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ABSTRACT. In estimation and calibration studies, the convergence of time series

sample averages plays a central role. At the same time, a significant number of

economic models do not satisfy the classical ergodicity conditions. Motivated by

existing work on asymptotics of stochastic economic models, we develop a new set

of results on limits of sample moments and other sample averages using an order-

theoretic approach. Our results include a condition that is necessary and sufficient

for convergence over a broad class of moment functions. We discuss implications,

sufficient conditions and a range of economic applications.
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1. INTRODUCTION

It has frequently been observed that many of the economic models used for quanti-
tative studies fail to satisfy standard stability conditions from the classical Markov
process literature (see, e.g., Stokey and Lucas (1989), chapter 12). This situation
has spurred the growth of an alternative approach to treating asymptotics of eco-
nomic models based around order theoretic notions. Well known contributions
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include Razin and Yahav (1979), Stokey and Lucas (1989), Bhattacharya and Lee
(1988), Hopenhayn and Prescott (1992) and Bhattacharya and Majumdar (2001).
More recent work can be found in Zhang (2007), Szeidl (2013) and Kamihigashi
and Stachurski (2014). Applications of these ideas can be found throughout eco-
nomics.2

Almost all of this literature has focused on distributional properties, by which we
mean existence, uniqueness and stability of stationary (or invariant) distributions.
The objective of this paper is to complement these distributional results by extend-
ing the order theoretic analysis of economic dynamics to the problem of sample
path properties. In particular, we seek conditions suitable for economic modeling
under which time series averages converge to their population counterparts, in the
sense that any time series {Xt} generated by the model in question satisfies

lim
n→∞

1
n

n

∑
t=1

h(Xt) = E h(Xt) (1)

with probability one for some suitably large class of “moment” functions h. Here
E h(Xt) denotes expectation with respect to the stationary distribution of the model.

Such results are fundamental to quantitative analysis. They support a great va-
riety of computations and theoretical results, from consistency of estimators to
simulation of stationary equilibria, calibration, and simulation-based time series
estimation (e.g., Hansen (1982); Santos and Peralta-Alva (2005); Duffie and Sin-
gleton (1993)). Even Bayesian results that make no direct appeal to asymptotics
often require Markov chain Monte Carlo for actual computation, and this in turn
requires convergence of time series averages (see, e.g., Geweke (2005)).

While convergence in the sense of (1) is usually automatic in cross sectional models
as a result of the law of large numbers for independent random variables,3 conver-
gence for dynamic models is more subtle. In a recursive time series setting, per-
haps the most famous general result is the classical Markov ergodic theorem. For a
Markov process {Xt} with stationary distribution π, the theorem gives necessary

2Representative examples include Huggett (1993), De Hek (1999), Aghion and Bolton (1997),

Piketty (1997), Owen and Weil (1998), Cabrales and Hopenhayn (1997), Cooley and Quadrini (2001)

and Morand and Reffett (2007).
3There are some obvious exceptions. See, for example, Brock and Durlauf (2001) or Nirei (2006).
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and sufficient conditions under which (1) holds almost surely for any function h
such that the expectation is finite, and any initial condition X0.4

Although this is a powerful and important result, the conditions of the theorem
fail to hold for many well known economic models. For example, it cannot be
established under the stated assumptions for the capital and income processes in
the canonical stochastic optimal growth model of Brock and Mirman (1972). The
same is true for various extensions, including the multi-sector version in §10.3 of
Stokey and Lucas (1989), the correlated shock version in Hopenhayn and Prescott
(1992) and the distorted version in Greenwood and Huffman (1995). Similar issues
arise with models from economic development, monetary economics, industrial
organization and so on.

Thus the situation for time series averages is essentially analogous to that for dis-
tributional results discussed above: classical Markov process theory delivers very
strong forms of convergence but at the same time its conditions are too strict for
many economic models. In fact the conditions of the classical Markov ergodic
theorem are stricter than irreducibility (Meyn and Tweedie, 2009, p. 82 and theo-
rem 17.1.7), and the prevalence of economic models that fail irreducibility is the
major motivating factor behind the development of the order theoretic approach
to economic dynamics by Razin and Yahav (1979), Bhattacharya and Lee (1988),
Stokey and Lucas (1989), Hopenhayn and Prescott (1992) and others.

Drawing on the work of these authors, we investigate sample path properties us-
ing an order theoretic approach, in a setting where irreducibility is not required.
There are in fact some existing results along these lines. In particular, Bhattacharya
and Lee (1988) and Bhattacharya and Majumdar (2001) provide important results
showing that a version of (1) holds for monotone functions of the state under a

4See, for example, Meyn and Tweedie (2009), theorem 17.1.7. Note that some versions of the

ergodic theorem require that X0 is drawn from the stationary distribution itself, and that this dis-

tribution is extremal in the set of stationary distributions of the model (see, e.g., Breiman (1992)). In

the Markov ergodic theorem considered here, the initial condition is irrelevant. This can be helpful

in applications, since it is not necessary to check whether a stationary distribution is extremal or

otherwise, and since it means that we can compute stationary outcomes by simulation, starting the

process from an arbitrary initial position and allowing for sufficient “burn in” (as in, e.g., Markov

chain Monte Carlo).
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“splitting” condition, which is a type of strong mixing condition based on order,
and closely related to the conditions of Hopenhayn and Prescott (1992).

Despite the usefulness of these sample path results based on splitting, they still fail
to cover many moment convergence problems studied by economists. One issue
is that we would ideally like to know whether the convergence in (1) holds for
continuous functions as well, since the moment conditions tested by economists
are sometimes continuous but not monotone. A more important issue is that the
splitting conditions themselves can also fail under standard assumptions.

Part of the difficulty is that splitting conditions require a uniform mixing rate from
anywhere in the state space that is problematic in settings where the state space is
unbounded. Although unboundedness can sometimes be circumvented by assum-
ing bounded shocks, there is a cost in terms of loss of information. For example,
Rossi-Hansberg and Wright (2007) study among other things the tail properties of
the firm size distribution under different levels of aggregation. In order to exploit
stability results from Stokey and Lucas (1989), they compactify their state space
(Rossi-Hansberg and Wright, 2007, proposition 5). But compactification clearly
discards information about tail properties.

In addition, for some models the state space cannot be compactified at all, even
when shocks are assumed to be bounded. One example is Benhabib et al. (2011),
where wealth is affected by multiplicative shocks. Even if these shocks are bounded
above, a sufficiently long sequence of positive multiplicative shocks can drive
wealth above any given threshold. In other words, the state variable exceeds any
finite threshold with positive probability. Thus the state space cannot be compact.

In this paper we provide new results that deliver convergence of sample averages
in the sense of (1) over a large class of moment functions in a large range of set-
tings. Our conditions are weaker than the conditions in the literature listed above.
In particular our conditions for convergence over the class of monotone functions
are both necessary and sufficient (see theorem 3.1), and in this sense cannot be im-
proved upon. The generality of the conditions means that they are straightforward
to apply in both bounded and unbounded state spaces. We provide sufficient con-
ditions making them relatively easy to check in applications, as well as a number
of examples as to how this can be done.
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We also show that, under mild additional restrictions on the state space that are
satisfied in all standard economic applications, convergence in the form of (1) ex-
tends from monotone functions to continuous functions of the state vector. Under
the same conditions, we show that the empirical distribution function computed
from any sample path converges to the true stationary distribution with probabil-
ity one. This result can be used to justify computation of the stationary distribution
by simulation or estimation methods using the empirical distribution.

Finally, our main theorem is “parametric” in the partial order, in the sense that
varying the partial order changes the definition of monotonicity, and hence the
conditions and implications of the theorem. Using the standard partial order for
vectors gives weak conditions for convergence of sample averages. This is the most
practical use case, and the focus of our applications. However, from a theoretical
point of view it is notable that with a different choice of partial order the main
theorem includes the classical Markov ergodic theorem as a special case.

The remainder of this paper is structured as follows. Section 2 gives some prelimi-
nary definitions and results. Sections 3 and 4 present our results on ergodicity and
discuss their implications. Section 5 provides sufficient conditions for the form
of ergodicity considered in the paper. Section 6 treats application and section 7
concludes. All proofs are deferred to section 8.

2. PRELIMINARIES

In this paper, as in Hansen and Sargent (2010), an economic model is a probabil-
ity distribution on a sequence space. Our main interest is in identifying suitable
conditions under which these distributions pick out time series with sample av-
erages that converge to stationary expectations, in a sense to be made precise. In
what follows, the sequence space is S∞ = S× S× · · · , where S is called the state
space. Elements of S summarize the state of the economy at any point in time,
while elements of S∞ are called time series. A typical probability distribution on
S∞ is denoted by PQ

x . In this first section, we describe how this distribution is con-
structed from objects Q and x, where Q is a primitive representing the first order
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transition probabilities induced by preferences, technology and other economic
considerations, and x is an initial condition.5

2.1. Model Primitives. Let S be a separable and completely metrizable topologi-
cal space and let � be a closed partial order on S.6 Let B be the Borel sets and let
P be the set of probability measures on (S, B). A function h : S → R is called in-
creasing if x � x′ implies h(x) ≤ h(x′), and decreasing if −h is increasing. A subset
B of S is called increasing if x ∈ B and x � y implies y ∈ B; and decreasing if x ∈ B
and y � x implies y ∈ B.

