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Abstract

This paper shows that regime-switching sunspot equilibria easily
arise in a one-sector growth model with aggregate decreasing returns
and arbitrarily small externalities. We construct a regime-switching
sunspot equilibrium in the case where the utility function of consump-
tion is linear. We also construct a stochastic optimal growth model
whose optimal process is a regime-switching sunspot equilibrium of
the original economy in the case where there is no capital externality.
We illustrate our results with numerical examples.
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1 Introduction

In macroeconomics, sunspot equilibria are often associated with local inde-
terminacy, or the existence of a locally stable steady state. In the context of
growth models, the phenomenon of local indeterminacy has been well known
since Benhabib and Farmer (1994) and Farmer and Guo (1994). While earlier
results required excessively large degrees of increasing returns and external-
ities,1 local indeterminacy has been established for various settings under
less objectionable assumptions, including decreasing returns to labor (e.g.,
Pelloni and Waldmann, 1998), moderate externalities (Dufourt et al., 2015),
aggregate constant returns to scale (e.g., Benhabib et al., 2000; Mino, 2001),
and arbitrarily small increasing returns and externalities (e.g, Kamihigashi,
2002; Pintus, 2006).

In this paper we point out the possibility out an alternative mechanism
that gives rise to sunspot equilibria in an economy with aggregate decreasing
returns and arbitrarily small externalities. In particular, instead of small
fluctuations around a locally indeterminate steady state, we consider large
fluctuations caused by a regime-switching sunspot process, which is assumed
to be a two-state Markov chain. Labor supply is positive in one state, while
it is zero in the other. Although the regime-switching sunspot equilibria
that we construct are rather extreme, it can easily be seen that this type of
sunspot equilibrium is widespread in models with aggregate externalities.

We present two main results. First, assuming that the utility function of
consumption is linear, we construct a regime-switching sunspot equilibrium
by recursively solving the Euler condition for capital and the first-order con-
dition for labor supply and by verifying the transversality condition. This
approach is possible when utility of consumption is linear, in which case the
three conditions mentioned above do not depend on consumption. Second,
assuming that there is no capital externality, we establish the existence of
a regime-switching sunspot equilibrium by constructing a stochastic optimal
growth model whose optimal process is a sunspot equilibrium of the original
economy. This is somewhat similar to the observational equivalence result
shown by Kamihigashi (1996); in contrast to the latter result, however, here
we only use the Euler condition for capital, the first-order condition for labor
supply, and the transversality condition to verify that an optimal process for

1See Benhabib and Farmer (1999) for a survey of earlier results. See Grandmont (1989,
1991) for discussion of relations between local stability properties of a steady state and
the possibility of sunspot equilibria.

1



the stochastic optimal growth model can be seen as a sunspot equilibrium.
Both results are illustrated with numerical examples.

In addition to the results on local indeterminacy mentioned above, other
related results include those on global indeterminacy (e.g., Drugeon and Ven-
ditti, 2001; Coury and Wen, 2009) and regime-switching sunspot equilibria
(e.g., Drugeon and Wigniolle, 1996).2 Our results differ in that we consider
a standard one-sector growth model with aggregate decreasing returns and
small externalities.3 Indeed, our model is a variant of the Farmer-Guo (1994)
model with aggregate decreasing returns and small exteralities.

The rest of the paper is organized as follows. In the next section we
present the model along with basic definitions and assumptions. In Section 3
we show a standard result that offers a sufficient set of conditions for a feasible
process to be an equilibrium. In Section 4 we present our mains results along
with numerical examples. In Section 5 we conclude the paper by discussing
possible extensions. We provide longer proofs in two appendices.

2 The Model

We consider an economy with many agents, each of whom solves the following
maximization problem:

max
tct,nt,kt�1u8t�0

E
8̧

t�0

βtrupctq � wpntqs (2.1)

s.t. @t P Z�, ct � kt�1 � fpkt, nt, Kt, Ntq � p1� δqkt, (2.2)

ct, kt�1 ¥ 0, nt P r0, 1s, (2.3)

where ct is consumption, nt is labor supply, kt is the capital stock at the
beginning of period t, Nt is aggregate labor supply, and Kt is the aggregate
capital stock. The utility function u of consumption, the disutility function
w of labor supply, and the production function f are specified below. The
discount factor β and the depreciation rate δ satisfy

β, δ P p0, 1q. (2.4)

2See Clain-Chamosset-Yvrard and Kamihigashi (2015) for regime-switching sunspot
equilibria in a two-country model with asset bubbles.

