defined as above, this bivariate
process satisfies (3.11). Thus it is a bivariate equilibrium bubble process by
Proposition 3.1.

Figure 2 illustrates the bivariate equilibrium bubble process given by
Proposition 4.3. The process here is deterministic, and the home bubble
never bursts even if a sunspot shock occurs in the foreign country. In this
sense, a sunspot shock in the foreign country does not force the home bubble
to burst.

It should be mentioned that the bivariate equilibrium bubble process in
Figure 2 cannot be obtained as the limit of bivariate equilibrium bubble
processes of the type depicted in Figure 1 by letting bF go to zero. Indeed,
if we let bF go to zero in Figure 1, the limiting process is still stochastic.
Figure 3 depicts the limiting bivariate equilibrium bubble process obtained
this way, indicating that the home bubble can still burst in response to a

6All numerical examples of bivariate equilibrium bubble processes in this paper are
computed by assuming that u(c) = ln c, v(c) = 0.8 ln d, and q = 0.99.
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bFt

bHt

(a) bF = 0.9b∗, bH = 0.1b∗

bFt

bHt

(b) bF = 0.5b∗, bH = 0.5b∗

bFt

bHt

(c) bF = 0.1b∗, bH = 0.9b∗

Figure 1: Bivariate equilibrium bubble processes satisfying (4.1)–(4.8)
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bFt

bHt

Figure 2: The deterministic bivariate equilibrium bubble process given by
Proposition 4.3

bFt

bHt

Figure 3: The limiting bivariate equilibrium bubble process obtained by
letting bF go to zero in Figure 1 (bF = 0 and bH = b∗)

sunspot shock in the foreign country even if the foreign bubble is not valued
at all.

5 Sunspots in Both Countries

In this section we assume that both countries receive sunspot shocks. Let
{sHt } and {sFt } be sunspot processes in the home and foreign countries, re-
spectively. For each i ∈ {H,F}, we assume that {sit} follows the following
process:

sit = 0 ⇒ sit+1 =

{
0 with probability qi,

1 with probability 1− qi,
(5.1)

sit = 1 ⇒ sit+1 = 1, (5.2)

where qi ∈ (0, 1) is a constant. We also assume that the two sunspot processes
are independent. If this were not the case, bubble crashes in the two coun-
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bHt , b
F
t

H
HHH

HHsHt

sFt 0 1

0 bH , bF b̃H , 0

1 0, b̃F 0, 0

Table 1: Dependence of (bHt , b
F
t ) on (sHt , s

F
t )

tries would naturally be correlated, and the transmission of bubble crashes
could be a consequence of this correlation. We rule out such an exogenous
correlation by assuming independent sunspot processes.

We consider stationary sunspot equilibria of the following form:

bFt =


bF if sHt = sFt = 0,

b̃F if sHt = 1 and sFt = 0,

0 if sFt = 1,

(5.3)

bHt =


bH if sHt = sFt = 0,

b̃H if sFt = 1 and sHt = 0,

0 if sHt = 1.

(5.4)

Table 1 summarizes how the pair (bHt , b
F
t ) depends on (sHt , s

F
t ). As in the

previous case, we do not require the home bubble to react to the bursting
of the foreign bubble since it is possible that bH = b̃H . Likewise, the foreign
bubble is not required to react to the bursting of the home bubble.

To focus on nontrivial cases, we assume the following inequalities for the
rest of the paper:

bH > 0, bF > 0. (5.5)

A stationary sunspot equilibrium here consists of four nonnegative reals
bH , bF , b̃H , and b̃F . We say that a quadruple (bH , bF , b̃H , b̃F ) ∈ R2

++×R2
+ is a

stationary sunspot equilibrium of the form (5.3)–(5.5) if a bivariate stochas-
tic process {bHt , bFt } satisfying (5.3)–(5.5) is a bivariate equilibrium bubble
process.
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By Proposition 3.1, a quadruple (bH , bF , b̃H , b̃F ) ∈ R2
++×R2

+ is a station-
ary sunspot equilibrium of the form (5.3)–(5.5) if and only if

u′(c0,0)bH = qHqFv′(d0,0)bH + qH(1− qF )v′(d0,1)b̃H , (5.6)

u′(c0,0)bF = qF qHv′(d0,0)bF + qF (1− qH)v′(d1,0)b̃F , (5.7)

u′(c0,1)b̃H = qHv′(d0,1)b̃H , (5.8)

u′(c1,0)b̃F = qFv′(d1,0)b̃F , (5.9)

where ci,j is the consumption of a young agent and di,j is the consumption
of an old agent in state (i, j) = (sHt , s

F
t ) ∈ {(0, 0), (0, 1), (1, 0)}:

c0,0 = e1 − bW , d0,0 = e2 + bW , (5.10)

c0,1 = e1 − b̃H , d0,1 = e2 + b̃H , (5.11)

c1,0 = e1 − b̃F , d1,0 = e2 + b̃F . (5.12)

The following result shows that there are exactly two types of stationary
sunspot equilibria of the form (5.3)–(5.5).

