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Abstract 

Saijo, Okano, and Yamakawa (2014) showed that the mate choice mechanism for a symmetric 

prisoner’s dilemma (PD) game implements cooperation in backward elimination of weakly 

dominated strategies (BEWDS), and it attained almost full cooperation in their experiment. 

First, this study shows that the mechanism works well in the class of quasi-dilemma (QD) 

games such as asymmetric PD games and coordination games. Second, the class of BEWDS- 

implementable games is exactly the same as the class of QD games. Third, the mechanism 

cannot implement cooperation in a subgame perfect equilibrium. Finally, we confirm that the 

mate choice mechanism works well experimentally for an asymmetric PD game.  

 

1. Introduction 

This study is part of our endeavor to find one of the simplest possible mechanisms to 

solve social dilemmas, including the prisoner’s dilemma (PD), public good provision, and 

coordination, both experimentally and theoretically.1 Experimentally, we aim to design 

mechanisms that can attain a Pareto efficient outcome in a few rounds,2 because we cannot 

repeat the same mechanism many times in real-life settings. Theoretically, we seek natural 

behaviors among subjects in experiments rather than stick to Nash or Nash-type equilibrium 

                                                   
1 See, for example, Huang, Masuda, and Saijo (2014), Masuda, Okano, and Saijo (2014), and Saijo, Okano, and 
Yamakawa (2014). Masuda et al. (2014) constructed a mechanism that implements a Pareto efficient allocation 
in a public good economy when the number of players is two and their preferences are linear, and then, they 
conducted experiments in which the rate of contribution is 94.9%. The mechanism, called the minimum 
approval mechanism, is a version of the mate choice mechanism. Huang et al. (2014) constructed a mechanism 
that implements cooperation when the number of players is at least two. They conducted experiments in 
which the rate of cooperation is more than 90% after period 4 with three players. The mechanism is called the 
simplified approval mechanism, and it is also based upon the mate choice mechanism.  
2 Chen (2005), for example, found that the stability property of mechanisms depends on their supermodularity. 
Supermodular mechanisms may require many periods to converge to a desired outcome. The goal of the 
endeavor is not to find such mechanisms but to find mechanisms that can attain a desired outcome in a few 
periods. 
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concepts. In addition, we do not use punishment or reward to balance the budget in the 

mechanism design.3 

The study by Saijo, Okano, and Yamakawa (2014) is one of the first attempts to design 

such a mechanism for the PD. They proposed the mate choice mechanism after a symmetric PD 

game. After observing the choice of cooperation (C) or defection (D) in the PD game, each 

player approves or disapproves the other’s choice: if both approve it, the outcome is what they 

chose in the PD game, and if at least one player disapproves the other choice, the outcome is 

that when both defect, which is called the mate choice (MC) mechanism. Because the MC 

mechanism does not have devices such as punishment or reward, it is budget balanced. 

Experimentally, they observed that the cooperation rate, that is, the ratio of subjects 

who chose cooperation, with the mechanism was 95.0% in round 1 and 96.9% through 19 

rounds, when each subject was never matched with the same subject again in all rounds.4 The 

(C,C) share, that is, the ratio of pairs in which both chose C, was 90.0% in round 1 and 94.0% 

through 19 rounds. They also found that subjects’ behavior was consistent with backward 

elimination of weakly dominated strategies (BEWDS) rather than Nash equilibrium (NE) or 

subgame perfect equilibrium (SPE) behavior. BEWDS is a procedure to eliminate weakly 

dominated strategies in each subgame backwardly. We also call the strategies that survive 

through the procedure BEWDS strategies. Theoretically, the MC mechanism implements 

cooperation in BEWDS for symmetric PD games.5 

Our paper expands the domain of this mechanism from symmetric PD games to 

asymmetric games that are not necessarily PD games. We find that the MC mechanism 

implements cooperation in BEWDS for the class of quasi-dilemma (QD) games, which contains 

coordination games, including the stag hunt game and PD games. Furthermore, under several 

mild conditions, we show that the class of games implementing cooperation in BEWDS is 

exactly the same as the class of QD games. On the other hand, the MC mechanism cannot 

implement cooperation in SPE. 