3It is shown in Kamihigashi (2015) that multiple steady states are possible eve without
externalities.
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In the above maximization problem, the initial capital stock k0 ¡ 0 and the
stochastic processes tKtu

8
t�0 and tNtu

8
t�0 are taken as given. However, in

equilibrium, we have

@t P Z�, Kt � kt, Nt � nt. (2.5)

To formally define an equilibrium of this economy, we first define a pre-
equilibrium as a five-dimensional stochastic process tct, nt, kt, Nt, Ktu

8
t�0 such

that tct, nt, kt�1u
8
t�0 solves the maximization problem (2.1)–(2.3) given k0 ¡ 0

and the nonnegative processes tNtu
8
t�0 and tKtu

8
t�0. We define an equilib-

rium as a three-dimensional stochastic process tct, nt, ktu
8
t�0 such that the

five-dimensional stochastic process tct, nt, kt, nt, ktu
8
t�0 is a pre-equilibrium.

We also define a feasible process as a three-dimensional stochastic process
tct, nt, ktu

8
t�0 satisfying (2.2), (2.3), and (2.5).

We specify the functions u, w, and f as follows:

upcq �
c1�σ � 1

1� σ
, (2.6)

wpnq � η
nγ�1

γ � 1
, (2.7)

fpk, n,K,Nq � θkαnρKαNρ. (2.8)

We impose the following restrictions on the parameters:

σ P r0, 1s, (2.9)

θ, α, ρ, η ¡ 0, (2.10)

α, ρ, γ ¥ 0, (2.11)

α � α � ρ� ρ ¤ 1. (2.12)

If σ � 1, then it is understood that upcq � ln c. Since σ P r0, 1s by (2.9),
u is bounded below unless σ � 1. The inequality in (2.12) means that
the production function exhibits decreasing returns to scale at the aggregate
level. In what follows, we use the nonparametric forms u, w, and f and the
parametric forms given by (2.6)–(2.8) above interchangeably.

Let pk be the unique strictly positive capital stock k ¡ 0 such that θkα�α �
δk. The capital stock pk is the maximum sustainable capital stock. It has the
property that for any feasible process tct, nt, ktu

8
t�0 we have

@kt P Z�, kt ¤ maxtk0,pku. (2.13)

Therefore all equilibria are bounded.
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3 Sufficient Optimality Conditions

It follows from (2.8) that

@k, n ¡ 0, f1pk, n, k, 0q � f2pk, n, k, 0q � 0, (3.1)

where fip�, �, �, �q is the derivative of f with respect to the ith argument. To
simplify notation, for i � 1, 2, we define

fipk, nq � fipk, n, k, nq. (3.2)

For k, n ¥ 0 we also define

ζ � 1� δ, gpk, nq � fpk, n, k, nq � ζk. (3.3)

The first-order condition for labor supply nt in period t is given by

u1pctqf2pkt, ntq � w1pntq

$'&'%
� 0 if nt P p0, 1q,

¥ 0 if nt � 1,

¤ 0 if nt � 0.

(3.4)

Note from (3.1) that nt � 0 is always a solution to (3.4). This observation is
the basis for our construction of sunspot equilibria. On the other hand, as
long as Nt ¡ 0 and kt, Kt ¡ 0, it is always optimal to choose strictly positive
labor supply since f2pk, 0, k,Nq � 8 for any k,N ¡ 0.

The stochastic Euler condition for the capital stock kt�1 at the beginning
of period t� 1 can be written as

� u1pctq � βEtu
1pct�1qrf1pkt�1, nt�1q � ζs$'&'%

� 0 if kt�1 P p0, gpkt, ntqq,

¥ if kt�1 � gpkt, ntq,

¤ if kt�1 � 0.

(3.5)

We need to consider corner solutions since one of the results shown in the
next section assumes that the utility function of consumption is linear. How-
ever, as long as labor supply is strictly positive with strictly positive prob-
ability in period t � 1, there is a solution to (3.5) with kt�1 ¡ 0, because
limkÓ0 f1pk, nq � 8 for any n ¡ 0.
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The transversality condition is

lim
TÑ8

βTEu1pcT qkT�1 � 0. (3.6)

See Kamihigashi (2003, 2005) for more on transversality conditions for stochas-
tic problems.