Proposition 5.1. Let (bH , bF , b̃H , b̃F ) ∈ R2
++ × R2

+ be given.

(a) If b̃H = 0, then (bH , bF , b̃H , b̃F ) is a stationary sunspot equilibrium of
the form (5.3)–(5.5) if and only if b̃F = 0 and

u′(e1 − bW ) = qHqFv′(e2 + bW ), (5.13)

where

bW = bH + bF . (5.14)

(b) Suppose that b̃H > 0. Then (bH , bF , b̃H , b̃F ) is a stationary sunspot equi-
librium of the form (5.3)–(5.5) if and only if b̃F > 0 and the following
equations hold:

u′(e1 − b̃k) = qkv′(e2 + b̃k), ∀k ∈ {H,F}, (5.15)

u′(e1 − bW )bW = qHqFv′(e2 + bW )bW

+qH(1− qF )v′(e2 + b̃H)b̃H + qF (1− qH)v′(e2 + b̃F )b̃F , (5.16)

bH

bF
=

(1− qF )u′(e1 − b̃H)b̃H

(1− qH)u′(e1 − b̃F )b̃F
. (5.17)
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Furthermore, if (bH , bF , b̃H , b̃F ) is a stationary sunspot equilibrium of
the form (5.3)–(5.5), then

bH < b̃H , bF < b̃F , (5.18)

qH Q qF ⇒ bH Q bF , b̃H Q b̃F . (5.19)

It is easy to see that there exists a unique bW satisfying (5.13); thus (5.13)
uniquely determines the world bubble bW in case (a). It is also easy to see
that there exists a unique b̃k solving (5.15) for each k ∈ {H,K}. Given
b̃H and b̃F solving (5.15), it can be shown that there exists a unique bW

satisfying (5.16). Then bH and bF can be determined by (5.17) and (5.14).
Thus (5.15)–(5.17) uniquely determine a stationary sunspot equilibrium (bH ,
bF , b̃H , b̃F ) in case (b).

This stationary sunspot equilibrium has the additional properties ex-
pressed in (5.18) and (5.19). For example, a country with a lower proba-
bility of a sunspot shock has a larger bubble; see (5.19). We comment on
the other aspects of Proposition 5.1 after presenting the next result, which
provides necessary and sufficient conditions for existence of the two types of
stationary sunspot equilibria of the form (5.3)–(5.5) classified above.

Proposition 5.2. There exists a stationary sunspot equilibrium (bH , bF , b̃H ,
b̃F ) of the form (5.3)–(5.5) if and only if

min{qH , qF} > u′(e1)/v′(e2). (5.20)

More specifically, we have the following resutls:

(a) There exists a stationary sunspot equilibrium (bH , bF , b̃H , b̃F ) of the
form (5.3)–(5.5) with b̃H = 0 if and only if

qHqF > u′(e1)/v′(e2). (5.21)

Under (5.21), given bW satisfying (5.13), there exist a continuum of
stationary sunspot equilibria (bH , bF , b̃H , b̃F ) of the form (5.3)–(5.5)
with b̃H = 0. In particular, for any bH , bF > 0 satisfying (5.14), the
quadruple (bH , bF , 0, 0) is a stationary sunspot equilibrium of the form
(5.3)–(5.5) with b̃H = 0.

(b) There exists a stationary sunspot equilibrium (bH , bF , b̃H , b̃F ) with b̃H >
0 if and only if (5.20) holds. Under (5.20), there exists a unique sta-
tionary sunspot equilibrium (bH , bF , b̃H , b̃F ) of the form (5.3)–(5.5) with
b̃H > 0.
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See Figure 4 for examples of bivariate equilibrium bubble processes gen-
erated by the above two types of stationary sunspot equilibria. The bivariate
equilibrium bubble process in panel (a) of Figure 4 is similar to that in panel
(b) of Figure 1. There are in fact a whole range of equilibrium bubble pro-
cesses here as in Figure 1.

Part (a) of Proposition 5.1 is similar to Proposition 4.1. To see this more
clearly, define

st =

{
0 if sFt = sHt = 0,

1 otherwise.
(5.22)

Then with b̃H = b̃F = 0, a bivariate equilibrium bubble process given by part
(a) of Proposition 5.1 is equivalent to that given by Proposition 4.1 with
q = qHqF . Indeed, (5.13) is equivalent to (2.15) with q = qHqF and b = bW .
Part (a) of Proposition 5.2 is similar to Proposition 4.2. In an appropriate
sense, the existence of a continuum of stationary sunspot equilibria here
is inherited from the case in which there are sunspots only in the foreign
country.