Throughout the paper, we consider models that are time-homogeneous and Mar-
kovian. The dynamics of any such model can be summarized by a stochastic kernel
Q, which is a function Q : S×B → [0, 1] such that

1. Q(x, ·) ∈P for each x ∈ S, and
2. Q(·, B) is measurable for each B ∈ B.

In the applications treated below, Q(x, B) represents the probability that the state
of the economy transitions from point x ∈ S into set B ∈ B over one unit of time.
A distribution π ∈P is called stationary for Q if∫

Q(x, B)π(dx) = π(B), ∀ B ∈ B.

In essence this means that if the current state Xt is drawn from π and then Xt+1

is drawn from Q(Xt, ·), the distribution of Xt+1 will again be π. As in many
other studies (e.g., Brock and Mirman (1972), Stokey and Lucas (1989), Duffie et al.
(1994), etc.), a stationary probability is understood here as representing an equilib-
rium distribution for a stochastic economic model with dynamics given by Q.

A stochastic kernel Q is called increasing if (Qh)(x) :=
∫

h(y)Q(x, dy) is increasing
in x whenever h : S → R is measurable, bounded and increasing. This condition

5Our assumptions and results are always stated in terms of first order models. This costs no

generality, since greater lag lengths can be reformulated into the first order framework by suitable

redefinition of state variables.
6In particular, � is reflexive (x � x for all x ∈ S), transitive (x � y and y � z implies x � z) and

antisymmetric (x � y and y � x implies x = y), and its graph is closed in the product space S× S.

Almost all economic settings of interest to us have these properties.
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is typically satisfied in models where, holding all shocks fixed, increases in the
current state shift up the future state (see, e.g., Stokey and Lucas (1989)).

2.2. Markov Processes. Let S∞ := S × S × · · · , and let B∞ be the product σ-
algebra. It is well known (see, e.g., Stokey and Lucas (1989), p. 222) that to each
stochastic kernel Q on S and distribution µ ∈P , we can associate a unique proba-
bility measure PQ

µ on the sequence space (S∞, B∞), which is uniquely defined by
the expression

P
Q
µ (B0 × · · · × Bn × S× S× · · · ) =∫

B0

µ(dx0)
∫

B1

Q(x0, dx1) · · ·
∫

Bn−1

Q(xn−2, dxn−1)
∫

Bn
Q(xn−1, dxn) (2)

for any finite collection {Bi}n
i=0 ⊂ B.7 In essence, PQ

µ is the joint distribution of the
Markov process {Xt} defined by drawing X0 from µ and then, recursively, Xt+1

from Q(Xt, ·). If µ = δx then we simply write PQ
x .

We are interested in the properties of time series generated by models of this form.
In studying these properties, it is helpful to have a canonical Markov process {Xt}
with which to state our results. To this end, recall that if (E, E ,P) is any probability
space and X is the identity map X(ω) = ω, then X is an E-valued random element
with distribution P. Following this construction, we take (S∞, B∞,PQ

µ ) as our
probability space unless otherwise stated, and {Xt} is just the identity map. This
gives a generic Markov process generated by Q and having initial condition µ.

3. ERGODICITY

In this section we first state the classical Markov ergodic theorem and then present
an extension that depends on our partial order �.

3.1. Conditions for Ergodicity. We begin by reviewing the classical Markov er-
godic theorem. Recall that a bounded measurable function h : S → R is called
invariant for Q if ∫

h(y)Q(x, dy) = h(x) (3)

7As is conventional in ergodic theory, the integrals in (2) are computed from right to left, with

the integrand written to the right of the integrating measure.
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for all x ∈ S. A stochastic kernel Q on S is said to be ergodic if the only bounded in-
variant functions are the constant functions. The classical Markov ergodic theorem
states that, for any stochastic kernel Q with stationary distribution π, the kernel Q
is ergodic if and only if

∀ x ∈ S, ∀π-integrable h, P
Q
x

{
lim

n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h dπ

}
= 1.

(Here “π-integrable” means that h : S → R is measurable, and
∫
|h| dπ < ∞, and

we maintain this definition throughout.) See, for example, proposition 17.1.4 and
theorem 17.1.7 of Meyn and Tweedie (2009).

As stated in the introduction, the conditions of this theorem are too strict for many
standard economic models. We give several examples of how classical ergodicity
can fail in section 6. Our next step is to provide a class of ergodicity results that are
“parameterized” by the order � on S. By choosing the right order we can include
many standard models. In the statement of our theorem, a stochastic kernel Q is
called monotone ergodic if the only increasing bounded invariant functions are the
constant functions.

Theorem 3.1. For any increasing stochastic kernel Q with stationary distribution π, the
following conditions are equivalent:

(i) Q is monotone ergodic.
(ii) For every x ∈ S and increasing π-integrable function h,

P
Q
x

{
lim

n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h dπ

}
= 1.

Theorem 3.1 is in fact a generalization of the classical Markov ergodic theorem, as
can be seen by setting� to equality, in the sense that x � y if and only if x = y. For
this choice of�, it is easily verified that every function from S toR is increasing. As
a consequence, the definitions of monotone ergodicity and ergodicity are identical,
and every stochastic kernel on S is increasing. In such a setting, the results of
theorem 3.1 reduce to the classical case.

To see that theorem 3.1 is strictly more general, observe that for partial orders other
than equality, the family of increasing functions is a strict subset of the family of
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all functions. When such a partial order is chosen, monotone ergodicity is strictly
weaker than ergodicity. This allows us to capture the asymptotics of additional
models that do not satisfy the classical conditions—provided that their stochastic
kernels satisfy the requisite monotonicity. As discussed in the introduction, this
is useful for a number of workhorse applications. Concrete examples are given in
section 6.

One apparent concern with theorem 3.1 is that if � is a standard partial order such
as the usual order ≤ on R, then the set of increasing functions referred to in part
(ii) of theorem 3.1 may be too small to be useful. For example, we might care about
convergence of the second moment h(x) = x2. This function is not monotone.
Fortunately, it turns out that the convergence in theorem 3.1 extends to a larger
set of functions, without additional assumptions. For example, let Q be a fixed
stochastic kernel with stationary distribution π. Let L denote the linear span of
the set of increasing π-integrable functions.8

Corollary 3.1. If Q is increasing and monotone ergodic with stationary distribution π,
then for all µ ∈P and all h ∈ L we have

P
Q
µ

{
lim

n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h dπ

}
= 1. (4)

Convergence over all h ∈ L is sufficient for many applications. For example, if
S = R and π has m finite moments, then the moment functions h(x) = xi lie in L

for i ≤ m, as does any polynomial of order m or less.9

As suggested by the statement of theorem 3.1, monotone ergodicity is not sufficient
to yield existence of a stationary distribution π. (We provide an existence result
along with other results that imply monotone ergodicity in section 5.) However,
the conditions of theorem 3.1 are sufficient for uniqueness:

8In other words, L is the set of all h : S → R such that h = α1h1 + · · ·+ αkhk for some scalars

{αi}k
i=1 and increasing measurable {hi}k

i=1 with
∫
|hi|d π < ∞. Equivalently, L is all h such that

h = f − g for increasing π-integrable f and g.
9Let h(x) = xi with i ≤ m. If i is odd, then h is increasing. If not then write h as h = − f + g,

where f (x) := −xi
1{x < 0} and g(x) := xi

1{x ≥ 0}. Both f and g are increasing and hence

h ∈ L . Finally, if p(x) = ∑m
i=1 aixi then p ∈ L because L is closed under linear combinations.
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Proposition 3.1. If Q is increasing and monotone ergodic, then Q has at most one sta-
tionary distribution.

3.2. Continuous Functions and Empirical Distributions. It is in fact possible to
extend the convergence results beyond L in many situations. In this section we
show that if S is compact and � is suitably regular, then the convergence in corol-
lary 3.1 extends to all continuous functions too. Moreover, if S is not compact, then
the same is true for any continuous bounded function. In fact we prove a consid-
erably stronger result, related to convergence of the empirical distribution πn, which
is, as usual, defined by∫

h dπn :=
1
n

n

∑
t=1

h(Xt) for measurable h : S→ R.