The following result shows that the above first-order conditions along
with the transversality condition are sufficient for a feasible process to be
an equilibrium. The proof is a stochastic version of the standard sufficiency
proof.

Lemma 3.1. A feasible process tct, nt, ktu
8
t�0 is an equilibrium if it satisfies

(3.4) and (3.5) for all t P Z� and (3.6).

Proof. See Appendix A.

4 Sunspot Equilibria

4.1 Common Structure

In this paper we consider a special type of sunspot equilibrium by taking
a regime-switching sunspot process tstu as given. In particular, we assume
that there are two sunspot states, 0 and 1, and tstu is a two-state Markov
chain with transition matrix �

p00 p01
p10 p11

�
, (4.1)

where pij is the probability that st�1 � j given st � i for i, j P t0, 1u. To
simplify the analysis, we assume that pij ¡ 0 for all i, j P t0, 1u. Since (4.1)
is a transition Matrix, we have

p00 � p01 � p10 � p11 � 1. (4.2)

In what follows, all stochastic processes (sequences) are assumed to be adapted
to the σ-field generated by the Markov chain tstu

8
t�0. This simply means

that any variable indexed by t is a function of the history of sunspot states
s0, s1, . . . , st up to period t. Since tstu is a sunspot process, it does not di-
rectly affect the fundamentals of the economy. An equilibrium tct, nt, ktu is a
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sunspot equilibrium if it depends on the sunspot process tstu in a nontrivial
way.

To see the possibility of a sunspot equilibrium, suppose that in the max-
imization problem (2.1)–(2.3), we have

Nt

#
¡ 0 if st � 1,

� 0 if st � 0.
(4.3)

Then provided that kt � Kt ¡ 0 for all t P Z�, we must have

nt

#
¡ 0 if st � 1,

� 0 if st � 0.
(4.4)

For the rest of the paper, we assume that kt � Kt ¡ 0 for all t P Z�, focusing
on regime-switching sunspot equilibria satisfying (4.3) and (4.4).

Under (4.3) the first-order condition (3.4) for nt can be written as

st � 1 ñ u1pctqf2pkt, ntq � w1pntq

#
� 0 if nt P p0, 1q,

¥ 0 if nt � 1,
(4.5)

st � 0 ñ nt � 0. (4.6)

In (4.5) we do not need to consider the case nt � 0 since f2pk, 0, k,Nq � 8
for any k,N ¡ 0 by (2.8), (2.10), and (2.12), as mentioned above. On the
other hand, if st � 0, then Nt � 0 by (4.3); thus nt � 0 since f2pk, n, k, 0q � 0
for any k ¡ 0 and n ¥ 0.

4.2 Linear Utility of Consumption

One way to show the existence of a sunspot equilibrium is by using Lemma
3.1 to explicitly construct a sunspot equilibrium tct, nt, ktu satisfying (4.4).
To do so, we need to verify the Euler condition (3.5) and the transversality
condition (3.6) in addition to (4.5) and (4.6). Although this is not easy to
do in general, we can explicitly construct a sunspot equilibrium using these
conditions if we assume that the utility function of consumption is linear,
in which case none of the conditions depends on consumption (except for
feasibility). We consider this special case in the following result.

Proposition 4.1. Suppose that σ � 0. Then there exists a sunspot equilib-
rium satisfying (4.4).
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Proof. See Appendix B.

The sunspot equilibrium constructed in the proof of Proposition 4.1 is
generated by the following system of equations:

nt � mpkt, stq, (4.7)

kt�1 � mintqppst1q, gpkt, ntqu, (4.8)

ct � gpkt, ntq � kt�1, (4.9)

where mp�, �q and qp�q are given by (B.5) and (B.14), respectively, in Appendix
B, and pst1 is equal to p01 or p11 depending on st is equal to 0 or 1. Given
kt ¡ 0 and st P t0, 1u, nt is determined by (4.7), kt�1 is determined by
(4.8), and ct is determined by (4.9). With a new sunspot variable st�1 drawn
according to (4.1), nt�1 is determined by (4.7) again, and so one.