Part (b) of Proposition 5.1 shows that there is another type of stationary
sunspot equilibrium, which is specific to the current setting. This equilibrium
has the property that when the bubble in either country bursts, then the
bubble in the other country jumps to a higher level; see (5.18). For example,
the bursting of the foreign bubble has a positive effect on the home bubble;
see Panel (b) of Figure 4 (which also shows that the home bubble bursts later
on its own when a sunspot shock occurs in the home country). Intuitively,
after the collapse of the foreign bubble, the home bubble jumps to a higher
level in order to absorb the entire world’s wealth.7

Note that condition (5.21) implies (5.20), but not vice versa. This means
that for some values of qH and qF , only a stationary sunspot equilibrium with
b̃H > 0 exists. For example, this is the case if qHqF = u′(e1)/v′(e2). More
generally, if qH and qF satisfy (5.20) but each of them is sufficiently close to
u′(e1)/v′(e2), then (5.21) is violated. In other words, if sunspot shocks are
sufficiently likely in both countries while maintaining (5.20), then the only
possible stationary sunspot equilibrium of the form (5.3)–(5.5) follows the
pattern of panel (b) in Figure 4.

7See Caballero (2006) for discussion of related issues.
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bFt

bHt

(a) bH = bH > b̃H = b̃F = 0

bFt

bHt

(b) bH = bF < b̃H = b̃F = b∗

Figure 4: Bivariate equilibrium bubble processes satisfying (5.3) and (5.5)
with qH = qF

18



6 Local Stability Analysis

The results in the preceding section show that there is only one locally iso-
lated stationary sunspot equilibrium under our settings. In this section we
focus on the local dynamics around this equilibrium. Any other stationary
sunspot equilibrium shown to exist in the preceding section belongs to a
continuum of stationary sunspot equilibria, and is not amenable to standard
linearization techniques.

To analyze the local stability properties of the locally isolated stationary
sunspot equilibrium (bH , bF , b̃H , b̃F ) of the type (5.3)–(5.5), it is necessary to
construct a dynamical system of which (bH , bF , b̃H , b̃F ) is a steady state. One
way is to allow these parameters to depend on t in (5.3) and (5.4) as follows:

bFt =


βFt if sHt = sFt = 0,

β̃Ft if sHt = 1 and sFt = 0,

0 if sFt = 1,

(6.1)

bHt =


βHt if sHt = sFt = 0 ,

β̃Ht if sHt = 0 and sFt = 1,

0 if sHt = 1.

(6.2)

Here we use βFt , β̃
F
t , β

H
t , and β̃Ht to denote time-dependent versions of bF , b̃F ,

bH , and b̃H to avoid confusion with equilibrium bubbles processes bHt and bFt .
By Proposition 3.1, a bivariate nonnegative process {bHt , bFt } given by

(6.1) and (6.2) is a bivariate equilibrium bubble process if

u′(e1 − βWt )βHt = qHqFv′(e2 + βWt+1)βHt+1

+ qH(1− qF )v′(e2 + β̃Ht+1)β̃Ht+1, (6.3)

u′(e1 − βWt )βFt = qF qHv′(e2 + βWt+1)βFt+1

+ qF (1− qH)v′(e2 + β̃Ft+1)β̃Ft+1, (6.4)

u′(e1 − β̃Ht )β̃Ht = qHv′(e2 + β̃Ht+1)β̃Ht+1, (6.5)

u′(e1 − β̃Ft )β̃Ft = qFv′(e2 + β̃Ft+1)β̃Ft+1, (6.6)

where

βWt = βHt + βHt . (6.7)
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The above system of equations (6.3)–(6.6) governs the deterministic dynamics
of the quadruple (βHt , β

F
t , β̃

H
t , β̃

F
t ). In view of (5.6)–(5.9) and (6.3)–(6.6), it

is easy to see that the stationary sunspot equilibrium (bH , bF , b̃H , b̃F ) is a
steady state of the dynamical system (6.3)–(6.6).8

The following result shows that the stationary sunspot equilibrium (bH ,
bF , b̃H , b̃F ) as a steady state of the dynamical system is a source.

Proposition 6.1. Assume (5.20). Suppose that

∀d ∈ (e2, e1 + e2), −dv′′
(d)/v′(d) ≤ 1. (6.8)

Then (bH , bF , b̃H , b̃F ) is a source of the dynamical system (6.5)–(6.6), and
thus is locally unstable.