The empirical distribution is a natural candidate for estimating π, and forms a
standard tool for econometric analysis and calibration. We wish to know when
πn

w→ π with probability one, where w→ represents the usual probabilist’s notion
of weak convergence (i.e.,

∫
h dπn →

∫
h dπ for all continuous bounded h).10

Assumption 3.1. (S,�) is a normally ordered11 and has the property that K ⊂ S is
compact if and only if it is closed and order bounded (i.e., there exist points a and
b in S with a � x � b for all x ∈ K). Moreover, there exists a countable subset A
of S such that, given any x ∈ S and neighborhood U of x, there are a, a′ ∈ A such
that a, a′ ∈ U and a � x � a′.

Assumption 3.1 is satisfied for almost all state spaces used in economic applica-
tions, such as when S = Rm with its usual pointwise order ≤, or more generally,
when S is an open or closed interval or cone inRm with the usual pointwise order.

10The statement
∫

h dπn →
∫

h dπ for all continuous bounded h with probability one is much

stronger than
∫

h dπn →
∫

h dπ with probability one for all continuous bounded h. The reason is

that, even when the latter holds, the probability one set on which convergence obtains depends on

h, and the set of continuous bounded functions on S is uncountable.
11S is called normally ordered if, given any disjoint pair of closed sets I, D ⊂ S such that I is

increasing and D is decreasing, there exists an increasing continuous bounded h : S→ R such that

h(x) = 0 for all x ∈ D and h(x) = 1 for all x ∈ I.
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Theorem 3.2. Let the state space S satisfy assumption 3.1. In this setting, if Q is increas-
ing and monotone ergodic with stationary distribution π, then, for any x ∈ S,

P
Q
x

{
lim

n→∞

∫
h dπn =

∫
h dπ, ∀ continuous bounded h : S→ R

}
= 1.

In particular,

(i) πn
w→ π with probability one.

(ii) Given any continuous bounded function h, we have 1
n ∑n

t=1 h(Xt) →
∫

h dπ

with probability one.

4. CONNECTIONS TO THE LITERATURE

As discussed in the introduction, there is a large literature on asymptotics of recur-
sive economic models based around order theoretic conditions. To date this litera-
ture has focused mainly on distributional properties, such as existence, uniqueness
and stability of the stationary distribution. What we now show is that the assump-
tions that these authors work under all imply monotone ergodicity. Hence our
conclusions on sample path convergence can be added to the distributional impli-
cations previously derived.

To begin the discussion, consider the ”splitting condition” found, for example,
in Bhattacharya and Majumdar (2001). Their environment consists of a sequence
of IID random maps {γt} from S to itself, where S is a subset of Rm. The maps
generate {Xt} via Xt+1 = γt+1(Xt), or, more explicitly,

Xt = ◦t
i=1γi(X0) := γt ◦ · · · ◦ γ1(X0).

The corresponding stochastic kernel is Q(x, B) = P{γ1(x) ∈ B}. The splitting
condition runs as follows:

Condition 4.1. There exists a c ∈ S and k ∈ N such that

P{◦k
i=1γi(y) ≤ c, ∀y ∈ S} > 0 and P{◦k

i=1γi(y) ≥ c, ∀y ∈ S} > 0.

Closely related to splitting are the conditions of Razin and Yahav (1979), Stokey
and Lucas (1989) and Hopenhayn and Prescott (1992). In particular, Hopenhayn
and Prescott (1992) adopt the following restrictions:
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Condition 4.2. S is a compact metric space with closed partial order �. S has a
least element a and greatest element b. Q is an increasing kernel on S satisfying the
following restriction:

∃ x̄ ∈ S and k ∈ N such that PQ
a {Xk ≥ x̄} > 0 and PQ

b {Xk ≤ x̄} > 0. (5)

Szeidl (2013) studies a variety of economic models including the buffer stock sav-
ings model of Carroll (1997) in the following setting:

Condition 4.3. S is an order interval inRm with its usual pointwise order and Q is
increasing, uniformly asymptotically tight12 and weakly mixing in the sense that
there exists a c ∈ S such that, ∀ x ∈ S, we can find j, k ∈ N with PQ

x {Xj > c} > 0
and PQ

x {Xk < c} > 0.

In a separate study, Kamihigashi and Stachurski (2014) provide distributional re-
sults in the order theoretic framework using the following conditions:

Condition 4.4. Q is increasing, order reversing and bounded in probability.

In condition 4.4, order reversing means that, for any given x and x′ in S with x′ � x
and any independent processes {Xt} and {X′t} generated by Q and starting at x
and x′ respectively, there exists a t ∈ N with P{Xt � X′t} > 0. As usual, Q
is called bounded in probability if, given any x ∈ S and any ε > 0, there exists a
compact K ⊂ S with PQ

x {Xt ∈ K} ≥ 1− ε for all t.

The same authors also consider distributional properties under order mixing:

Condition 4.5. Q is order mixing in the sense that, given any pair of independent
Markov processes {Xt} and {X′t} generated by Q, the event {Xt � X′t} occurs with
probability one.

The main result of this section is that all these sets of conditions are stricter than
monotone ergodicity:

Proposition 4.1. Any one of conditions 4.1–4.5 implies monotone ergodicity.

12Szeidl (2013) calls a stochastic kernel Q uniformly asymptotically tight if, for all δ > 0, there

exists a compact C ⊂ S such that lim infPQ
x {Xn ∈ C} > 1− δ for all x ∈ S.
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The implications of proposition 4.1 can be summarized as follows: The existing
literature on order theoretic methods provides a number of related conditions for
existence, uniqueness and stability of stationary distributions. Proposition 4.1 tells
us that under the same conditions ergodicity also holds, in the sense that time
series sample averages converge to their long run expectations with probability
one, at least for the majority of functions that are useful in economic applica-
tions. One immediate consequence is that the many distributional results that have
been obtained for particular dynamic models using order theoretic methods (see,
e.g., Huggett (1993), Aghion and Bolton (1997), Piketty (1997), Owen and Weil
(1998), Cabrales and Hopenhayn (1997) or Cooley and Quadrini (2001)) can now
be strengthen to include an additional conclusion establishing ergodicity.

5. SUFFICIENT CONDITIONS

As discussed above, there are existing conditions in the literature that imply mono-
tone ergodicity, and these suffice for many economic problems. However, for
classes of economic models that possess certain monotonicity and continuity con-
ditions, it is possible to develop another approach that is straightforward and in-
tuitive.

Consider a generic model of the form

Xt+1 = F(Xt, εt+1), {εt}
IID∼ φ, X0 given, (6)

where F : S× E → S is measurable, S is a subset of Rn satisfying assumption 3.1,
E is a Borel subset of Rm, and φ is a Borel probability measure on E. In this sec-
tion S is always endowed with its usual pointwise order ≤. The stochastic kernel
corresponding to (6) is

QF(x, A) := φ{ε ∈ E : F(x, ε) ∈ A}. (7)

The shock distribution φ is regarded as supported on all of E.13 This entails no loss
of generality, since the shock space can always be re-defined appropriately.

Each finite path of shock realizations {εt}k
t=1 ⊂ E and initial condition x ∈ S

determines a path {xt}k
t=0 for the state variable up until time k via x0 = x and

13That is, φ(E) = 1, and φ(G) > 0 whenever G ⊂ E is open and nonempty.
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xt+1 = F(xt, εt+1). Let Fk(x, ε1, . . . , εk) denote the value of xk determined in this
way. Given vectors x and y in S, we write x < y if xi < yi for all i.

Assumption 5.1. F is continuous and x 7→ F(x, ε) is increasing for each fixed ε ∈ E.

Proposition 5.1. If assumption 5.1 is satisfied and QF is bounded in probability, then
QF is increasing and at least one stationary distribution exists. If, in addition, one of the
following three conditions holds

(i) for any x, c ∈ S, there exists {ε1, . . . , εk} ⊂ E such that Fk(x, ε1, . . . , εk) < c
(ii) for any x, c ∈ S, there exists {ε1, . . . , εk} ⊂ E such that Fk(x, ε1, . . . , εk) > c
(iii) for any x, x′ ∈ S, there exists {ε1, . . . , εk} ⊂ E and {ε′1, . . . , ε′k} ⊂ E such that

Fk(x, ε1, . . . , εk) < Fk(x′, ε′1, . . . , ε′k)

then QF has exactly one stationary distribution and is monotone ergodic.

Conditions (i)–(iii) are mixing conditions, and are related to the notions of up-
ward reaching, downward reaching and order reversing processes introduced in
Kamihigashi and Stachurski (2014). Unlike the latter, conditions (i)–(iii) exploit
continuity to provide statements that are easier to check in applications.

Of course this is not helpful if the continuity conditions in assumption 5.1 do not
hold. For this reason we also consider the following conditions, where the conti-
nuity requirement is weaker.

Assumption 5.2. F is increasing in both arguments, and QF has the Feller property.

The statement that QF has the Feller property means that, for any continuous
bounded function h : S→ R, we have∫

h(F(xn, ε))φ(dε)→
∫

h(F(x, ε))φ(dε) whenever xn → x.