Figure 1 depicts the functions in (4.7)–(4.9) with the following parameter
values:

β � 0.9, η � 1, γ � 0.1, p01 � 0.2, p11 � 0.8, (4.10)

δ � 0.05, θ � 3, ρ � 0.55, ρ � 0.03, (4.11)

σ � 0, α � 0.35, α � 0.02. (4.12)

Figure 2 shows sample paths for sunspot states, capital, labor, and con-
sumption generated by (4.7)–(4.9). The sample path for labor supply nt
closely follows the pattern of sunspot states st, as expected from (4.4). The
sample paths for capital and consumption inherit the same pattern to a large
extent.

There is also a feature specific to consumption, which rises to its highest
level when the sunspot state changes from 1 to 0 after maintaining the state
of 1 for a few periods. This is expected from the consumption function in
Figure 1. Note that this function is increasing in kt but, unlike the labor and
capital functions, decreasing in st in the sense that consumption is higher
when st � 0 than when st � 1.

4.3 Stochastic Optimal Growth

One can conjecture that the feature of the consumption function mentioned
above is not due to the presence of externalities; rather it may be a conse-
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Figure 1: Regime-switching sunspot equilibria under (4.7)–(4.9) with param-
eter values given by (4.10)–(4.12)
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Figure 2: Sample paths for sunspot states, capital, labor, and consumption
generated by (4.7)–(4.9) with parameter values given by (4.10)–(4.12).
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quence of optimal behavior. To examine this possibility, consider the follow-
ing stochastic optimal growth model:

max
tct,nt,kt�1u8t�0

E
8̧

t�0

βtrupctq � wpntqs (4.13)

s.t. @t P Z�, ct � kt�1 � stpktq
α�αpntq

ρ�ρ � p1� δqkt, (4.14)

ct, kt�1 ¥ 0, nt P r0, 1s, (4.15)

where tstu is the same two-state Markov process following (4.1). This prob-
lem has the same aggregate production function, but the externalities are
internalized whenever st � 1. Since output is zero whenever st � 0, the
problem inherits the pattern of (4.3).

Figure 3 depicts the optimal policy functions for the stochastic optimal
growth model (4.13)–(4.15) under (4.10)–(4.12). These functions are given
by (4.7)–(4.9) with

α � 0.37, ρ � 0.58, α � ρ � 0. (4.16)

Note that the consumption function in Figure 3 is decreasing in st like
that in Figure 1; in fact, consumption with st � 1 is even lower than in Figure
1. This is because, as can be seen from the capital function in Figure 3, more
capital is accumulated in the stochastic optimal growth model (4.13)–(4.15)
than in the original economy with externalities under (4.10)–(4.12). The
functions in Figure 3 constitute an example of a stochastic optimal growth
model in which consumption is decreasing in correlated productivity, while
capital and labor are increasing in productivity. This is in sharp contrast
to the Brock-Mirman (1972) model with i.i.d. productivity shocks, where
consumption is always increasing in productivity; see Kamihigashi (2008,
Theorem 2.1).

Figure 4 shows sample paths generated by these optimal policy functions
with the same sunspot states as in Figure 2. These paths are similar to
those in Figure 2, but the capital path is overall higher, and the peaks of
consumption are also higher than in Figure 2.

4.4 No Capital Externality

Our analysis in the previous two subsections suggests that there is a close
connection between the sunspot equilibria of the original economy and the
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Figure 3: Optimal policy functions for (4.13)–(4.15)
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optimal process of some stochastic optimal growth model. Although this is
not trivial to show in general, it is fairly easy to establish a clear connection in
the absence of capital externalities. The proof of the following result utilizes
this observation.

Proposition 4.2. Suppose that α � 0. Then there exists a sunspot equilib-
rium satisfying (4.4).

Proof. See Appendix C

The condition α � 0 in the above proposition means that there is no
capital externality. In the proof of Proposition 4.2, we consider the following
stochastic optimal growth model:

max
tct,nt,kt�1u8t�0

E
8̧

t�0

βt
�
upctq �

ρ� ρ

ρ
wpntq

�
(4.17)

s.t. @t ¥ 0, ct � kt�1 � stθpktq
αpntq

ρ�ρ � ζkt, (4.18)

ct, kt�1 ¥ 0, nt P r0, 1s, (4.19)

where tstu
8
t�0 is the same two-state Markov chain following (4.1). In the

proof, we show that the Euler condition for kt�1, the first order condition
for nt, and the transversality condition for the above problelm are necessary
for optimality, and equivalent to the sufficient optimality conditions for the
original economy (2.1)–(2.3) with α � 0. We can thus establish the existence
of a sunspot equilibrium by showing the existence of an optimal process for
the above stochastic optimal growth model.