Condition (6.8) means that the degree of concavity of v is relatively mild.
This condition is only a sufficient condition for the above conclusion, which
is obtained analytically. If v takes the CRRA form v(d) = (d1−α−1)/(1−α),
then (6.8) means that α ≤ 1.

Under this condition, Proposition 6.1 shows that the stationary sunspot
equilibrium (bH , bF , b̃H , b̃F ) is a source. Hence to achieve this equilibrium,
the economy must initially jump to this point. This is a rather common
feature in rational expectations models. For example, the stationary sunspot
equilibrium analyzed by Weil (19878) has the same property.

7 Concluding Remarks

In this paper we studied the international transmission of bubble crashes
by analyzing stationary sunspot equilibria in a two-country version of Weil’s
(1987) overlapping generations exchange economy with stochastic bubbles.
We considered two types of sunspot shocks. In the first case, we assume
that only the foreign country receives a sunspot shock, and that the foreign
bubble bursts when a sunspot shock occurs. We showed that in this case,
the home bubble inevitably bursts when the foreign bubble bursts. In the
second case, we assume that both countries independently receive sunspot
shocks. We showed that in this case, if the foreign bubble bursts, then the

8Equations (6.3)–(6.6) are sufficient, but not necessary, for the bivariate nonnegative
process {bHt , bFt } given by (6.1) and (6.2) to be a bivariate equilibrium bubble process.
This is because (6.5) and (6.6) are not required to hold before a sunspot shock occurs.
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home bubble either bursts simultaneously or jumps to a higher level. We
also showed that there exists a unique locally isolated stationary sunspot
equilibrium, and that it is locally unstable.

There are several ways to extend our analysis by relaxing some of our
assumptions. First, we assumed that the countries are symmetric in terms of
fundamentals. Since this assumption greatly simplified the analysis, dropping
it would be a nontrivial extension. However, it is important to consider cases
in which the countries are asymmetric in various aspects such as preferences,
endowments, and population because in reality, no two countries are identical
in terms of fundamentals.

Second, we assumed that the probability of a sunspot shock is exogenous
and constant over time in each country. There are various ways to relax this
assumption. For example, one may assume that the probability changes over
time depending on endogenous variables, or even follows a stochastic process.
Such extensions seem to be fairly easy to accommodate especially when the
countries are assumed to be symmetric in all the other aspects. One may also
consider more general bubble processes such as those studied in Kamihigashi
(2008, 2011).

In addition to relaxing some of our assumptions, one may introduce gov-
ernment policies and examine their implications. Of particular interest would
be a policy to minimize the effect of a bubble crash in the foreign country on
the home bubble. All these extensions are left for future research.

Appendix A Proofs

A.1 Proof of Lemma 2.1

If: Let {ct, dt, xt, bt} be a set of nonnegative stochastic processes satisfying
(2.2)–(2.6), (2.8), and (2.9). By the definition of an equilibrium, it suffices
to show that for each t ∈ Z+, the vector (ct, 1, dt+1) solves the maximization
problem (2.1)–(2.3). Note that the problem can be written as

max
x≥0: btx≤e1

u(e1 − btx) + Etv(e2 + bt+1x). (A.1)
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For any x ≥ 0 with btx ≤ e1, we have

u(e1 − btx) + Etv(e2 + bt+1x)− [u(e1 − bt) + Etv(e2 + bt+1)] (A.2)

= u(e1 − btx)− u(e1 − bt) + Et[v(e2 + bt+1x)− v(e2 + bt+1)] (A.3)

≤ −u′(e1 − bt)bt(x− 1) + Etv′(e2 + bt+1)bt+1(x− 1) (A.4)

= [−u′(e1 − bt)bt + Etv′(e2 + bt+1)bt+1](x− 1) = 0, (A.5)

where the inequality holds by concavity of u and v, and the last equality
holds by (2.9). It follows that it is optimal to choose x = 1; i.e., (ct, 1, dt+1)
solves the maximization problem (2.1)–(2.3).

Only If: Let {ct, dt, xt, bt} be an equilibrium. Since (2.2)–(2.6) hold by
definition, we only need to verify (2.8) and (2.9). Let t ∈ Z+. Consider the
maximization problem (A.1). Note that (2.8) follows from (2.7). Hence (2.9)
is a necessary condition for optimality provided that

∂Etv(e2 + bt+1x)

∂x

∣∣∣∣
x=1

= Etv′(e2 + bt+1)bt+1. (A.6)

To see this, note that for any x > 1 we have

0 ≤ v(e2 + bt+1x)− v(e2 + bt+1)

x− 1
≤ v′(e2 + bt+1)bt+1 < v′(e2)e1. (A.7)