This is true if, for example, F is continuous in its first argument. However, the
Feller property also allows for some discontinuities in F, as discussed in Santos
and Peralta-Alva (2005).

Proposition 5.2. If assumption 5.2 is satisfied and QF is bounded in probability, then QF

is increasing and at least one stationary distribution exists. If, in addition, E is open and
one of the following three conditions holds
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(i) for any x, c ∈ S, there exists {ε1, . . . , εk} ⊂ E such that Fk(x, ε1, . . . , εk) ≤ c
(ii) for any x, c ∈ S, there exists {ε1, . . . , εk} ⊂ E such that Fk(x, ε1, . . . , εk) ≥ c
(iii) for any x, x′ ∈ S, there exists {ε1, . . . , εk} ⊂ E and {ε′1, . . . , ε′k} ⊂ E such that

Fk(x, ε1, . . . , εk) ≤ Fk(x′, ε′1, . . . , ε′k)

then QF has exactly one stationary distribution and is monotone ergodic.

The main differences between proposition 5.1 and proposition 5.2 is that proposi-
tion 5.2 requires relatively less continuity and more monotonicity. Also, the strict
inequalities in (i)–(iii) of proposition 5.1 have been replaced by weak inequalities.

6. APPLICATIONS

6.1. Stochastic Optimal Growth. Variations of the Brock-Mirman optimal growth
model (Brock and Mirman (1972)) are routinely applied in many fields of macroe-
conomic modeling (see, e.g., Ljungqvist and Sargent (2012)). The one sector model
takes the form

max
{kt+1, ct}t≥0

E

[
∞

∑
t=0

βtu(ct)

]

s.t. ct + kt+1 ≤ (1− δ)kt + f (kt, zt), (8)

zt+1 = g(zt, εt+1) (9)

for all t ≥ 0. Here all variables are nonnegative, {zt} is an exogenous productivity
process, {εt} is a sequence of IID innovations, β ∈ (0, 1), and δ ∈ (0, 1]. To avoid
trivial cases the initial conditions k0 and z0 are always assumed to be strictly posi-
tive in what follows, and g(z, ε) ∈ R++ whenever (z, ε) ∈ R2

++. The function g is
assumed to be continuous and increasing in its first argument.

Even in very simple settings the optimal state process fails to satisfy classical er-
godicity. For example, let u(c) = ln(c), let f (k, z) = Akαz and let δ = 1. In this case
it can be shown (see, e.g., Acemoglu (2009), p. 571) that capital evolves according
to kt+1 = αβAkα

t zt. Choose common parameter values such as α = 1/3, β = 0.99
and A = 1. Suppose that {zt} is IID and takes values in the finite set {0.75, 1.25}.
Let L be the set of algebraic numbers inR++. Since L is closed under products and
rational powers, kt ∈ L implies kt+1 ∈ L. The statement kt ∈ Lc =⇒ kt+1 ∈ Lc is
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also true.14 Letting 1L be the indicator function of L, we can express the last two
statements as

P{kt+1 ∈ L | kt = k} = 1L(k) (10)

for all k ∈ R++. This says precisely that 1L is an invariant function for capital.15

Since 1L is bounded and invariant but not constant, classical ergodicity fails.

This example illustrates the strictness of the classical ergodicity conditions. The
problem here is that we have to consider unconventional functions such as 1L,
which have little to do with economic analysis. Similar difficulties carry over to
applying classical irreducibility-based conditions to establish distributional prop-
erties such as existence, uniqueness and stability of stationary distributions. As
noted in the introduction, these kinds of issues have motivated the development of
alternative approaches to understanding the distributional properties of economic
models based around order theoretic ideas (e.g., Razin and Yahav (1979); Stokey
and Lucas (1989); Hopenhayn and Prescott (1992); Bhattacharya and Majumdar
(2001); Kamihigashi and Stachurski (2014)).

For this particular example the shocks are finite and any of these references can
be used to show the distributional properties listed above. In addition, from the
results in Bhattacharya and Lee (1988), we can also infer convergence in probability
of 1

n ∑n
t=1 h(kt) to its stationary expectation

∫
h(k)π(dk) whenever h = h1 − h2 for

some monotone h1 and h2. If we can establish the conditions of proposition 5.1
this convergence will extend to any continuous function h, and to probability one
convergence of the empirical distribution, via theorem 3.2.

The conditions of proposition 5.1 certainly hold for this simple example. Evidently
k 7→ αβAkαz is continuous and monotone increasing for any possible realization
of z. Boundedness in probability holds because the state space can be chosen to
be compact. Condition (iii) of proposition 5.1 can be established as follows. Recall
that zt is assumed to take either a high or a low value. If only the high value occurs
then kt converges to some point k̄ ∈ R++ regardless of the initial condition. If only
the low value of the shock occurs, kt converges to some lower point k, regardless of

14Nonconstant algebraic functions of transcendental numbers are transcendental.
15If h = 1L, then (3) reduces to Q(x, L) = 1L(x) for all x ∈ S, which is (10). Note also that L is

measurable because L is countable.
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initial conditions. Thus, given any pair of initial conditions, we can choose shock
sequences such that the ordering in condition (iii) of proposition 5.1 holds.

6.2. Correlated Shocks. Next we consider a more general version of the optimal
growth model, where no useful results on convergence of time series sample av-
erages are available in the existing literature. We maintain the log-linear form
kt+1 = αβAkα

t zt while returning to the general correlated case (9) for the productiv-
ity shock. We study asymptotics of the Markov process Xt := (kt, zt) on S = R2

++.
We begin by assuming that, for each z ∈ R++ and m ∈ N, there exists an ε in the
support of εt such that g(z, ε) ≥ m. To ensure that capital has a stationary solution,
we assume that α ∈ (0, 1) and that suptE | ln zt| < ∞.

The existence of a unique stationary distribution and monotone ergodicity can be
shown in a straightforward way using proposition 5.1. The function F correspond-
ing to (6) is

F((kt, zt), εt+1) = (αβAkα
t zt, g(zt, εt+1)).

Since g is continuous and increasing, F is continuous and increasing in (kt, zt) for
each fixed value of εt+1. Since E | ln zt| is assumed to be bounded in t, to show
that {Xt} is bounded in probability on S it is enough to show that E | ln kt| is also
bounded in t (see, e.g., Meyn and Tweedie (2009), p. 559). This follows easily from
taking logs in kt+1 = αβAkα

t zt and using the assumption that E | ln zt| is bounded
in t.

The only nontrivial remaining step needed to check the conditions of proposi-
tion 5.1 is that one of conditions (i)–(iii) hold. We claim that (ii) holds. To see
this, fix any initial condition x = (k0, z0) and any other point c = (kc, zc) in S. Let
k1 := αβAkα

0z0. Consider the value of the state two periods after starting at (k0, z0)

and receiving shocks ε1, ε2. The values are

k2(ε1) := αβAkα
1g(z0, ε1) and z2(ε1, ε2) := g(g(z0, ε1), ε2).

In view of our assumptions on the shock, we can choose values ε1 and ε2 in the
support of the shock distribution such that k2(ε1) > kc and z2(ε1, ε2) > zc. In the
notation of proposition 5.1 we can write this as

F2((k0, z0), ε1, ε2) = (k2(ε1), z2(ε1, ε2)) > (kc, zc) = c.
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Thus (ii) holds and all the conditions of proposition 5.1 are verified. Hence the state
process has a unique stationary distribution, and the sample mean 1

n ∑n
t=1 h(kt)

converges to its expectation E h(kt) under the stationary distribution with proba-
bility one whenever h is monotone and the expectation is finite (theorem 3.1). The
same is true if h is a finite moment kp

t or any other linear combination of monotone
functions (corollary 3.1), or a continuous bounded function (theorem 3.2).

In proving condition (ii) of proposition 5.1 we assumed for simplicity that the ex-
ogenous productivity process can be driven above any fixed number from any
starting condition in two units of time. This kind of scenario occurs in a variety
of model specifications, such as those with lognormal innovations and a log linear
shock process. However, condition (ii) also holds if the productivity process can be
driven above any fixed number in finite time, with a suitable sequence of shocks.
The argument is only slightly more elaborate.

Proposition 5.1 again holds if we assume instead that the exogenous process can be
pushed arbitrarily close to zero from any initial condition in finite time, by verify-
ing condition (i) of proposition 5.1 instead of condition (ii). In fact proposition 5.1
can be applied if we know only that we can select sequences for the shocks {εt} that
drive {zt} to either of two distinct possible values, regardless of initial conditions.
This implies that we can also drive {kt} to either of two distinct values from any
starting point by suitable choice of shocks. Hence condition (iii) of proposition 5.1
is valid.