In order to test the performance of the MC mechanism in an asymmetric environment, 

                                                   
3 According to Guala (2013), strong reciprocity, in which a player punishes other players using the player’s own 
resource, is rare in human history. 
4 This is called complete stranger matching, and only a few experiments employ this matching. Saijo et al. 
(2014) chose this matching since it is the least favorable design for cooperation with respect to matching. 
5 The MC mechanism uses unanimity. Banks, Plott, and Porter (1988) introduced a voting stage after a public 
good provision stage and observed that unanimity reduced efficiency. Researchers stopped pursuing this 
avenue after Banks et al. (1988) presented their findings. Furthermore, Masuda et al. (2014) found that the MC 
mechanism cannot implement a Pareto-efficient allocation in BEWDS for an economy with a public good.  
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we choose an asymmetric PD game in which cooperation cannot be attained by the 

compensation mechanism in SPE that is proposed by Charness, Fréchette, and Qin (2007). The 

compensation mechanism asks players to transfer money to the other player in the first stage, 

and then, they both play a PD game. The monetary transfer must be done when the other 

player chooses cooperation in the PD stage. The compensation mechanism does not cover all 

PD games although the mate choice mechanism covers all PD games, and moreover, it covers 

non-PD games. That is, there is a class of PD games in which the compensation mechanism 

cannot implement cooperation in SPE.  

Experimentally, we observed that the cooperation rate with the mechanism is 76.7% 

in round 1, 86.7% in round 2, 93.3% in round 3, and 96.7% through 19 rounds. The (C,C) share 

is 56.7% in round 1, 73.3% in round 2, 86.7% in round 3, and 93.5% through 19 rounds. That is, 

the MC mechanism works reasonably well although it took a few rounds to achieve high (C,C) 

shares in an asymmetric PD game with the MC mechanism. 

Section 2 describes the MC mechanism applied to QD games. Section 3 proves that 

BEWDS implementable games are QD games and shows that the MC mechanism cannot 

implement cooperation in SPE. Section 4 presents the experimental design, and section 5, the 

results. Section 6 provides suggestions for further research. 

 

2. The mate choice mechanism and quasi-dilemma games 

Consider a 2 x 2 game that has two strategies: cooperation (C) and defection (D). 

 
 C D 

C (a,v)=V (b,w)=W 
D (c,x)=X (d,z)=Z 

 
Figure 1. A QD game. 

 

Define function p as follows: p(C,C) = (a,v) = V, p(D,C) = (c,x) = X, p(C,D) = (b,w) = W, 

and p(D,D) = (d,z) = Z. If p satisfies V > Z (a > d and v > z), X≥/ Z (d > c or z > x), and W ≥/ Z (d > 
b or z > w), then p is a QD game, and if p satisfies V > Z, ( , ) ( , )c d a b>  and ( , ) ( , )w z v x> , then p 

is a PD game.6 Coordination games, including the stag hunt game, are QD games. 

 
                                                   
6 “>” shows that each element of the left-hand-side vector is “strictly greater than” each element of the 
right-hand-side vector, and “≥” shows that each element of the left-hand-side vector is “greater than or equal 
to” each element of the right-hand-side vector. 
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Property 1. A prisoner’s dilemma game is a quasi-dilemma game. 

 
Proof. Let p be a PD game. Suppose that (a,v) > (d,z), ( , ) ( , )c d a b> , and ( , ) ( , )w z v x> . Given V = 

(a,v) and Z = (d,z), let X = (c,x) and W = (b,w) satisfy the conditions. Then, c > a, z > x, d > b, and 

w > v. This implies that z > x and d > b, showing that (d > c or z > x) and (d > b or z > w). That is, 

X≥/ Z and W ≥/ Z. █  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Possible locations of X and W in QD and PD games. 

 

Figure 2 shows the possible locations of X and W in QD and PD games. The region for 

QD games is the dark L-shaped area (i.e., R1, R2, R3, R4, and R5), and the regions for PD 

games are R1 for W and R5 for X. Line '−   shows that the sum of benefits of both players is 

equal to a + v. If V must be Pareto efficient, X and W must be located under '−  . We do not 

impose this condition hereafter.  