For any x ∈ (0, 1) we have

0 ≤ v(e2 + bt+1)− v(e2 + bt+1x)

1− x
≤ v′(e2 + bt+1x)bt+1 < v′(e2)e1. (A.8)

Thus by the conditional dominated convergence theorem, we have

lim
x→1

Et
v(e2 + bt+1x)− v(e2 + bt+1)

x− 1
(A.9)

= Et lim
x→1

v(e2 + bt+1x)− v(e2 + bt+1)

x− 1
(A.10)

= Etv′(e2 + bt+1)bt+1. (A.11)

Now (A.6) follows.9

9See Kamihigashi (1998, pp. 112–113) for a more general argument to show (A.6).
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A.2 Proof of Lemma 3.1

Only If: Let {cit, dit, x
i,H
t , xi,Ft , bHt , b

F
t } be an equilibrium. Then (3.2)–(3.6)

hold by definition. Fix t ∈ Z+. Since u and v are strictly concave, and
since (cHt , x

H,H
t , xH,Ft , dHt+1) and (cFt , x

F,H
t , xF,Ft , dFt+1) solve the same problem

(3.1)–(3.3), we have cHt = cFt and dHt+1 = dFt+1. Define ct and dt+1 by

ct = cHt = cFt , dt+1 = dHt+1 = dFt+1. (A.12)

Summing (3.2) and (3.3) over i ∈ {H,F} and using the above equations and
(3.6), we have

2ct = 2e1 − 2(bHt + bFt ), (A.13)

2dt+1 = 2e2 + 2(bHt+1 + bFt+1). (A.14)

Dividing both equations through by 2, we obtain (3.7) and (3.8). The in-
equality in (3.7) follows from (2.7).

To see (3.9), let t ∈ Z+ and k ∈ {H,F}. By (3.6) there exists at least
one i ∈ {H,F} such that xi,kt > 0. Following the “only if” part of the proof
of Lemma 2.1, we see that

u′(e1 − (bHt + bFt ))bkt = Etv′(e2 + bHt+1 + bFt+1)bkt+1. (A.15)

Recalling (3.7) and (3.8), we obtain (3.9).
If: Let {cit, dit, x

i,H
t , xi,Ft , bHt , b

F
t } be a set of nonnegative stochastic pro-

cesses satisfying (3.2)–(3.4) and (3.6). Suppose that (3.7)–(3.9) hold for all
t ∈ Z+. Then (3.5) holds. Following the “if” part of the proof of Lemma 2.1,
we see that (cit, x

i,i
t , x

i,j
t , d

i
t+1) solves the maximization problem (3.1)–(3.3) for

each i ∈ {H,F}. It follows that {cit, dit, x
i,H
t , xi,Ft , bHt , b

F
t } is an equilibrium.

A.3 Proof of Proposition 3.1

We start by preparing the following lemma.

Lemma A.1. Let {cit, dit, bHt , bFt } be a set of nonnegative stochastic processes
satisfying (3.7)–(3.9) for all t ∈ Z+. Suppose that (3.8) holds for t = −1 as
well. Define {xi,kt }t∈Z+,i,k∈{H,F} by

xi,kt = 1, ∀i, k ∈ {H,F},∀t ∈ Z+. (A.16)

Then {cit, dit, x
i,H
t , xi,Ft , bHt , b

F
t } is an equilibrium.
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Proof. Let {cit, dit, bHt , bFt } and {xi,kt } be as given in the statement of the
lemma. Then (3.2)–(3.6) hold. Since (3.9) holds for all t ∈ Z+ by hypothesis,
it follows by Lemma 3.1 that {cit, dit, x

i,H
t , xi,Ft , bHt , b

F
t } is an equilibrium.

To complete the proof of Proposition 3.1, note that the “only if” part of
Proposition 3.1 follows from Lemma 3.1. To see the “if” part, let {bHt , bFt } be
a pair of nonnegative stochastic processes satisfying (3.10) and (3.11). Define
{cit} an {dit} by (3.7) and (3.8). Then (3.9) holds by (3.11). Define {xi,kt } by
(A.16). Then by Lemma A.1, {cit, dit, x

i,H
t , xi,Ft , bHt , b

F
t } is an equilibrium. It

follows that {bHt , bFt } is a bivariate equilibrium bubble process.

A.4 Proof of Proposition 4.1

Only If: Let (bH , bF , b̃F ) ∈ R2
++×R+ be a stationary sunspot equilibrium of

the form (4.1)–(4.3). Define

c = e1 − (bH + bF ), (A.17)

d = e2 + bH + bF , (A.18)

d̃ = e2 + b̃H . (A.19)

Then (4.4) and (4.5) are written as

u′(c)bF = qv′(d)bF , (A.20)

u′(c)bH = qv′(d)bH + (1− q)v′(d̃)b̃H . (A.21)

Note from (A.20) that

u′(c) = qv′(d). (A.22)

This together with (A.21) yields (1 − q)v′(d̃)b̃H = 0. Hence (4.7) holds.
Substituting (A.17) and (A.18) into (A.22) and recalling (2.15), we obtain
(4.8).