One benefit of verifying the conditions of proposition 5.1 is that we know from
theorem 3.2 that an empirical distribution computed from simulated time series
converges weakly to the unique stationary distribution with probability one. In
this setting the empirical distribution for capital given simulated sample {kt}n

t=1

can be written as Fn(k) = 1
n ∑n

t=1 1{kt ≤ k}. Figure 1 shows two realizations of
Fn, each computed from samples of size n = 106. The shock is a discretized AR(1)
process with 4 states. The two realizations correspond to simulations with different
levels of volatility in the productivity process.16

16The shocks are discretized from a process which in logs has the form zt+1 = ρzt + σεt+1.

Discretization uses Tauchen’s method. Parameters are α = 0.3, β = 0.96, A = 1, ρ = 0.8 and either

σ = 0.1 or σ = 0.15. For the code see https://gist.github.com/jstac/d58d4f4273cf5a2deb03.
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FIGURE 1. Stationary distribution of capital

6.3. General Functional Forms. Now let us return to the IID assumption on the
shock process {zt} but drop the specifications on u and f that allowed us to derive
closed form solutions. Suppose instead that f is continuous and that u and k 7→
f (k, z) are strictly increasing, strictly concave and continuously differentiable, and
that f (0, z) = 0 for all z. Suppose for simplicity that u is bounded. Suppose further
that u′(0) = ∞, that δ ∈ (0, 1), that there exist positive k and r such that E f (k, zt)

and E [ f1(k, zt) + (1− δ)]−r are both finite, and that

lim
k→∞

E f1(k, zt) < (1− δ) and lim
k→0

E ln[β( f1(k, zt) + 1− δ)] > 0.

Let yt = f (kt, zt) + (1− δ)kt. Under these conditions it is known that there exists
a unique optimal investment policy y 7→ k(y) that is continuous, increasing and
interior, and that the optimal income process yt+1 = f (k(yt), zt+1) + (1− δ)k(yt)

is bounded in probability on the state spaceR++ (Kamihigashi, 2007, theorem 2.1,
Appendix B). To add monotone ergodicity we need only provide conditions under
which one of (i)–(iii) in proposition 5.1 holds.17

17The state is just income here because the productivity shock is IID. The random variable zt+1

corresponds to the current shock εt+1 in (6).
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First, assume that zt is supported on all ofR++ and that limz→∞ f (k, z) = ∞ for any
positive k. Condition (ii) then holds because if we fix initial condition y ∈ R++ and
any other point c ∈ R++, there exists by assumption a z̄ such that f (k(y), z̄) > c.
In comparison, since the state space is unbounded here, conditions 4.1 and 4.2 do
not hold.

In the above case, it is not difficult to directly verify condition 4.4, since the order
of an arbitrary pair of initial conditions can be reversed in one step with posi-
tive probability as a consequence of the unbounded shock. When the shock is
bounded, however, condition 4.4 is less trivial to verify18 and the requirements of
condition 4.3 and condition 4.5 are if anything harder to establish.19 On the other
hand, the conditions of proposition 5.1 can still be verified using simple arguments.

As an example, suppose that f (k, 0) = 0 and that zt has a density and is supported
on a bounded interval [0, z̄]. We can easily verify condition (i) of proposition 5.1.
To do so, let n ∈ N be given and suppose that zt = 0 for all t = 0, . . . , n. We
then have yn = (1− δ)nk0. It follows that, for any c > 0, we have yn < c for n
sufficiently large. Hence condition (i) holds.

Notice that in the preceding paragraph, even though the support of the shock is
bounded, conditions 4.1 and 4.2 are still invalid because the state space is open
and excludes zero. The state space cannot be chosen as closed and excluding zero
because income can be arbitrarily close to zero. It cannot be chosen as closed and
including zero because any nontrivial stationary distribution would coexist with a
trivial stationary distribution concentrated at zero and uniqueness would be lost.
Ergodicity cannot be established in this setting.

The argument based on condition (i) above can be extended to the case of corre-
lated shocks as long as the Markov process Xt := (kt, zt) defined in section 6.2
(with the general optimal policy function) is increasing. A sufficient condition for

18Intuitively, the order of a pair of initial conditions might take many steps to reverse. Once we

have multiple steps, we need to take into account how the shocks feed into the state over time,

without having access to closed form solutions for the policy. Making probabilistic statements

about reversal probabilities is not trivial in this setting.
19Condition 4.3 contains a boundedness condition that needs to hold uniformly across all initial

conditions in R++, while in condition 4.5 mixing has to occur with probability one.
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this monotonicity is given by Hopenhayn and Prescott (1992) on p. 1403. Under
this condition, if the support of εt takes the form (0, ε̄) and g(z, 0) = 0 for any
z ∈ R++, then we can adapt the argument above to show that the process Xt satis-
fies condition (i) on S = R2

++. Condition (ii) can also be verified if the support of
εt is unbounded, limε→∞ g(z, ε) = ∞ for any z ∈ R++, and limz→∞ f (k, z) = ∞ for
any k ∈ R++.

6.4. The Firm Size Distribution. Rossi-Hansberg and Wright (2007) use a gen-
eral equilibrium model to study firm size dynamics and their implications for the
firm size distribution across different sectors and industries. Their model implies
industry level firm size dynamics of the form

st+1 = nc + [1− (1−ω)(1− β(1− α))]st − β(1− α) ln At+1 (11)

where st is a measure of firm size, nc is a constant term, ω ∈ (0, 1) is a parameter
in the law of motion for human capital, α and β are parameters from the produc-
tion function taking values in (0, 1) and {At} is a strictly positive IID sequence
affecting accumulation of human capital (see Rossi-Hansberg and Wright (2007),
p. 1645). Rossi-Hansberg and Wright (2007) study the asymptotics of {st} by as-
suming that At always takes values in a compact set (Rossi-Hansberg and Wright,
2007, proposition 5). We now do the same without compactification. In this case,
conditions 4.1–4.3 are either violated or difficult to verify, as discussed in section
6.3.

If At is deterministic then dynamics are trivial to analyze, so suppose that the sup-
port of At contains at least two distinct values. It follows that part (iii) of proposi-
tion 5.1 holds. To see why, note that (11) can be expressed as st+1 = F(st, εt+1) =

ast + b + εt+1 where a and b are constants, a ∈ (0, 1), and {εt} is IID and takes at
least two distinct values ε and ε̄. Without loss of generality suppose that ε < ε̄.
Regardless of where we start the process, if we receive only shock ε we converge
to (b + ε)/(1 − a). If we receive only shock ε̄ we converge to the larger value
(b + ε̄)/(1− a). Thus we can choose shock sequences such that the ordering in (iii)
of proposition 5.1 holds eventually, regardless of initial conditions.

The other conditions of proposition 5.1 are straightforward to verify in this context.
Boundedness in probability holds because the coefficient 1− (1−ω)(1− β(1− α))
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lies in (0, 1) and hence the process is mean reverting. Continuity and monotonicity
are immediate. The conclusions of proposition 5.1 follow.

6.5. Wealth distributions. Benhabib et al. (2011) study evolution of the wealth
distribution in a general equilibrium model that produces a system of the form

wt+1 = α(zt+1)wt + β(zt+1)

zt+1 = g(zt, εt+1).

Here {wt} is household wealth, {εt} is an IID shock sequence, {zt} is an exogenous
process and α, β and g are given functions.20 As in Benhabib et al. (2011), we take
zt to be discrete, with α(z) > 1 for high values of z and α(z) < 1 for low values.
Hence wealth goes through periods of expansion and contraction. Since it changes
little of what follows, we assume that zt ∈ {0, 1}, with 0 < α(0) < 1 < α(1).
We suppose that wealth is nonnegative, that P{zt+1 = i | zt = j} > 0 for all i, j ∈
{0, 1}, that g(z, ε) is increasing in z for each ε, and that 0 < β(0) ≤ β(1). To prevent
wealth from growing without limit, we assume that ln α(0)π0 + ln α(1)π1 < 0,
where π is the stationary distribution of zt. See theorem 1 of Brandt (1986).

The endogenous state wt is not in general irreducible and is naturally unbounded.
Indeed, if zt remains in the high state for sufficiently long, then wt will exceed any
given bound. As a result we take the state space for wt to be all of [0, ∞), and the
state space S for the pair Xt := (wt, zt) as [0, ∞)× {0, 1}. Because of this unbound-
edness, the existing law of large number results based around condition 4.1 do not
hold. Nor do the classical ergodic results hold here in general. (A counterexample
analogous to the one developed in section 6.1 can also be applied here.)21

On the other hand, the conditions of proposition 5.1 are easy to verify. Bounded-
ness in probability is already known (Brandt, 1986, theorem 1). Continuity follows
immediately from our assumptions, as does monotonicity. Condition (ii) of the
proposition clearly holds too, since a sufficiently long sequence of high states for
zt will drive (wt, zt) above any given vector in S. Hence the system has a unique
stationary distribution and is monotone ergodic.

