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Abstract 
This study investigates how regional business cycles are spatially dependent in Mexico by developing a Markov 

switching model with a spatial autoregressive process. The Markov switching model with two regimes 

distinguishes business cycles between expansion and recession phases (i.e., high- and low-growth rate regimes). 

The objective of this study is twofold. First, this study aims to identify which states transitioned from expansion 

to recession during the Great Recession in 2008–2009. Second, it numerically examines the extent to which states 

that experienced this transition caused a deterioration in neighboring states’ economies. Employing Bayesian 

inference for the Markov switching model with quarterly data of state economic activity during the period 

2003:Q1–2015:Q4, this study finds that Mexican states with higher manufacturing sector shares tended to be in 

recession during the Great Recession. Although some states experienced economic downturns in this period, they 

were not in a recessionary regime. This study also finds that business cycles across states were spatially dependent 

during the Great Recession. The numerical simulations of spatial spillover effects suggest that states that regime-

switched from expansion to recession during the Great Recession caused a reduction in the quarterly growth rate 

of their nearest neighboring economies by an average of 0.26 percentage points.  
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1. Introduction 

As conditions in regional economies do not necessarily coincide with national economic conditions, regional business 

cycles tend to be highly heterogeneous. However, spatial proximity seems to characterize similarity among regional 

business cycles. Thus, in light of the interdependence of regional economies, we focus on spatial spillover (or 

neighborhood) effects across regional business cycles. In such an economic situation, a region-specific shock may 

cause deterioration in the economic conditions of neighboring economies. In recent years, the importance of 

conducting spatial analyses of economic activities has been emphasized from economic stability and growth 

perspectives (e.g., World Bank, 2009). We therefore investigate spatial dependence within regional business cycles.  

To analyze spatial dependence in regional business cycles and spatial spillover effects, we integrate a spatially 

lagged dependent variable into a Markov switching model. The Markov switching model with two regimes 

endogenously distinguishes business cycles between expansion and recession phases (i.e., high- and low-growth rate 

regimes). Our integrated approach from the Markov switching model and spatial econometrics thus enables us to 

identify which states experienced a transition from expansion to recession as well as to numerically examine the extent 

to which states that experienced such a transition caused a deterioration in their neighboring states’ economies.  

Regional business cycles are not perfectly uniform, and thus discussions of the national business cycle are not 

directly applicable. For example, in applying the Markov switching model proposed by Hamilton (1989), Owyang et 

al. (2005) found that business cycles across US states differed considerably in terms of expansionary and recessionary 

phases. Furthermore, Owyang et al. (2008) investigated business cycles at the US city level and drew similar 

conclusions. To explain the similarities and differences among regional business cycles, Hamilton and Owyang (2012) 

developed a Markov switching model based on the rationale that administrative units do not necessarily coincide with 

economic zones. In their model, US states are endogenously grouped into clusters that share similar economic 

characteristics by identifying common factors across states. Therefore, the authors’ focus is on regional recessions 

within each group.1 They found that states that have a relatively high share of oil production or agriculture were more 

likely to be in recession than other US states. By contrast, we focus on the spatial association of regional business 

cycles because the empirical results of Owyang et al. (2005) imply that state recessions appear to occur among states 

located close to each other. Therefore, this study emphasizes spatial dependence in regional business cycles.  

This study uses quarterly data of state economic activity for Mexico. Previous studies, such as those by Owyang 

et al. (2008) and Hamilton and Owyang (2012), used employment data for business cycle analysis because monthly or 

quarterly economic activity data were not available at the city or state level in the US. However, employment data may 

not accurately reflect contemporaneous economic conditions because of labor market rigidities. By contrast, in Mexico, 

the economic activity data of each state have been collected quarterly and published as an official indicator since the 

early 2000s.2 Capitalizing on these data, we investigate how a state recession, caused by the global economic crisis 

 
1The approach of Hamilton and Owyang (2012) can identify regional common factors of business cycles within a Markov switching 

model. Another major approach to regional business cycles is to estimate a dynamic factor model. For example, see Kose et al. (2003), 

Owyang et al. (2009), and Hirata et al. (2013). 
2Note that business cycles should involve co-movement of a wide range of economic activities such as output, employment, and sales 

(Stock and Watson, 1989). Following Burns and Mitchell (1946), as emphasized by Stock and Watson (1989), it is imprecise to define 
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of 2008–2009, spread to the neighboring states through the domestic economic network.  