Let us define the MC mechanism. Players first choose either C or D in Figure 1. After 

this stage, each subject can approve (y) or disapprove (n), the other player’s choice in the 

second stage. If both approve the other player’s choice, the outcome is what they choose, and if 
either one disapproves the other player’s choice, the outcome is that both defect. Let ,i iM m , 

and iu be player i’s choice between C and D, i’s choice between y and n, and i’s payoff, 

respectively. Then, the MC mechanism is defined by the following rule: if 

1 2 ,m m y= = then 1 2( , )u u 1 2( , )p M M= ; otherwise, 1 2( , ) ( , ).u u p D D=  In general, we call the 

two-stage game without rule specification an approval mechanism. 
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Saijo et al. (2014) prepared five possible behavioral principles in their experiments for 

the MC mechanism: the NE, the SPE, evolutionarily stable strategies (ESS), neutrally stable 

strategies (NSS), and BEWDS. Of the five behavioral principles, the data of their experiments 

are most compatible with BEWDS.  

Since we focus upon SPE and BEWDS, let us define them. As we show later, since 

there is no need to consider mixed strategies in our framework, a profile of strategies indicates 

an assignment of a pure strategy for each information set. A profile of strategies is a SPE if the 

restriction of the profile at each subgame is a Nash equilibrium. Let us fix a subgame, and we 

say that a strategy at an information set in the game survives the elimination of weakly dominated 

strategies if the strategy is not weakly dominated by any other strategies in the set.7 A profile 

of strategies is a BEWDS if the restriction of the profile at each subgame survives the 

elimination of weakly dominated strategies. A mechanism implements cooperation in SPE (or 

BEWDS) if all players choose cooperation in the first stage under SPE (or BEWDS). Next, we 

show that the MC mechanism with a QD game implements cooperation under BEWDS. 

 

Property 2. The mate choice mechanism with a QD game implements the cooperative outcome under 
BEWDS. 

 

Proof and Interpretation. The MC mechanism with a QD game has four subgames in Figure 3. 
Because of the definition of the MC mechanism, we have 1 2( , ) ( , )u u d z=  at (y,n), (n,y), and 

(n,n) for each subgame. This was termed the MC flat by Saijo et al. (2014), because the three 

cells other than (y,y) have the same payoff vector. 

Consider subgame CC where both choose C. Player 1 must compare (a,d) and (d,d). 

Because a > d, player 1 chooses y based upon the elimination of weakly dominated strategies. 

However, player 1 does not necessarily compare two vectors because of the MC flat. Player 1 

should compare a and d to understand this domination.  

Although player 1 can choose either y or n based only on the elimination of weakly 

dominated strategies, player 1 must also consider player 2’s choice. Player 1 compares v and z, 

and hence, player 1 understands that player 2 chooses y. Thus, player 1 understands that the 

choice at (C,C) is (y,y), which is shown by the bold square in Figure 3 for subgame CC. 

Therefore, player 1 can fill the (C,C) part of the reduced normal form game with (a,v), which is 
                                                   
7 Let X and Y be strategies of a player, and let (a,b) and (c,d) be payoff vectors when the player chooses X and 
Y, respectively. X weakly dominates Y if and only if ,  a c b d≥ ≥ , and there is at least one strict inequality. Notice 
that no strategies could survive if we use strong domination with strict inequality of each element. 
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located above the four subgames in Figure 3. 

Consider subgame DC. Because X≥/ Z, d > c or z > x. Suppose that z > x. Then, player 2 

chooses n and understands that the outcome is (d,z) regardless of the choice of player 1 in this 

subgame. However, as a thought experiment, player 1 must consider player 2’s choice if it 

were c > d. That is, although player 1 would choose y, player 1 could not identify which of (c,x) 

and (d,z) would be realized without knowing player 2’s choice. Suppose d > c. Player 1 chooses 

n and understands that the outcome is (d,z) without considering player 2’s choice. 

Repeating the same procedure at each of the subgames CD and DD, player 1 can 

construct the reduced normal form game above the four subgames in Figure 3. Because the 

game also has the MC flat and a > d, player 1 chooses C. 