If: Let (bH , bF , b̃F ) ∈ R2
++ × R+ satisfy (4.4) and (4.7). Then (A.22)

holds by (2.15) with c and d defined by (A.17) and (A.18). Note that (A.22)
implies (4.4). We also have (4.5) from (A.22) and (4.7). Since (4.4) and (4.5)
imply (3.11), it follows by Proposition 3.1 that (bH , bF , b̃F ) is a stationary
sunspot equilibrium of the form (4.1)–(4.3).
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A.5 Proof of Proposition 4.2

Only If: Let (bH , bF , b̃F ) ∈ R2
++×R+ be a stationary sunspot equilibrium of

the form (4.1)–(4.3). Then (4.4) holds by Proposition 4.1; thus (2.16) holds.
If: Suppose that (2.16) holds. Then there exists b∗ > 0 solving (2.16). Let

bH , bF > 0 satisfy (4.8). Then we have (4.4). Let b̃H = 0. Then (bH , bF , b̃F ) is
a stationary sunspot equilibrium of the form (4.1)–(4.3) by Proposition 4.1.

The other claims made in the proposition follow from the above construc-
tion.

B Proof of Propositions 5.1 and 5.2

B.1 Preliminary Lemmas

We state the following consequence of Proposition 3.1 for later reference.

Lemma B.1. A quadruple (bH , bF , b̃H , b̃F ) ∈ R2
++ × R2

+ is a stationary
sunspot equilibrium of the form (5.3)–(5.5) if and only if it satisfies (5.6)–
(5.9).

For the rest of this subsection, we take a stationary sunspot equilibrium
(bH , bF , b̃H , b̃F ) of the form (5.3)–(5.5) as given.

Lemma B.2. Let k ∈ {H,F}. If b̃k > 0, then b̃k satisfies (5.15).

Proof. This is immediate from (5.8) and (5.9).

Lemma B.3. We have b̃H = 0 if and only if b̃F = 0.

Proof. Dividing (5.6) and (5.7) through by bH > 0 and bF > 0, respectively,
we have

u′(c0,0) = qHqFv′(d0,0) + qH(1− qF )v′(d0,1)b̃H/bH , (B.1)

u′(c0,0) = qF qHv′(d0,0) + qF (1− qH)v′(d1,0)b̃F/bF . (B.2)

From these equations, we get

qH(1− qF )v′(d0,1)b̃H/bH = qF (1− qH)v′(d1,0)b̃F/bF . (B.3)

This equation implies that b̃H = 0 if and only if b̃F = 0.
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B.2 Proof of Proposition 5.1

(a) Suppose that b̃H = 0. To show the “only if” part, suppose that (bH , bF ,
b̃H , b̃F ) is a stationary sunspot equilibrium of the form (5.3)–(5.5). Note from
Lemma B.3 that b̃F = 0. Thus (5.6)–(5.9) reduce to (5.13). To show the “if”
part, suppose that (bH , bF , b̃H , b̃F ) satisfies (5.13) and (5.14) with b̃F = 0.
Then (5.6)–(5.9) trivially hold. Thus by Lemma B.1, the quadruple (bH , bF ,
b̃H , b̃F ) is a stationary sunspot equilibrium of the form (5.3)–(5.5).

(b) Suppose that b̃H > 0. To show the “only if” part, suppose that (bH ,
bF , b̃H , b̃F ) is a stationary sunspot equilibrium of the form (5.3)–(5.5). Then
b̃F > 0 by Lemma B.3. We obtain (5.15) by Lemma B.2. Adding (5.6) and
(5.7), we obtain (5.16). To show (5.17), note from (B.3) that

bH

bF
=

(1− qF )qHv′(e2 + b̃H)b̃H

(1− qH)qFv′(e2 + b̃F )b̃F
=

(1− qF )u′(e1 − b̃H)b̃H

(1− qH)u′(e1 − b̃F )b̃F
, (B.4)

where the second equality uses (5.15). This completes the proof of the “only
if” part of the first conclusion. The “if” part is shown in the proof of part
(b) in Proposition 5.2 below.