Recent studies have attempted to describe business cycles across Mexican states. Synchronization between the 

Mexican and US economies has long attracted economists’ attention. For example, Chiquiar and Ramos-Francia (2005) 

investigated business cycle synchronization between the Mexican and US manufacturing sectors. Although this type 

of analysis does not account for regional economic activities within Mexico, it offers suggestive evidence that Mexican 

states with stronger connections with the US exhibit business cycle synchronization within Mexico. In this sense, 

Mejía-Reyes and Campos-Chávez (2011) investigated synchronization between Mexican states and US manufacturing 

production, finding that Mexican states with a relatively high share of manufacturing are more strongly affected by 

US manufacturing production. Mejía-Reyes et al. (2018) also investigated synchronization between Mexican states 

and the US and found that FDI also had significant and positive effects on the synchronization between Mexican states 

and the US.  

To determine the phases of regional business cycles and investigate regional differences during the economic crisis 

of 2008–2009, Erquizio-Espinal (2010) calculated the coincidence index across Mexican states, in the spirit of Burns 

and Mitchell (1946). He found that the border states, which are closely related to the US economy, were more strongly 

affected by the US recession. As emphasized by Mejía-Reyes and Erquizio-Espinal (2012), one of the unique causes 

of the Great Recession of 2008–2009 in Mexico was the transmission of the business cycle shock from the US. This 

is consistent with Torres and Vela (2003) and Sosa (2008), who investigated business cycle synchronization between 

the US and Mexico before the Great Recession of 2008–2009 in Mexico. However, it remains unclear how a recession 

in the US economy spread across Mexican states. Although some states did not experience sharp declines in quarterly 

state economic activity during the Great Recession, recessions in states with stronger links to the US economy would 

have caused a slowdown in their neighboring states’ economies. By considering domestic factors in regional business 

cycles, this study sheds new light on this transmission mechanism.3  

This study contributes to the literature by demonstrating how a region-specific shock propagates to neighboring 

economies. In the literature on spatial econometrics, Anselin (1988) estimated spatial econometric models that were 

able to account for spatial dependence and heterogeneity. In this study, we connect regional interdependence with 

business cycles in a macroeconomic time-series analysis by estimating the Markov switching model proposed by 

Hamilton (1989).4  We estimating the model using the Bayesian Markov chain Monte Carlo (MCMC) method.5 

 
business cycles only in terms of fluctuations in either GDP or employment. Nevertheless, a Markov switching model that uses GDP growth 

rates provides insights into business cycles by estimating unobservable expansionary and recessionary regimes. 
3 Delajara (2011) investigated co-movement across Mexican states during the recession period of 2008–2009. He suggested the 

possibility of geographical propagation, although he did not provide direct evidence. This study provides the evidence to support his 

discussion. 
4To the best of my knowledge, Ohtsuka (2010) is the first to introduce a spatial autoregressive process into a standard Markov switching 

model, discovering that business cycles across Japanese regions are spatially dependent. 
5An MCMC estimation methodology for a Markov switching model was first suggested by Albert and Chib (1993). However, there 

were questions related to how discrete, hidden variables ought to be sampled. By developing the single-move Gibbs sampling initially 

proposed by Albert and Chib (1993), Kim and Nelson (1998, 1999a, b) improved sampling efficiency by using multi-move Gibbs sampling 

for hidden variables. In the literature on regional business cycles, Owyang et al. (2005) and Owyang et al. (2008) also adopted the method 

proposed by Kim and Nelson (1998, 1999a, 1999b) for model estimation. 
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LeSage and Pace (2009) described a Bayesian estimation methodology for spatial econometric models and applied the 