If player 1 understands that player 2’s position is the same as that of player 1 using 

the same procedure, player 1 is convinced that player 2 also chooses (C,y). If so, the 

equilibrium path under BEWDS is ((C,C),(y,y)). Thus, we simply write (C,C,y,y) hereafter. █  
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Figure 3. Construction of the reduced normal form game. 

 

Although this proof is mathematically almost the same as that of Saijo et al. (2014), 

there are several differences between the two because of possible asymmetry. First, because 

they used the symmetric payoff table, d = z, all components of the three cells have the same 

number. In this sense, these three cells have the completely flat property. Therefore, the change 

from d = z to d≠ z might increase the player’s burden to understand the game. Second, (a,d) is 

different from (v,z), although (a,d) = (v,z) in Saijo et al. (2014). This change also increases the 

players’ burden. The same argument can be applied to all subgames. Third, players who 

understand the strategic implication of vectors V, W, X, and Z in the symmetric case might not 
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be able to understand it in the asymmetric case under BEWDS. Finally, even though players 

may understand these points, the difference between a and v may evoke an “equity” module in 

their brains, which could trigger “non-rational” motivation. 

An important property of the MC mechanism is that it is onto: the set of possible 

outcomes of a QD game is equal to those of the MC mechanism. The former is {V,W,X,Z}, and 

the latter must be the same. For example, although player 1 does not want to choose y at (C,D), 

W is the outcome if both choose y. This condition excludes any payoff flow from or to the game. 

In other words, no outside penalty or reward is given in order to maintain a balanced budget.8 

 

3. Backward elimination of weakly dominated strategies implementable games are 

quasi-dilemma games 

We consider the tightness of the parameter space of QD games and the implementable 

parameter space of BEWDS. If the latter is larger, the idea of BEWDS implementation can be 

applied to many other 2 x 2 games. However, we show that these two spaces are identical 

under several assumptions.9 

First, the approval mechanism satisfies forthrightness: If both choose y in the second 

stage after the choice of a strategy pair in the first stage, the outcome must be that strategy 

pair.10 That is, the outcome must be what they choose whenever both choose y. Second, the 

approval mechanism has a flat: the outcome of the second stage, except for (y,y), and that of the 

reduced game, except for (C,C), are the same. Thus, we have the following property. 

 

Property 3. Suppose that V > Z and that an approval mechanism satisfies forthrightness with the flat, 
Z. Then, the class of games implementing cooperation in BEWDS is exactly the same as that of QD 

games. 

 

Proof. Consider any approval mechanism implementing outcome V in BEWDS. Because 

forthrightness is satisfied, if both choose y, the outcomes of subgames CC, CD, DC, and DD 

must be V, W, X, and Z, respectively. Because Z is the flat and the mechanism implements 
                                                   
8 The money-back-guarantee mechanism introduced by Dawes, Orbell, Simmons, and van de Kragt (1986) and 
Isaac, Schmidtz, and Walker (1989) is not onto. Let C be a fixed amount of contribution for public good 
provision, and let D be no contribution. The money-back-guarantee mechanism returns the contribution to a 
player if both do not contribute, and hence, X and W cannot be the outcomes of the mechanism. If player 1 is a 
utilitarian, and hence prefers X to Z, the MC mechanism can choose X unlike the money-back-guarantee 
mechanism. 
9 These assumptions are essentially the same as those introduced by Saijo et al. (2014). 
10 Saijo, Tatamitani, and Yamato (1996) introduced forthrightness in the natural mechanism design. 
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cooperation, the outcome should be Z in subgames CD and DC. That is, (d > b or z > w) and (d 

> c or z > x) for subgames CD and DC, respectively. Because (  or )d b z w> > =  
(  and )d b z w≤ ≤ = ( ),W Z≥  (d > b or z > w) is equivalent to W≥/ Z. Similarly, we obtain X≥/ Z. 