The Bellman equation for (4.17)–(4.19) can be written as

vpktq � max
ct,nt,kt�1

"
upctq �

ρ� ρ

ρ
wpntq � βEtvpkt�1q

*
(4.20)

s.t. ct � kt�1 � stθpktq
αpntq

ρ�ρ � ζkt, (4.21)

ct, kt�1 ¥ 0, nt P r0, 1s. (4.22)

By the proof of Proposition 4.2, the optimal policy functions for the above
Bellman equation can be interpreted as a regime-switching sunspot equilib-
rium. We assume the same parameter values as in (4.10) and (4.11), but we
replace the values of σ, α, and α as follows:

σ � 0.01, α � 0.37, α � 0. (4.23)
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With the above values of α and α, the aggregate production function fpk, n, k, nq
remains the same as under (4.11).

Figure 5 shows the optimal policy functions for the Bellman equation
(4.20)–(4.22) under the above parameter values. These functions are com-
puted by numerically solving the Bellman equation using modified policy
iteration (e.g., Puterman, 2005) with 5,000 equally spaced grid points.

Figure 6 shows sample paths for sunspot states, labor, capital, and con-
sumption generated by the functions in Figure 5. Compared to those in
Figure 2, the sample paths in Figure 6 appear less extreme. Capital accumu-
lates while the sunspot state is 1, and decumulates while it is 0. Consumption
follows almost exactly the same pattern, while labor supply moves in the op-
posite directions, as expected from the labor and consumption functions in
Figure 5.

5 Concluding Comments

In this paper we showed that regime-switching sunspot equilibria easily arise
in a one-sector growth model with aggregate decreasing returns and small
externalities. We explicitly constructed a regime-switching sunspot equilib-
rium in the case where the utility function of consumption is linear. We
also constructed a stochastic optimal growth model whose optimal process is
a regime-switching sunspot equilibrium of the original economy in the case
where there is no capital externality. Although we assumed aggregate de-
creasing returns to scale throughout the paper, one can easily see that our
analysis can be extended to models with increasing returns and large exter-
nalities. In concluding the paper, we discuss some possible ways to extend
our analysis.

First, although we only considered rather extreme sunspot equilibria such
that labor supply and output are zero when the sunspot state is zero, more
realistic equilibria can be constructed based on a similar approach. For exam-
ple, consider a one-sector growth model externalities in which the first-order
condition for labor supply has multiple solutions. One can easily construct
such a model if one is allowed to assume a general form of externalities. In
such a model, one can construct a sunspot equilibrium that switches between
the mutiple solutions of the first-order condition for labor supply depending
on the sunspot state.

Second, though we focused on sunspot equilibria, it is also possible to
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construct deterministic equilibria that exhibit chaotic dynamics. For ex-
ample, one can take a deterministic sequence of states st each of which is
either 0 or 1, and solve the deterministic version of the maximization prob-
lem (4.17)–(4.19). Then the resulting optimal path follows the pattern of the
sequence tstu. This can be thought of as an example of symbolic dynamics;
see Kamihigashi (1999) for economic applications of symbolic dynamics.

Finally, in Proposition 4.2 we only considered the case in which there
is no capital externality. Although it seems impossible to extend the same
approach to models with capital externalities (as long as the capital depre-
ciation rate is less than one), there is a way to deal with such models. In
particular, if one allows for nonlinear discounting along the lines of Kamihi-
gashi (2002), it is possible to construct a stochastic optimal growth model
whose optimal process is a sunspot equilibrium of the original economy.