Metropolis–Hasting (MH) algorithm to estimate a parameter measuring spatial dependence. Hence, their study is 

notable in that the estimation method used is characterized by the MH algorithm, rather than by Gibbs sampling.6 In 

this study, we develop the Bayesian MCMC estimation method proposed by Kim and Nelson (1998, 1999a, b) by 

introducing a spatial autoregressive process.  

Employing Bayesian inference for the Markov switching model with quarterly data of state economic activity 

during the period 2003:Q1–2015:Q4, this study finds that Mexican states with a higher manufacturing share tended to 

be in recession during the Great Recession. This study also finds that business cycles across states were spatially 

dependent during the Great Recession. The numerical simulations of spatial spillover effects suggest that states that 

experienced a transition from expansion to recession during the Great Recession caused a decrease in the quarterly 

growth rate of the nearest neighboring economy by an average of 0.26 percentage points.  

The remainder of this paper is organized as follows. In Section 2, we describe the Markov switching model, 

including a discussion of the spatially lagged dependent variable. In Section 3, we present the Bayesian estimation 

procedure using MCMC. In Section 4, we present the data. In Section 5, we discuss the estimation results. In Section 

6, we provide a numerical simulation of the spatial spillover effects of a regional recession. Finally, In Section 7, we 

present our conclusions.  

2. Markov Switching Model with Spatial Lag 

Let 𝑦𝑦𝑡𝑡,𝑛𝑛 denote the growth rate of an indicator of economic activity for region 𝑛𝑛 at date 𝑡𝑡. Using vector notation, 

we denote 𝒚𝒚𝑡𝑡 = (𝑦𝑦𝑡𝑡,1,𝑦𝑦𝑡𝑡,2, … ,𝑦𝑦𝑡𝑡,𝑁𝑁)⊤  as an 𝑁𝑁 × 1  vector, where 𝑁𝑁  represents the number of regions. Let 𝒔𝒔𝑡𝑡 =

(𝑠𝑠𝑡𝑡,1, 𝑠𝑠𝑡𝑡,2, … , 𝑠𝑠𝑡𝑡,𝑁𝑁)⊤ denote an 𝑁𝑁 × 1 vector of the indicator variable that follows a Markov chain. If 𝑠𝑠𝑡𝑡,𝑛𝑛 = 1, then 

region 𝑛𝑛 is in the expansion phase at date 𝑡𝑡, whereas 𝑠𝑠𝑡𝑡,𝑛𝑛 = 0 means that region 𝑛𝑛 is in the recession phase at date 

𝑡𝑡. Based on Hamilton (2008), a multi-regional Markov switching model involving a first-order autoregressive process, 

AR(1), of the dependent variable can be described as follows:  

 𝒚𝒚𝑡𝑡 = 𝜱𝜱𝒚𝒚𝑡𝑡−1 + 𝝁𝝁0 ⊙ (𝜾𝜾𝑁𝑁 − 𝒔𝒔𝑡𝑡) + 𝝁𝝁1 ⊙ 𝒔𝒔𝑡𝑡 + 𝜺𝜺𝑡𝑡 ,  𝑡𝑡 = 2, … ,𝑇𝑇, (1) 

where 𝜱𝜱 = diag(𝜙𝜙1, … ,𝜙𝜙𝑁𝑁)  is an 𝑁𝑁 × 𝑁𝑁  diagonal matrix with parameter 𝜙𝜙𝑖𝑖  that measures the temporal 

dependence in the dependent variable for state 𝑛𝑛 ; 𝝁𝝁0 = (𝜇𝜇1,0, 𝜇𝜇2,0, … , 𝜇𝜇𝑁𝑁,0)⊤  is an 𝑁𝑁 × 1  vector of the average 