That is, the class of games implementing cooperation in BEWDS is exactly the same as the class 

of QD games. █   

 

Let us now consider the SPEs of QD games. Since the Nash equilibrium outcomes are 

(a,v) and (d,z) at subgame CC and (d,z) at subgames DC, CD, and DD, two cases exist in the 

reduced normal form games shown in Figure 4. That is, because all combinations, (C,C), (D,C), 

(C,D), and (D,D), are Nash equilibria of the games, they are also the outcomes of SPEs. 

Therefore, the MC mechanism cannot implement cooperation in SPE. 
  
                          

Player 2                               Player 2   
   C D   C D    
 

Player 1 
C a,v d,z 

Player 1 
C d,z d,z    

 D d,z d,z D d,z d,z    

              (i) (y,y) in subgame CC             (ii) (n,n) in subgame CC 

Bold italic cells indicate Nash Equilibria in the reduced normal form games.      

Figure 4. Two reduced normal form games. 

 

As the above discussion shows, multiple Nash equilibria in a subgame generate 

multiple SPEs due to the MC flat. Furthermore, players in SPE must consider how the other 

player behaves in each subgame. In this sense, SPE might place a heavy information burden on 

players. On the other hand, players in BEWDS do not need information about how the other 

player behaves since they care about the comparison of their own strategies in each subgame 

as far as the BEWDS strategy is unique. However, this fact does not necessarily support 

BEWDS in general since the facts are specific to the MC mechanism. The next two sections 

describe the experiment and its results. 

 

4. Experimental design 

Our experimental focus is payoff asymmetry of the PD game. We conducted 

experiments of an asymmetric PD game with the MC mechanism (AsymPDMC). For 

comparison with the data of the AsymPDMC, we borrowed the data regarding a symmetric PD 

game with the MC mechanism (SymPDMC) and a symmetric PD game without the MC 
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mechanism (SymPD) from Saijo et al. (2014). 

We chose an asymmetric payoff table in which cooperation cannot be implemented 

by the compensation mechanism in SPE, but it can be implemented by the MC mechanism in 

BEWDS. The compensation mechanism also has two stages. It asks players to transfer money 

to the other player in the first stage, and then, both play a PD game. The monetary transfer 

must be done when the other player chooses cooperation in the PD stage. Varian (1994) 

designed the compensation mechanism in a general setting, and then, Andreoni and Varian 

(1999) and Charness et al. (2007) conducted the experiments using the PD games. As Charness 

et al. (2007) showed, the compensation mechanism does not cover the entire class of PD games. 

In this sense, we chose one of the least favorable matrices to achieve cooperation in our 

experimental design. Figure 5 shows the symmetric and asymmetric payoff matrices.11 The 

symmetric payoff table comes from Saijo et al. (2014) and the asymmetric payoff matrix comes 

from Charness et al. (2007). The average cooperation rates in Charness et al. (2007) are 43-68% 

with the compensation mechanism.  

  

 

 

  

 

 

Figure 5. Symmetric and asymmetric payoff matrices. 

 

All the above-mentioned experiments were carried out in Osaka University during 

the period from November 2009 to December 2011. The AsymPDMC and SymPDMC 

experiments each had three sessions, and the SymPD experiment had one session. Twenty 

subjects participated in each session and no subject attended more than one session. We 

recruited these 140 undergraduate subjects with different majors through campus-wide 

advertisements. They were told that there would be an opportunity to earn money in a 

research experiment.  

At the beginning of the experiment, each subject had a set of printed instructions and 

a record sheet. Instructions were read aloud by an experimenter. After that, subjects were 

                                                   
11 In the experiment, we used payoff numbers that are 100 times the numbers in Figure 5 due to the exchange 
rate. 

                       Player 2                             Player 2   
   C D   C D  
 

Player 1 
C 14,14 7,17 

Player 1 
C 44,36 8,44  

 D 17,7 10,10 D 52,0 32,28  

            (i) Symmetric payoff matrix      (ii) Asymmetric payoff matrix 
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given five minutes to ask private questions. Communication among subjects was prohibited, 

and we declared that the experiment would be stopped if it was observed. This never 

happened. There was no practice period. We used the z-Tree software (Fischbacher, 2007) for 

the experiment. 