Appendix A Proof of Lemma 3.1

Let tc�t , n
�
t , k

�
t u

8
t�0 be a feasible process satisfying (3.4)–(3.6) (with c�t , n

�
t , k

�
t

replacing ct, nt, kt). To simplify notation, for t P Z� and i � 1, 2 we define

fptq � fpk�t , n
�
t , k

�
t , n

�
t q. (A.1)

We are to show that for any feasible process tct, nt, ktu
8
t�0, we have

E
8̧

t�0

βtrupctq � wpntqs � E
8̧

t�0

βtrupc�t q � wpn�t qs ¤ 0. (A.2)

To this end, let tct, nt, ktu
8
t�0 be a feasible process. Fix T P N� for the

moment. Let

∆T � E
Ţ

t�0

βtrupctq � wpntqs � E
Ţ

t�0

βtrupc�t q � wpn�t qs (A.3)

¤ E
Ţ

t�0

βttu1pc�t qpct � c�t q � w1pn�t qpnt � n�t qqu, (A.4)
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where u1pc�t q is the right derivative of u at 0 if c�t � 0, and similarly for
w1pn�t q. We have

∆T ¤ E
Ţ

t�0

βttu1pc�t qrfpkt, nt, k
�
t , n

�
t q � fptq

� ζpkt � k�t q � pkt�1 � k�t�1qs � w1pn�t qpnt � n�t qqu (A.5)

¤ E
Ţ

t�0

βtru1pc�t qpf1ptq � ζqpkt � k�t q

� tu1pc�t qf2ptq � w1pn�t qupnt � n�t q � u1pc�t qpkt�1 � k�t�1qs. (A.6)

Recalling the first-order condition (3.4) for nt, we see that for all t P Z�,

tu1pc�t qf2ptq � w1pn�t qupnt � n�t q ¤ 0. (A.7)

Substituting into (A.6) we obtain

∆T ¤ E
Ţ

t�0

βtru1pc�t qpf1ptq � ζqpkt � k�t q � u1pc�t qpkt�1 � k�t�1qs (A.8)

� E
T�1̧

t�0

βtr�u1pc�t q � βu1pc�t�1qpf1pt� 1q � ζqspkt�1 � k�t�1q (A.9)

� βTEu1pc�T qpkT�1 � k�T�1q (A.10)

� E
T�1̧

t�0

βtr�u1pc�t q � βEtu
1pc�t�1qpf1pt� 1q � ζqspkt�1 � k�t�1q (A.11)

� βTEu1pc�T qpkT�1 � k�T�1q, (A.12)

where the last equality holds by the law of iterated expectations. Recalling
the Euler condition (3.5) for kt�1, we see that for all t P Z�,

r�u1pc�t q � βEtu
1pc�t�1qpf1pt� 1q � ζqspkt�1 � k�t�1q ¤ 0. (A.13)

Substituting into (A.12) we obtain

∆T ¤ �βTEu1pc�T qpkT�1 � k�T�1q (A.14)

¤ βTEu1pc�T qk
�
T�1 Ñ 0, (A.15)

where the second inequality holds since kT�1 ¥ 0, and the convergence holds
by the transversality condition (3.6). This completes the proof of Lemma
3.1.
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Appendix B Proof of Proposition 4.1

Suppose that σ � 0. Then conditions (4.5) and (4.6) can be written as

st � 1 ñ ρθpktq
α�αpntq

ρ�ρ�1 � ηpntq
γ

#
� 0 if nt P p0, 1q,

¥ 0 if nt � 1,
(B.1)

st � 0 ñ nt � 0. (B.2)

The Euler condition for kt�1, (3.5) can be written as

βEtrαθpkt�1q
α�α�1pnt�1q

ρ�ρ � ζs

$'&'%
� 1 if kt�1 P p0, gpkt, ntqq,

¥ 1 if kt�1 � gpkt, ntq,

¤ 1 if kt�1 � 0.

(B.3)

The transversality condition (3.6) reduces to

lim
TÑ8

βTEkT�1 � 0. (B.4)

Note that (B.1) and (B.2) can be combined into

nt � mpkt, stq � st min

#�
ρθ

η
pktq

α�α

� 1
γ�1�ρ�ρ

, 1

+
. (B.5)

Substituting into the left-hand side of (B.3) we have

Etrαθpkt�1q
α�α�1pnt�1q

ρ�ρ � ζs (B.6)

� Etrαθpkt�1q
α�α�1mpkt�1, st�1q

ρ�ρ � ζs (B.7)