20Similar dynamics arise in models of prices and inflation. See, for example, Benhabib and Dave

(2013) or Farmer et al. (2009).
21Conditions 4.1–4.3 are either violated or difficult to verify, as discussed in section 6.3.
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6.6. Consistency of Estimators. A large number of standard results on consis-
tency and asymptotic normality of estimators from time series econometrics rely
on classical ergodicity (see, e.g., Hansen (1982)). Given that many economic mod-
els fail classical ergodicity, an important question is whether the same results can
also be established after assuming only monotone ergodicity as defined in sec-
tion 3.1. While it is beyond the scope of this paper to discuss estimation in detail,
for the sake of illustration we now sketch how consistency of the OLS estimate can
be derived in the simple scalar regression Yt = βXt + νt when {Xt} is monotone
ergodic.

For this purpose we will assume that {Xt} is a Markov process with stationary dis-
tribution π generated by an increasing monotone ergodic kernel Q, as was the case
for the state processes in the applications in sections 6.1–6.5. Suppose in addition
that {Xt} has finite nonzero second moment sX =

∫
x2π(dx). To study consistency

recall that the difference between the true parameter and the OLS estimator β̂n can
be expressed as

β̂n − β =

[
1
n

n

∑
t=1

X2
t

]−1
1
n

n

∑
t=1

Xtνt. (12)

Under standard conditions on the error term, {Xtνt} is a martingale difference
sequence, and 1

n ∑n
t=1 Xtνt

p→ 0, where
p→ indicates convergence in probability.

The remaining concern is the limit of ŝ−1
X := [ 1

n ∑n
t=1 X2

t ]
−1. As shown in the dis-

cussion after corollary 3.1, the function h(x) = x2 lies in L and hence we have
1
n ∑n

t=1 X2
t → sX with probability one, and therefore in probability. The continuous

mapping theorem then gives ŝ−1
X

p→ s−1
X . We conclude that the right hand side of

(12) converges to zero in probability, and hence that β̂n
p→ β, as was to be shown.

7. CONCLUSION

A significant number of economic models do not satisfy the classical ergodicity
conditions. Motivated by a range of earlier studies of economic dynamics based
on order-theoretic ideas, this paper develops a new condition called monotone
ergodicity that is shown to be necessary and sufficient for probability one conver-
gence of sample averages to population means over a certain class of functions. We
show that monotone ergodicity is implied by a number of different conditions from
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the existing economics literature that were used to prove distributional properties.
Hence our results on convergence of sample averages provide more information
on the dynamics of models that satisfy the conditions in these existing well known
studies. Our results also provide information on sample path properties in settings
where no previous sample path results were available.

A number of additional results related to implications of the theory are also pro-
vided. For example, we show that the empirical distribution associated with any
sample converges to the stationary distribution with probability one. We also dis-
cuss sufficient conditions, providing a bridge from the abstract results in the paper
to new applications. Several illustrations show how the results extend existing
knowledge on the asymptotics of popular economic models.

8. PROOFS

8.1. Preliminaries. For the proofs we adopt some additional notation. Let bS de-
note the set of bounded measurable functions from (S, B) to R, let ibS denote the
set of increasing functions in bS, let cbS denote the set of continuous functions in
bS and let icbS := ibS∩ cbS. We sometimes use inner product notation to represent
integration, so that

〈µ, h〉 :=
∫

h(x)µ(dx)

for all h : S→ R and measures µ on (S, B) such that the integral is defined.

8.2. Proofs from Section 3. As mentioned in section 3, some authors define ergod-
icity in terms of shift-invariant events, and hence, for the sake of completeness,
we prove a slightly more general form of theorem 3.1, encompassing monotone
equivalents of these ideas. To begin, let the shift operator θ : S∞ → S∞ be defined
as usual by θ(x0, x1, . . .) = (x1, x2, . . .). Let θt denote the t-th composition of θ with
itself, and let θ0 be the identity. Let X be the first coordinate projection, sending
(x0, x1, . . . , xt, . . .) into x0. If P is any probability measure on the sequence space
(S∞, B∞), then the S-valued stochastic process {Xt} on (S∞, B∞,P) defined by
Xt := X ◦ θt has joint distribution P. Specializing to P = P

Q
µ yields the canonical

Markov process discussed in section 2.2. Here and below, {Xt} is understood as
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being defined in this way and (S∞, B∞,PQ
µ ) is the probability space, unless other-

wise stated.

A random variable is always a B∞ measurable map from S∞ to R. We endow S∞

with the pointwise order inherited from (S,�). In particular, we say that {xt} �
{x′t} if xt � x′t in S for all t. We will make use of the following lemma, which
follows immediately from propositions 1 and 2 of Kamae et al. (1977).

Lemma 8.1. If Q is an increasing stochastic kernel on S, E is an increasing set in B∞ and
x, y ∈ S, then x � y implies PQ

x (E) ≤ PQ
y (E).

An event A ∈ B∞ is called shift-invariant if θ−1(A) = A. It is called trivial if the
function h(x) := P

Q
x (A) is constant on S and takes values in {0, 1}. A family

of sets in B∞ is called trivial if every element of the family is trivial. A random
variable Y is called shift-invariant if it is measurable with respect to the family of
shift-invariant sets (which form a σ-algebra). We will also make use of the follow-
ing lemma, which is proved in section 8.5.

Lemma 8.2. Let G ⊂ B∞ be a σ-algebra, let iG be the increasing sets in G , and let Y be
an increasing, G -measurable random variable. If iG is trivial, then there exists a γ ∈ R
such that PQ

x {Y = γ} = 1 for all x ∈ S.

Here is the generalization of theorem 3.1. It does not use the Polish assumption on
(S,�). In particular, (S, B,�) can be any partially ordered measurable space.

Theorem 8.1. For any increasing stochastic kernel Q with stationary distribution π, the
following conditions are equivalent:

(i) Every increasing shift-invariant set is trivial.
(ii) Q is monotone ergodic.
(iii) For every x ∈ S and increasing π-integrable function h, we have

P
Q
x

{
lim

n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h dπ

}
= 1.

Proof of theorem 3.1. (i) =⇒ (ii). Let h be bounded, increasing and invariant. De-
fine Y := lim supt h(Xt). We then have h(x) = E

Q
x Y for all x ∈ S, as shown in
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theorem 17.1.3 of Meyn and Tweedie (2009). Notice that Y is shift invariant, since,
for each a ∈ R, the set A := {Y ≤ a} satisfies θ−1(A) = A. Notice also that
Y is increasing on the sample space S∞. It now follows from our hypothesis and
lemma 8.2 that there exists a γ ∈ R such that PQ

x {Y = γ} = 1 for all x ∈ S. Hence
h(x) = E

Q
x (Y) = γ for all x ∈ S. Thus h is constant, as was to be shown.

(ii) =⇒ (iii). Let h be any increasing function in L1(π). Without loss of generality,
we assume that

∫
h dπ = 0. Define

Eh :=

{
lim inf

n

1
n

n

∑
t=1

h(Xt) ≥ 0

}
and H(x) := P

Q
x (Eh). It is clear that Eh is shift-invariant, and hence, by theo-

rem 17.1.3 of Meyn and Tweedie (2009), the function H is invariant in the sense of
(3). From the fact that h is increasing, the set Eh is increasing on S∞. Using the hy-
pothesis that Q is increasing and applying lemma 8.1, we see that H is increasing.
Evidently H is bounded. It now follows from (ii) that H is constant, with H(x) ≡ α

for some α ∈ [0, 1].

Seeking a contradiction, suppose that α < 1. In view of theorem 17.1.2 of Meyn
and Tweedie (2009), there exists a measurable function f : S→ R and a set Fh ∈ B

such that

(a)
∫

f (x)π(dx) = 0
(b) π(Fh) = 1
(c) PQ

x

{
lim infn

1
n ∑n

t=1 h(Xt) = f (x)
}
= 1 for all x ∈ Fh.

Fix x ∈ Fh. Since α < 1, we have

P
Q
x

{
lim inf

n

1
n

n

∑
t=1

h(Xt) < 0

}
= 1− H(x) = 1− α > 0.

In conjunction with (c), this implies that{
lim inf

n

1
n

n

∑
t=1

h(Xt) < 0

}
∩
{

lim inf
n

1
n

n

∑
t=1

h(Xt) = f (x)

}
6= ∅.

Hence f (x) < 0. Since x ∈ Fh was arbitrary, we have f < 0 on Fh. From (b) we
have π(Fh) = 1, so ∫

f (x)π(dx) =
∫

Fh

f (x)π(dx) < 0.
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This inequality is impossible by (a).

We have now contradicted α < 1, which implies that H is everywhere equal to 1.
In other words,

P
Q
x

{
lim inf

n

1
n

n

∑
t=1

h(Xt) ≥ 0

}
= 1, ∀x ∈ S.

A symmetric argument shows that PQ
x
{

lim supn n−1 ∑n
t=1 h(Xt) ≤ 0

}
= 1 for all

x ∈ S.22 The claim in (iii) now follows.