growth rate in the recession phase; 𝝁𝝁1 = (𝜇𝜇1,1, 𝜇𝜇2,1, … , 𝜇𝜇𝑁𝑁,1)⊤ is an 𝑁𝑁 × 1 vector of the average growth rate in the 

expansion phase; 𝜾𝜾𝑁𝑁 is an 𝑁𝑁 × 1 vector whose all elements are ones; 𝜺𝜺𝑡𝑡 = (𝜀𝜀𝑡𝑡,1, 𝜀𝜀𝑡𝑡,2, … , 𝜀𝜀𝑡𝑡,𝑁𝑁)⊤ is an 𝑁𝑁 × 1 vector 

of error terms that follow i. i. d.  N(𝟎𝟎,𝜴𝜴); and ⊙ denotes element-by-element multiplication. Model (1) is a baseline 

model that does not include spatial dependence in regional business cycles and can be estimated separately in each 

region. 

In this study, we introduce a spatially lagged dependent variable into a Markov switching model with AR(1). Let 

 
6This difference implies the need for modifications in the discussion on model selection. See Chib (1995) and Chib and Jeliazkov 

(2001) for more detailed discussions. 
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𝑾𝑾 denote an 𝑁𝑁 × 𝑁𝑁 spatial weight matrix (SWM). Thus, 𝑾𝑾𝒚𝒚𝑡𝑡 indicates an 𝑁𝑁 × 1 vector of the spatially lagged 

dependent variable. The Markov switching model involving the spatial lag is denoted as follows:  

 𝒚𝒚𝑡𝑡 = 𝜌𝜌𝑾𝑾𝒚𝒚𝑡𝑡 + 𝜱𝜱𝒚𝒚𝑡𝑡−1 + 𝝁𝝁0 ⊙ (𝜾𝜾𝑁𝑁 − 𝒔𝒔𝑡𝑡) + 𝝁𝝁1 ⊙ 𝒔𝒔𝑡𝑡 + 𝜺𝜺𝑡𝑡 , (2) 

where 𝜌𝜌 is a parameter measuring spatial dependence in the dependent variable.  

In model (2), we impose the restriction that 𝜇𝜇𝑛𝑛,1 > 𝜇𝜇𝑛𝑛,0, 𝑛𝑛 = 1, 2, … ,𝑁𝑁 because the average growth rate in the 

expansion phase is higher than that in the recession phase. We assume that error terms are independent across regions, 

that is, 𝜴𝜴 = diag(𝜎𝜎12,𝜎𝜎22, … ,𝜎𝜎𝑁𝑁2) is an 𝑁𝑁 × 𝑁𝑁 diagonal matrix. We also assume that 𝑠𝑠𝑡𝑡,𝑛𝑛 follows a first-order two-

state Markov chain, indicating that the transition probabilities are Pr ( 𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖|𝑠𝑠𝑡𝑡−1,𝑛𝑛 = 𝑗𝑗) = 𝑝𝑝𝑛𝑛,𝑗𝑗𝑖𝑖, 𝑖𝑖, 𝑗𝑗 = 0,1. 

The SWM is a row-standardized matrix constructed from geographical information based on contiguity or distance 

between regions. The SWM describes a spatial spillover network across regions. The spatial autoregressive parameter 

𝜌𝜌 lies in the interval of the inverses of the minimum and maximum eigenvalues of the SWM. As shown in Ord (1975), 

the row-standardized SWM yields +1 as the largest eigenvalue. Therefore, we impose the restriction 1/𝜔𝜔min < 𝜌𝜌 <

1, where 𝜔𝜔 min is the smallest eigenvalue of the SWM.7  

Our Markov switching model includes a spatially lagged dependent variable 𝑾𝑾𝒚𝒚𝑡𝑡 . Therefore, the coefficient 

parameter 𝜌𝜌 measures spatial dependence in regional business cycles. An advantage of this model is that it allows us 

to numerically simulate the spatial spillover effects for a particular region-specific shock. As described in Anselin 

(2003), if 𝜌𝜌 ≠ 0, spatial spillover effects exist. Thus, based on model (2), we numerically investigate how Mexican 

states that experienced a transition from expansion to recession during the period 2008–2009 affected their neighboring 

states’ economies.  