The experimental procedure was as follows. We formulated 10 pairs out of the 20 

subjects seated at computer terminals in each session. These pairings were anonymous and 

determined in advance in order not to pair the same two subjects more than once. Since most 

previous studies, such as Andreoni and Varian (1999) and Charness et al. (2007), have 

employed random matching among four to eight subjects (two to four groups),12 such 

repetition necessarily entails pairings of the same two subjects. Therefore, compared with 

previous experiments, this “complete” strangers design might reduce the possibility of 

cooperation among subjects.13 Each subject received an instruction sheet and a record sheet.  

Let us explain the PDMC experiment. When the period started, each subject selected 

either A (defection) or B (cooperation) in the choice (or PD) stage and then inputted the choice 

into a computer and also noted it on the record sheet. After that, each subject explained the 

reason behind this choice in a small box on the record sheet. The next step was the decision (or 

approval) stage. Based on the knowledge of the other subject’s choice, each subject chose to 

either “accept” or “reject” it and then inputted the decision into a computer, noted it on the 

record sheet, and explained his or her reasoning as before. Once subjects had finished the task, 

each could see “your decision,” “the other’s decision,” “your choice,” “the other’s choice,” 

“your points,” and “the other’s points” on the computer screen. However, neither the choices 

nor the decisions in pairs other than “your” own were shown on the computer screen. This 

ended one period. The experiment without the approval stage became the PD experiment. 

After finishing all 19 periods, every subject filled in questionnaire sheets.  

Each session lasted approximately 90 minutes including the time spent on answering 

the post-experiment questionnaires and payment. Subjects earned, on average, 5233 JPY (about 

43.61 USD, using 1 USD=120JPY), 4873 JPY (about 40.61 USD), and 3920 JPY (about 32.67USD) 

in AsymPDMC, SymPDMC, and SymPD sessions, respectively. 

 

5. Experimental results 

Figure 6 shows the time path of cooperation rates over the 19 periods. The 

                                                   
12 Charness et al. (2007) divided 16 subjects in one session into four separate groups, with four subjects in each 
group interacting only with each other over the course of the session. 
13 An exception is Cooper, DeJong, Forsythe, and Ross (1996), who employed complete stranger matching. 
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cooperation rate in each period is defined as the ratio of number of subjects choosing C to the 

total number of subjects. As shown, the cooperation rate of PD started at 15% in the first three 

periods, and then ranged between 5% and 10% in the next 16 periods. In contrast, the 

cooperation rate of SymPDMC was always above 90% in each period, while that of AsymPDMC 

started at about 76.7% in the first period, rose to 86.7% in the second period, and then stayed 

above 90% in the remaining 17 periods.  

The large gap in cooperation rates between PD and PDMC (either symmetric or 

asymmetric) was statistically supported by the proportion test. All the p values for comparing 

the cooperation rate of AsymPDMC or SymPDMC with that of PD are smaller than 0.001 in 

each period, which suggests that introducing the second stage after the PD game dramatically 

increases the cooperation rate in both symmetric and asymmetric PD games.  

For the comparison of AsymPDMC with SymPDMC, we ran the proportion test by 

using both the data of each period and the data pooled over all periods. The two-tailed p 

values are reported in Table 1 (see the fourth column from the left). Generally, there is no 

significant difference in the cooperation rates between an asymmetric PD and a symmetric PD 

games when the data were pooled over all periods (p = 0.7212). In the first two periods, the 

cooperation rate is significantly lower under the asymmetric environment. Thereafter, the 

cooperation rate in the asymmetric mate choice mechanism no longer remains statistically 

significantly lower than its symmetric counterpart. In fact, a significantly higher cooperation 

rate in AsymPDMC is even observed in 3 periods (i.e., periods 7, 14, and 15) out of the 

remaining 17 periods. 

With regard to the share of the (C,C) combination, Figure 7 shows its time path over 

the 19 periods. Applying the proportion test, we found that the (C,C) share is significantly 

higher in either AsymPDMC or SymPDMC than in PD in each period (all p values < 0.001). 