Consider the second conclusion. To show that b̃H > bH , suppose by way
of contradiction that bH ≥ b̃H . Then by (5.6) we have

u′(e1 − bW ) = qHqFv′(e2 + bW ) + qH(1− qF )v′(e2 + b̃H)b̃H/bH (B.5)

≤ qHqFv′(e2 + bW ) + qH(1− qF )v′(e2 + b̃H). (B.6)

Since bW > bH ≥ b̃H , it follows that

u′(e1 − bW ) < qHqFv′(e2 + b̃H) + qHv′(e2 + b̃H)− qHqFv′(e2 + b̃H) (B.7)

= qHv′(e2 + b̃H) = u′(e1 − b̃H) < u′(e1 − bW ), (B.8)

where the second equality in (B.8) holds by (5.15). Since (B.7) and (B.8) lead
to a contradiction, we must have b̃H > bH . We can show b̃F > bF similarly.
We have verified the inequalities in (5.18).

Finally, consider (5.19). If qH = qF , then b̃H = b̃F by (5.15), and bH = bF

by (5.17). Suppose that qH > qF .
To show that b̃H > b̃F , suppose by way of contradiction that b̃H ≤ b̃F .

By (5.15) we have

u′(e1 − b̃H) = qHv′(e2 + b̃H) (B.9)

> qFv′(e2 + b̃H) ≥ qFv′(e2 + b̃F ) (B.10)

= u′(e1 − b̃F ) ≥ u′(e1 − b̃H), (B.11)
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where the equality in (B.11) holds by (5.15). Since (B.9)–(B.11) lead to a
contradiction, we must have b̃H > b̃F .

To show that bH > bF , note that (1− qF )/(1− qH) > 1. Thus from (5.17)
we have

bH

bF
>
u′(e1 − b̃H)b̃H

u′(e1 − b̃F )b̃F
. (B.12)

Since b̃H > b̃F and u′(e1 − b)b is strictly increasing in b, the right-hand side
of (B.12) is strictly greater than 1. Thus bH > bF . Since the case bH < qF is
symmetric, we have verified (5.19).

B.3 Proof of Proposition 5.2

(a) If: Assume (5.21). Then it is easy to see that there exists a unique bW > 0
satisfying (5.13). Take any bH , bF > 0 satisfying (5.14). Let b̃H = b̃F = 0.
Then (bH , bF , b̃H , b̃F ) is a stationary sunspot equilibrium of the form (5.3)–
(5.5) by Proposition 5.1.

Only If: Suppose that (5.21) does not hold. Then it is easy to see that
there exists no bW > 0 satisfying (5.13). Thus there exists no stationary
sunspot equilibrium satisfying (5.3)–(5.5) by Proposition 5.1(a).

(b) If: Assume (5.20). Then it is easy to see that there exists a unique
b̃k > 0 satisfying (5.15) for each k ∈ {H,F}. Dividing (5.16) through by bW ,
we have

u′(e1 − bW ) = qHqFv′(e2 + bW )

+ [qH(1− qF )v′(e2 + b̃H)b̃H + qF (1− qH)v′(e2 + b̃F )b̃F ]/bW . (B.13)

The left-hand side is finite when bW = 0, is strictly increasing in bW ∈ (0, e1),
and tends to ∞ as bW approaches e1. The right-hand side of (B.13) tends to
∞ as bW approaches 0, and is strictly decreasing in bW > 0. It follows that
there exists a unique bW > 0 satisfying (B.13), or (5.16).10 Given bW , there
exists a unique pair (bH , bF )� 0 satisfying (5.17) and (5.14).

Since (5.8) and (5.9) hold by (5.15), it remains to verify (5.6) and (5.7);
then we can conclude that (bH , bF , b̃H , b̃F ) is a stationary sunspot equilibrium
of the form (5.3)–(5.5) by Lemma B.1.

10The rest of the proof of the “if” part here also serves as a proof of the “if” part of
part (b) in Proposition 5.1.
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To this end, for k, k′ ∈ {H,F} with k 6= k′, let

µk = qk(1− qk′)v′(e2 + b̃k)b̃k. (B.14)

Then (5.6) and the first equality in (B.4) can be written, respectively, as

u′(e1 − bW )bH = qHqFv′(e2 + bW )bH + µH , (B.15)

bH

bF
=
µH

µF
. (B.16)

By (5.14) and (B.16) we have

bW =

(
1 +

µF

µH

)
bH =

µH + µF

µH
bH . (B.17)

Substituting (B.14) and (B.17) into (B.13), we have

u′(e1 − bW ) = qHqFv′(e2 + bW ) +
µH

bH
, (B.18)

which is equivalent to (B.15), or (5.6). We can show (5.7) similarly. It now
follows by Lemma B.1 that (bH , bF , b̃H , b̃F ) is a stationary sunspot equilibrium
of the form (5.3)–(5.5).