�

#
p01hpkt�1q � ζ if st � 0,

p11hpkt�1q � ζ if st � 1,
(B.8)

where

hpkq � αθkα�α�1mpk, 1qρ�ρ (B.9)

� min

#
αθ

�
ρθ

η

� ρ�ρ
γ�1�ρ�ρ

k
pα�α�1qpγ�1q�ρ�ρ

γ�1�ρ�ρ , αθkα�α�1

+
. (B.10)
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Both expressions in the curly brackets are strictly decreasing in k by (2.10)
and (2.12). Thus hp�q is strictly decreasing, and the inverse h�1p�q exists.
Indeed, for z ¡ 0 we have

h�1pzq � min

$&%
�
z

αθ

�
η

ρθ

� ρ�ρ
γ�1�ρ�ρ

� γ�1�ρ�ρ
pα�α�1qpγ�1q�ρ�ρ

,
� z
αθ

� 1
α�α�1

,.- . (B.11)

Note also that

lim
kÓ0

hpkq � 8. (B.12)

Substituting (B.6)–(B.8) into (B.3) we have

βrpst1hpkt�1q � ζs

$'&'%
� 1 if kt�1 P p0, gpkt, ntqq,

¥ 1 if kt�1 � gpkt, ntq,

¤ 1 if kt�1 � 0,

(B.13)

where pst1 � p01 or p11 depending on st � 0 or 1. For p ¡ 0 define

qppq � h�1

�
1� βζ

βp



. (B.14)

Note from (B.12) that in (B.13), the case kt�1 can be ruled out. Then (B.13)
can be written as

kt�1 � mintqppst1q, gpkt, ntqu. (B.15)

We construct a process tct, nt, ktu
8
t�0 recursively as follows: given kt ¡ 0

and st P t0, 1u, let

nt � mpkt, stq, (B.16)

Determine kt�1 by (B.15). Let

ct � gpkt, ntq � kt�1. (B.17)

Draw st�1 according to (4.1). Determine nt�1 by (B.16), and so on. By
construction, this process is feasible and satisfies (B.1)–(B.3). It also satisfies
(B.4) by (2.13). Thus it is a sunspot equilibrium. The conclusion of the
proposition now follows.
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C Proof of Proposition 4.2

Suppose that α � 0. Consider the stochastic optimal growth model (4.17)–
(4.19). The Euler condition for kt�1 is written as

� u1pctq � βEtu
1pct�1qrst�1αθpkt�1q

α�1pnt�1q
ρ�ρ � ζs$'&'%

� 0 if kt�1 P p0, gpkt, ntqq,

¥ if kt�1 � gpkt, ntq,

¤ if kt�1 � 0.

(C.1)

This is equivalent to the equilibrium Euler condition (3.5) for kt�1 for the
original economy (2.1)–(2.3) with α � 0 and (4.3). The first-order condition
for nt for the above stochastic optimal growth model is given by

u1pctqstpρ� ρqθpktq
αpntq

ρ�ρ�1 �
ρ� ρ

ρ
w1pntq

$'&'%
� 0 if nt P p0, 1q,

¥ 0 if nt � 1,

¤ 0 if nt � 0,

(C.2)

which simplifies to

u1pctqstρθpktq
αpntq

ρ�ρ�1 � w1pntq

$'&'%
� 0 if nt P p0, 1q,

¥ 0 if nt � 1,

¤ 0 if nt � 0.

(C.3)

This is equivalent to (3.4) with α � 0 and (4.3). The transversality condition
for the above problem is identical to (3.6).

Conditions (C.1) and (C.3) are necessary for optimality by standard argu-
ments. The transversality condition (3.6) is also necessary by the argument
of Kamihigashi (2005, Section 6).4 Given that the sunspot variable st is dis-
crete, the existence of an optimal process for the optimal stochastic growth
model (4.17)–(4.19) can easily be established by a standard argument (e.g.,
Ekeland and Sheinkman, 1986). Let tct, nt, ktu

8
t�0 be an optimal process for

(4.17)–(4.19). Then by the above argument, it satisfies (3.4)–(3.6). Thus by
Lemma 3.1, it is an equilibrium of the original economy (2.1)–(2.3). Since it
is a sunspot equilibrium, it follows that a sunspot equilibrium exists.

4The condition σ P r0, 1s is needed here.
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