(iii) =⇒ (i). Let A be increasing and shift-invariant. Let h(x) := P
Q
x (A). Our

aim is to show that h is constant and equal to either zero or one. Fixing x ∈ S
and applying theorem 17.1.3 of Meyn and Tweedie (2009), we can write 1A =

limt h(Xt), where equality holds PQ
x -a.s. As a consequence,

1A = lim
n→∞

1
n

n

∑
t=1

h(Xt).

Since A and Q are both increasing, lemma 8.1 tells us that h is increasing. Clearly
it is π-integrable. Applying (iii), we see that 1A =

∫
h dπ holds PQ

x -a.s. In partic-
ular, the indicator of A is constant PQ

x -a.s., and the value of the constant does not
depend on x. Being an indicator, the constant value is either zero or one. Hence
either h = 0 or h = 1. �

Proof of proposition 3.1. Suppose that Q is increasing and monotone ergodic on (S,�
), and that π1 and π2 are both stationary for Q. Since a sequence cannot converge
almost surely to two different limits, theorem 3.1 implies that

∫
hdπ1 =

∫
hdπ2

for every bounded measurable increasing function h from S to R. Moreover, the
Polish assumption implies that if π1 and π2 are two probability measures on B

satisfying this condition, then π1 = π2. See, for example, theorem 2 of Kamae
et al. (1978). �

Proof of corollary 3.1. . Fix x ∈ S and h ∈ L . As per footnote 8, we can write h as
h = h1− h2, where h1 and h2 are increasing and π-integrable. By theorem 3.1, for h1

22In this case, the analogous function H is bounded and invariant, but decreasing rather than

increasing. Under (ii), such a function is also constant, because −H is bounded, invariant and

increasing. The rest of the argument is essentially the same.
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and h2 there exist events F1 and F2 withPQ
x (Fi) = 1 and n−1 ∑n

t hi(Xt)→
∫

hid π on
Fi. Setting F := F1 ∩ F2 and applying linearity, we obtain n−1 ∑n

t h(Xt) →
∫

hd π

on F. Evidently PQ
x (F) = 1. Hence (4) holds with µ = δx for any x ∈ S. This

extends to general µ via the identity

P
Q
µ (B) =

∫
P

Q
x (B)µ(dx) for all B ∈ B∞ and µ ∈P .

(The last equality can be obtained via a generating class argument applied to (2).)
�

Now we turn to the proof of theorem 3.2. In the proof, we let ic(S, [0, 1]) be the
functions in icbS taking values in [0, 1]. As usual, µn

w→ µ means that 〈µn, f 〉 →
〈µ, f 〉 for all f ∈ cbS. Also, we require the following definition: Letting G and H

be sets of bounded measurable functions, we say that H is monotonically approxi-
mated by G if, for all h ∈ H , there exist sequences {g1

n} and {g2
n} in G with g1

n ↑ h
and g2

n ↓ h pointwise. The proofs of the next two lemmas are given at the end of
this section.

Lemma 8.3. If H is monotonically approximated by G , then G is convergence determin-
ing for H , in the sense that if {νn} and ν are elements of P , and 〈νn, g〉 → 〈ν, g〉 for all
g ∈ G , then 〈νn, h〉 → 〈ν, h〉 for all h ∈H .

Lemma 8.4. If the conditions of theorem 3.2 hold, then there exists a countable class
G such that PQ

x {n−1 ∑n
t=1 g(Xt) →

∫
g dπ} = 1 for every g ∈ G , and, moreover,

ic(S, [0, 1]) is monotonically approximated by G .

Proof of theorem 3.2. Fix x ∈ S. Let πn be the empirical distribution. As a first step
of the proof, we claim that {πn} is tight with probability one.23 To see this, fix
ε > 0, and let K be a compact subset of S with π(K) ≥ 1 − ε. By assumption,
compact subsets of S are order bounded, and so we have a, b ∈ S with K ⊂ [a, b].
Let I := {y ∈ S : a � y} and J := {y ∈ S : y � b}. Evidently

πn([a, b]) = πn(I ∩ J) ≥ πn(I) + πn(J)− 1. (13)

23Recall that {µn} ⊂ P is called tight if, for all ε > 0, there exists a compact K ⊂ S such that

µn(K) ≥ 1− ε for all n.
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Note that both I and J are increasing. By corollary 3.1, we can take Fa to be a subset
of S∞ with PQ

x (Fa) = 1 and πn(I) → π(I) on Fa; and Fb ⊂ S∞ with PQ
x (Fb) = 1

and πn(J)→ π(J) on Fb. It follows from (13) that on F := Fa ∩ Fb we have

lim inf
n→∞

πn([a, b]) ≥ π(I) + π(J)− 1 ≥ 2π(K)− 1 ≥ 1− ε.

Since closed and bounded order intervals are compact by assumption, it follows
that {πn} is tight on the probability one set F.

As the second step of the proof, we claim there exists a probability one set F′ such
that, for any given ω ∈ F′, we have 〈πω

n , f 〉 → 〈π, f 〉 for all f ∈ icbS. To see
that this is so, let G be as in lemma 8.4. Since G is countable and the law of large
numbers holds for every element of G , there exists a probability one set F′ ⊂ Ω
such that, for each ω ∈ F′, we have 〈πω

n , g〉 → 〈π, g〉 for all g ∈ G . Fix ω ∈ F′. Since
ic(S, [0, 1]) is monotonically approximated by G , lemma 8.3 implies that 〈πω

n , f 〉 →
〈π, f 〉 for all f ∈ ic(S, [0, 1]). It immediately follows that 〈πω

n , f 〉 → 〈π, f 〉 for all
f ∈ icbS.24

Now let F′′ be the probability one set F ∩ F′. For any ω ∈ F′′, the sequence of
distributions {πω

n } is tight, and satisfies 〈πω
n , f 〉 → 〈π, f 〉 for all f ∈ icbS. In view

of lemma 6.6 of Kamihigashi and Stachurski (2014), we then have 〈πω
n , f 〉 → 〈π, f 〉

for all f ∈ cbS. This concludes the proof of theorem 3.2. �

8.3. Proofs from Section 4. In this section we give the proof of proposition 4.1.
The strategy is to first show that condition 4.5 implies monotone ergodicity, and
then show that conditions 4.1–4.4 all imply condition 4.5.

Proof of proposition 4.1. First we show that if condition 4.5 is satisfied then Q is
monotone ergodic. To see this let h ∈ ibS be invariant, and let x and x′ be any two
points in S. We aim to show that h(x) = h(x′), and hence that h is constant. To this
end, let {Xt} and {X′t} be independent Q-Markov processes defined on the same
probability space (Ω, F ,P), with X0 = x and X′0 = x′. Since h is bounded and
invariant, both {h(Xt)} and {h(X′t)} are bounded martingales. By the martingale
convergence theorem, there exist random variables Y and Y′ such that h(Xt) → Y
and h(X′t)→ Y′ P-almost surely.

24If f ∈ icbS, then there exists a g ∈ ic(S, [0, 1]) and constants a, b such that f = a + bg.
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Let {Xt � X′t i.o. } be the event that Xt � X′t occurs infinitely often.25 Since
Q is order mixing, Xt � X′t at least once with probability one. As shown in
proposition 9.1.1 of Meyn and Tweedie (2009), this in turn implies the seemingly
stronger result P{Xt � X′t i.o. } = 1. Since h is increasing, this implies that
{h(Xt) ≤ h(X′t) i.o. } has probability one. It now follows that Y ≤ Y′ holds P-
a.s., and hence EY ≤ EY′.

By the dominated convergence theorem and the martingale property, we have
EY = E h(Xt) = E h(X0) = h(x). Similarly, EY′ = h(x′). We have now shown
that h(x) ≤ h(x′). A symmetric argument gives h(x′) ≤ h(x), as can be seen by
swapping the roles of Xt and X′t in the proof above. We conclude that h(x) = h(x′),
as was to be shown.

Next we claim that conditions 4.1–4.4 all imply condition 4.5. That this is true
for condition 4.1 was established in section 4.1 of Kamihigashi and Stachurski
(2012). That condition 4.2 implies condition 4.5 is immediate from remark 2.4 and
lemma 6.5 of Kamihigashi and Stachurski (2014). That condition 4.4 implies con-
dition 4.5 follows from lemma 6.5 of Kamihigashi and Stachurski (2014).

That condition 4.3 implies condition 4.5 is more subtle. We prove that condition 4.3
implies condition 4.4, which, as shown above, implies condition 4.5. In verifying
condition 4.4, note that Q is increasing by assumption, and that uniform asymp-
totic tightness clearly implies boundedness in probability. Hence it remains only
to show that Q is order reversing under condition 4.3.