Only If: Suppose that (5.20) does not hold. Then we have qH ≤ u′(e1)/v′(e2)
or qF ≤ u′(e1)/v′(e2). Let k ∈ {H,F} be such that qk ≤ u′(e1)/v′(e2). Then
there exists no b̃k > 0 satisfying u′(e1 − b̃k) = qkv′(e2 + b̃k). This violates
(5.15). Thus there exists no stationary sunspot equilibrium of the form (5.3)–
(5.5) by Proposition 5.1.

C Proof of Proposition 6.1

Linearizing the system (6.3)–(6.6) with respect to βHt , β
F
t , β̃Ht and β̃Ft around

the stationary sunspot equilibrium (bH , bF , b̃H , b̃F ), we find that the Jacobian
matrix J takes the following form:

J =

 A B

0 C

 . (C.1)
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Since J is upper triangular, the eigenvalues of J are those of A and C. Thus
it suffices to specify A and C. For c, d > 0, define

εu(c) = −cu′′
(c)/u′(c), εv(d) = −dv′′

(d)/v′(d). (C.2)

Then C can be written as

C =

 C11 0

0 C22

 (C.3)

with

C11 =
1 + εu(c0,1)b̃H/c0,1

1− εv(d0,1)b̃H/d0,1

, (C.4)

C22 =
1 + εu(c1,0)b̃F/c1,0

1− εv(d1,0)b̃F/d1,0

, (C.5)

where ci,j and di,j are given by (5.10)–(5.12) for all (i, j) = (0, 0), (0, 1), (1, 0),
(1, 1). In particular, d0,1 = e2 + b̃H ; thus b̃H/d0,1 < 1. Likewise b̃F/d1,0 < 1.
Hence by (6.8) we have

εv(d0,1)b̃H/d0,1 < 1, εv(d1,0)b̃F/d1,0 < 1. (C.6)

These inequalities imply that C11 > 1 and C22 > 1. Since C is a diagonal
matrix, its eigenvalues λC1 and λC2 are given by

λC1 = C11 > 1, λC2 = C22 > 1. (C.7)

We can write the matrix A as

A =

 A11 A12

A21 A22

 (C.8)
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with

A11 =
1

α

d0,0c0,0(1− εv(d0,0)bF/d0,0) + εu(c0,0)d0,0b
H

d0,0c0,0(1− εv(d0,0)bW/d0,0)
, (C.9)

A12 =
1

α

bF (d0,0εu(c0,0) + c0,0εv(d0,0))

d0,0c0,0(1− εv(d0,0)bW/d0,0)
, (C.10)

A21 =
1

α

bH(d0,0εu(c0,0) + c0,0εv(d0,0))

d0,0c0,0(1− εv(d0,0)bW/d0,0)
, (C.11)

A22 =
1

α

d0,0c0,0(1− εv(d0,0)bH/d0,0) + εu(c0,0)d0,0b
F

d0,0c0,0(1− εv(d0,0)bW/d0,0)
, (C.12)

α = qHqFv′(d0,0)/u′(c0,0). (C.13)

Since d0,0 = e2 + bW , we have bW/d0,0 < 1. Hence by (6.8) we have

εv(d0,0)bW/d0,0 < 1. (C.14)

This ensures that the denominators in (C.9)–(C.12) are all strictly positive.
To determine the eigenvalues of A, note that the associated characteristic

polynomial P (λ) can be written as

P (λ) = λ2 − Tλ+D, (C.15)

where T and D are the trace and the determinant of A, respectively:

D =
1

α2

1 + εu(c0,0)bW/c0,0

1− εv(d0,0)bW/d0,0

, (C.16)

T =
1

α

(
1 +

1 + εu(c0,0)bW/c0,0

1− εv(d0,0)bW/d0,0

)
. (C.17)

From (C.13) and (5.6) we have α < 1. By (C.14) we have

1 + εu(c0,0)bW/c0,0

1− εv(d0,0)bW/d0,0

> 1. (C.18)

HenceD > 1, which implies that one eigenvalue, which we denote λA1 , satisfies

λA1 > 1. (C.19)

By (C.16), (C.17), and (C.18), we have αD > 1 and T > 1. Note that

P (−1) = 1 + T +D > 0. (C.20)
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Note from (C.16) and (C.17) that T = 1/α + αD. Thus

P (1) = 1− T +D =
(α− 1) (1− αD)

α
> 0, (C.21)

where the inequality holds since α < 1 and αD > 1, as shown above. Now
we have P (−1) > P (1) > P (λA1 ) = 0. This implies that the other eigenvalue
is strictly greater than λA1 .

It follows that J has four eigenvalues outside the unit circle. Hence the
steady state (bH , bF , b̃H , b̃F ) is a source.
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