We implicitly assume that observed spatial dependence in regional business cycles results from the spatial network 

structures in economic activities. Therefore, the numerical simulations of the spatial spillover effects aim to recover 

the potential spatial impacts that occurred in the real economy. However, spatial dependence in regional business 

cycles can be observed even when the external common shocks occur independently among regions. Thus, the 

statistical significance of the spatial autoregressive parameter 𝜌𝜌  does not necessarily ensure the spatial network 

structure in economic activities. The spatial network structure generating spatial spillover effects across the Mexican 

states is additionally examined in Appendix D. 

3. Bayesian Inference 

Bayesian inference, such as point and interval estimates, is based on a posterior distribution. For convenience of 

explanation, we define the parameter vector 𝜽𝜽 = {𝜴𝜴,𝝁𝝁,𝜱𝜱,𝒑𝒑11,𝒑𝒑00,𝜌𝜌} , where 𝝁𝝁 = (𝝁𝝁0,𝝁𝝁1)⊤ , 𝒑𝒑11 =

(𝑝𝑝1,11,𝑝𝑝2,11, … ,𝑝𝑝𝑁𝑁,11)⊤ , and 𝒑𝒑00 = (𝑝𝑝1,00,𝑝𝑝2,00, … ,𝑝𝑝𝑁𝑁,00)⊤ . Let 𝒀𝒀 = {𝑦𝑦𝑡𝑡,𝑛𝑛}  and 𝑺𝑺 = {𝑠𝑠𝑡𝑡,𝑛𝑛}  each denote a 𝑇𝑇 × 𝑁𝑁 

matrix. Thus, by using Bayes’ theorem, we can derive the following relationship regarding the posterior distribution:  

 
7For the SWM used in this study, 𝜔𝜔min always takes a negative value, as it does in most cases. See also Anselin and Bera (1998) for 

a more detailed discussion. 
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 𝜋𝜋(𝜽𝜽|𝒀𝒀,𝑺𝑺) ∝ 𝐿𝐿(𝒀𝒀,𝑺𝑺|𝜽𝜽)𝜋𝜋(𝜽𝜽), (3) 

where 𝜋𝜋(𝜽𝜽|𝒀𝒀,𝑺𝑺) is the posterior distribution, 𝐿𝐿(𝒀𝒀,𝑺𝑺|𝜽𝜽) is the likelihood function, 𝜋𝜋(𝜽𝜽) is the prior distribution, 

and ∝ represents “is proportional to.” An important result here is that the posterior distribution is proportional to the 

likelihood function multiplied by the prior distribution. We therefore need to specify prior distributions and to derive 

the likelihood function to conduct the Bayesian inference.  

3.1. Prior Distributions and Likelihood Function 

First, we specify the prior distributions of the parameters. Thus, we use an inverse gamma distribution IG(𝜈𝜈/2,𝛿𝛿/2) 

as a prior for 𝜎𝜎𝑛𝑛2 as follows:  

 𝜋𝜋(𝜎𝜎𝑛𝑛2) ∝ �
1
𝜎𝜎𝑛𝑛2
�
𝜈𝜈/2+1

exp �
𝛿𝛿

2𝜎𝜎𝑛𝑛2
�. (4) 

As for a prior for 𝝁𝝁𝑛𝑛 = (𝜇𝜇𝑛𝑛,0, 𝜇𝜇𝑛𝑛,1)⊤, we adopt a bivariate normal distribution N2(𝒎𝒎𝜇𝜇 ,𝑴𝑴𝜇𝜇) as follows:  