For the rest of this proof let Qn(x, B) := P
Q
x {Xn ∈ B} for all x ∈ S, n ∈ N and

B ∈ B. Fix x and x′ in S with x ≤ x′, let {Xt} and {X′t} be independent Markov
processes generated by Q and starting and x and x′ respectively. Let c be as in the
definition of weak mixing. As a first step, we claim that

∃ j ∈ N s.t. Qnj(x, (c, ∞)) > 0, ∀ n ∈ N. (14)

25That is, {Xt � X′t i.o } :=
⋂∞

m=0
⋃

t≥m{Xt � X′t}.
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To see that this is so, define a := min{x, c}. By weak mixing there is a j ∈ N with
Qj(a, (c, ∞)) > 0. Now note that, by the Chapman-Kolmogorov equations,

Q2j(a, (c, ∞)) =
∫

Qj(a, dy)Qj(y, (c, ∞))

≥
∫
1{y > c}Qj(a, dy)Qj(y, (c, ∞)).

Since y > c implies that y > a, Q is increasing and Qj(a, (c, ∞)) > 0, it follows
that Qj(y, (c, ∞)) is strictly positive on {y > c}. Moreover, Qj(a, dy) puts positive
measure on {y > c}. Hence the integral is strictly positive, and Q2j(a, (c, ∞)) > 0
is established. An induction argument generalizes this result to all n, and (14) is
established. A symmetric argument shows that ∃ k ∈ N with Qnk(x′, (−∞, c)) > 0
for all n ∈ N. Combining this result and (14), we see that for t = jk we have

Qt(x′, (−∞, c)) ·Qt(x, (c, ∞)) > 0. (15)

Finally, since {Xt} and {X′t} are independent, we obtain

P{X′t ≤ Xt} ≥ P{X′t < c < Xt} = P{X′t < c}P{c < Xt}.

Combined with (15) this shows that Q is order reversing as claimed. �

8.4. Proofs from Section 5.

Proof of proposition 5.1. QF is increasing because F is increasing in x. See, for ex-
ample, Kamihigashi and Stachurski (2014), p. 389. QF has at least one stationary
distribution by proposition 12.1.3 of Meyn and Tweedie (2009).

Regarding monotone ergodicity, in view of proposition 4.1, it suffices to show that
QF is order reversing under any one of conditions (i)–(iii).

Consider first condition (iii). Fix x′ � x. Let {εt}k
t=1 and {ε′t}k

t=1 be as in the state-
ment of the proposition, so that, by hypothesis, Fk(x, ε1, . . . , εk) < Fk(x′, ε′1, . . . , ε′k).
Let {et} and {e′t} be IID draws from φ and independent of each other. Define the
constant

γ := P{Fk(x, e1, . . . , ek) < Fk(x′, e′1, . . . , e′k)}.

We aim to show that γ > 0. By continuity of F, there exist open neighborhoods Nt

of εt and N′t of ε′t such that

ε̃t ∈ Nt and ε̃′t ∈ N′t for t ∈ {1, . . . , k} =⇒ Fk(x, ε̃1, . . . , ε̃k) < Fk(x′, ε̃′1, . . . , ε̃′k).
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This leads to the estimate

γ ≥ P∩n
t=1 {et ∈ Nt and e′t ∈ N′t} =

n

∏
t=1

φ(Nt)φ(N′t). (16)

Since E is the support of φ, this last term is positive, and γ > 0.

The proof of the proposition under conditions (i)–(ii) is similar. For example, an
argument similar to the one just given shows that condition (i) implies that QF

is downward reaching in the sense of Kamihigashi and Stachurski (2014). The
order reversing property then follows from Kamihigashi and Stachurski (2014),
proposition 3.2, and the rest of the arguments are unchanged. �

Proof of proposition 5.2. As in the proof of proposition 5.1, QF is increasing because
F is increasing in x, and QF has at least one stationary distribution by proposi-
tion 12.1.3 of Meyn and Tweedie (2009).

Regarding monotone ergodicity, it once again suffices to show that QF is order
reversing under any one of conditions (i)–(iii).

Consider first condition (iii). Fix x′ � x. Let {εt}k
t=1 and {ε′t}k

t=1 be as in the
statement of the proposition. By hypothesis, Fk(x, ε1, . . . , εk) ≤ Fk(x′, ε′1, . . . , ε′k).
Let {et} and {e′t} be IID draws from φ and independent of each other. Define the
constant

γ := P{Fk(x, e1, . . . , ek) ≤ Fk(x′, e′1, . . . , e′k)}.

We aim to show that γ > 0. Define the events

Nt := {ε̃ ∈ E : ε̃ ≤ εt} and N′t := {ε̃ ∈ E : ε̃ ≤ ε′t}.

An easy induction argument shows that since F is increasing in both arguments,
the function Fk is increasing in all arguments for all k, and hence

ε̃t ∈ Nt and ε̃′t ∈ N′t for t ∈ {1, . . . , k} =⇒ Fk(x, ε̃1, . . . , ε̃k) ≤ Fk(x′, ε̃′1, . . . , ε̃′k).

This leads to the same bound as (16). Since E is open and the support of φ is all of
E, this last term in (16) is again positive, and γ > 0.

The proof of the proposition under conditions (i)–(ii) is similar. �
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8.5. Remaining Proofs. Finally, we complete the proofs of lemmas 8.2–8.4.

Proof of lemma 8.2. Assume the conditions of the lemma. In particular, let iG be
trivial, and let Y be increasing and G -measurable. Fixing c ∈ R, let Fx(c) :=
P

Q
x {Y ≤ c}. Given the assumptions on Y, the set {Y ≤ c} is decreasing and in

G . Since iG is trivial, the decreasing sets in G must also be trivial.26 Hence the dis-
tribution function Fx(c) is either zero or one. Letting γ := inf{c ∈ R : Fx(c) = 1}
and applying right-continuity, we have Fx(γ) = 1 and Fx(c) = 0 for any c < γ.
Hence PQ

x {Y = γ} = 1. By the definition of triviality, γ does not depend on x. �

Proof of lemma 8.3. Let {νn} and ν be probability measures on S, and suppose that
〈νn, g〉 → 〈ν, g〉 for all g ∈ G ⊂ bS. We claim that 〈νn, h〉 → 〈ν, h〉 for all h ∈ H ⊂
bS. To see this, pick any h ∈ H , and choose sequences {g1

n} and {g2
n} in G with

g1
n ↑ h and g2

n ↓ h. Clearly

lim inf
n
〈νn, h〉 ≥ lim inf

n
〈νn, g1

k〉 = 〈ν, g1
k〉 for all k.

∴ lim inf
n
〈νn, h〉 ≥ sup

k
〈ν, g1

k〉 = lim
k
〈ν, g1

k〉 = 〈ν, h〉.

A symmetric argument applied to {g2
n} yields lim supn〈νn, h〉 ≤ 〈ν, h〉. �

Proof of lemma 8.4. Let A be the countable subset of S in assumption 3.1. For a ∈ A,
let Ia := 1{y ∈ S : a � y}. Let K be the set of functions ` = rIa for some
r ∈ Q ∩ [0, 1] and a ∈ A. Let G1 be all functions g = max`∈F ` where F ⊂ K

is finite. Clearly G1 is countable, and, by theorem 3.1, every g ∈ G1 satisfies
P

Q
x {n−1 ∑n

t=1 g(Xt) →
∫

g dπ} = 1. We claim that for each f ∈ ic(S, [0, 1]) there
exists a sequence {gn} in G1 converging up to f . To verify this claim it suffices to
show that

sup{`(x) : ` ∈ K and ` ≤ f } = f (x) for any x ∈ S. (17)

Indeed, if (17) is valid, then take {`k} to be an enumeration of all ` ∈ K with ` ≤ f
and choose gn = max1≤k≤n `k.

To establish (17), fix x ∈ S and ε > 0. By continuity of f and assumption 3.1,
we can find an a ∈ A with a � x and f (x) − ε < f (a). Let r ∈ Q be such that

26Just observe that if D ∈ G is decreasing, then Dc is increasing, and hence h(x) = P
Q
x (Dc) =

1−PQ
x (D) is constant in {0, 1}. The claim follows.
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f (x)− ε < r < f (a) and let `(x) := rIa. Since ` ≤ f (a)Ia and f is increasing we
have ` ≤ f . On the other hand, f (x)− ε < r = `(a) ≤ `(x). Since ε was arbitrary
we conclude that (17) is valid.

To complete the proof of lemma 8.4, we show existence of a class of functions G2

such that G2 is countable, every g ∈ G2 satisfiesPQ
x {n−1 ∑n

t=1 g(Xt)→
∫

g dπ} = 1,
and, for each f ∈ ic(S, [0, 1]), there exists a sequence {gn} in G2 converging down
to f . The claim in lemma 8.4 is then satisfied with G := G1 ∪ G2. We omit the
details, since the construction of G2 is entirely symmetric to the construction of
G1. �
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