Additionally, as indicated in the last column of Table 1, there is no significant difference in the 

share of the (C,C) combination between AsymPDMC and SymPDMC (p = 0.6031) when the data 

were pooled over all periods. However, if we look at the p values by period, we find that the 

(C,C) share is significantly lower in the asymmetric environment than in the symmetric 

environment in the first four periods. Thereafter, similar to the case of the cooperation rate, the 

share of AsymPDMC is once again always statistically higher than or equal to its symmetric 

counterpart.  
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Figure 6. Cooperation rates by periods. 
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Figure 7. Share of (C,C) by periods. 
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Table 1. Proportion test results for AsymPDMC vs. SymPDMC. 

Period Cooperation rate  Share of (C,C) 

 AsymPDMC SymPDMC p value  AsymPDMC SymPDMC p value 

1 76.7% 95.0% 0.0040   56.7% 90.0% 0.0000  

2 86.7% 96.7% 0.0475   73.3% 93.3% 0.0033  

3 93.3% 98.3% 0.1705   86.7% 96.7% 0.0475  

4 93.3% 98.3% 0.1705   86.7% 96.7% 0.0475  

5 96.7% 96.7% 1.0000   93.3% 93.3% 1.0000  

6 98.3% 95.0% 0.3091   96.7% 90.0% 0.1432  

7 100.0% 95.0% 0.0794   100.0% 90.0% 0.0120  

8 98.3% 98.3% 1.0000   96.7% 96.7% 1.0000  

9 98.3% 98.3% 1.0000   96.7% 96.7% 1.0000  

10 98.3% 98.3% 1.0000   96.7% 96.7% 1.0000  

11 100.0% 98.3% 0.3153   100.0% 96.7% 0.1538  

12 100.0% 98.3% 0.3153   100.0% 96.7% 0.1538  

13 100.0% 98.3% 0.3153   100.0% 96.7% 0.1538  

14 100.0% 93.3% 0.0419   100.0% 86.7% 0.0034  

15 100.0% 95.0% 0.0794   100.0% 90.0% 0.0120  

16 98.3% 95.0% 0.3091   96.7% 93.3% 0.4022  

17 100.0% 96.7% 0.1538   100.0% 93.3% 0.0419  

18 98.3% 98.3% 1.0000   96.7% 96.7% 1.0000  

19 100.0% 98.3% 0.3153   100.0% 96.7% 0.1538  

All periods 96.7% 96.9% 0.7212   93.5% 94.0% 0.6031  

Notes: The reported p values are based on the two-tailed proportion test. 

 

6. Concluding remarks 

We showed that the MC mechanism implements cooperation in BEWDS for QD 

games and that BEWDS-implementable games are QD games. QD games include not only PD 

games but also coordination games. Furthermore, the mechanism cannot implement 

cooperation in SPE. 

The MC mechanism is essentially a unanimous voting rule between two players, and 

it can be interpreted as a “minimum” communication device to achieve cooperation. In the first 

stage, each player reveals the choice of C or D. Then knowing the other’s choice, each chooses y 
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or n. If both choose y, the outcome is what they choose in the first stage; otherwise, the 

outcome is (D,D). This mechanism implicitly presupposes that the status quo is (D,D) and 

disagreement results in the status quo. This procedure can be a natural way to avoid conflict, 

such as PD, or a coordination situation in daily life. Using functional near-infrared 

spectroscopy (fNIRS), Nagatsuka, Shinagawa, Okano, Kitamura, and Saijo (2013) found that 

compared with the PD game, subjects made their choices with less stress using only the MC 

mechanism. We also found that except for first few periods, the MC mechanism works well 

under an asymmetric environment. 

Masuda, Okano, and Saijo (2014) expanded the idea of the MC mechanism to public 

good provision and showed that the minimum approval mechanism implements an efficient 

allocation in BEWDS theoretically and experimentally. Furthermore, Huang, Masuda, Okano, 

and Saijo (2014) designed a simplified approval mechanism in the spirit of the MC mechanism 

in a social dilemma and showed theoretically and experimentally that it implements 

cooperation in BEWDS when there are at least two players. However, designing a reasonable 

approval mechanism to implement cooperation in multiple choices and players is an open 

question. 
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