 𝜋𝜋(𝝁𝝁𝑛𝑛) ∝ exp �−
1
2 �
𝝁𝝁𝑛𝑛 −𝒎𝒎𝜇𝜇�

⊤𝑴𝑴𝜇𝜇
−1�𝝁𝝁𝑛𝑛 −𝒎𝒎𝜇𝜇��, (5) 

where we impose a restriction 𝜇𝜇𝑛𝑛,1 > 𝜇𝜇𝑛𝑛,0 . As for a prior for 𝜙𝜙𝑛𝑛 , we adopt a univariate normal distribution 

N1(𝑚𝑚𝜙𝜙,𝑀𝑀𝜙𝜙) as follows:  

 𝜋𝜋(𝝓𝝓𝑛𝑛) ∝ exp �−
1
2
�𝜙𝜙𝑛𝑛 −𝑚𝑚𝜙𝜙�

2

𝑀𝑀𝜙𝜙
�. (6) 

Prior distributions for the transition probabilities 𝑝𝑝𝑛𝑛,11 and 𝑝𝑝𝑛𝑛,00 are set to have beta distributions Beta(𝛼𝛼11,𝛼𝛼10) 

and Beta(𝛼𝛼00,𝛼𝛼01), respectively:  

𝜋𝜋(𝑝𝑝𝑛𝑛,11) ∝ 𝑝𝑝𝑛𝑛,11
𝛼𝛼11−1(1 − 𝑝𝑝𝑛𝑛,11)𝛼𝛼10−1 and 𝜋𝜋(𝑝𝑝𝑛𝑛,00) ∝ 𝑝𝑝𝑛𝑛,00

𝛼𝛼00−1(1 − 𝑝𝑝𝑛𝑛,00)𝛼𝛼01−1. (7) 

Finally, we use a uniform distribution U(1/𝜔𝜔min, 1) as a prior for 𝜌𝜌.  

Next, we derive the likelihood function. To evaluate it, we consider two decomposed terms by utilizing 

𝐿𝐿(𝒀𝒀,𝑺𝑺|𝜽𝜽) = 𝐿𝐿(𝒀𝒀|𝜽𝜽,𝑺𝑺)𝑝𝑝(𝑺𝑺|𝜽𝜽) , where 𝑝𝑝(⋅)  is a probability mass function. From the assumption that 𝜺𝜺𝑡𝑡 ∼

i. i. d.  N(𝟎𝟎,𝜴𝜴)  and by using variable transformation, the likelihood function conditional on 𝑺𝑺  is given by the 

following:  

𝐿𝐿(𝒀𝒀|𝜽𝜽,𝑺𝑺) = ��(2𝜋𝜋)−𝑁𝑁/2|𝜴𝜴|−1/2|𝑰𝑰𝑁𝑁 − 𝜌𝜌𝑾𝑾| exp �−
1
2
𝜺𝜺𝑡𝑡⊤𝜴𝜴−1𝜺𝜺𝑡𝑡��

𝑇𝑇

𝑡𝑡=1

, (8) 

where 𝑰𝑰𝑁𝑁  is an 𝑁𝑁 × 𝑁𝑁  identity matrix and 𝜺𝜺𝑡𝑡 = (𝑰𝑰𝑁𝑁 − 𝜌𝜌𝑾𝑾)𝒚𝒚𝑡𝑡 − 𝜱𝜱𝒚𝒚𝑡𝑡−1 − 𝝁𝝁0 ⊙ (𝜾𝜾𝑁𝑁 − 𝒔𝒔𝑡𝑡) − 𝝁𝝁1 ⊙ 𝒔𝒔𝑡𝑡 . The 
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difficulty is that the hidden variables 𝑺𝑺 are directly unobservable. To evaluate the likelihood function, we follow the 

methodology of Kim and Nelson (1998, 1999a, b). See Appendix B for more technical details.  

3.2. Posterior Distributions 

Having specified the likelihood function and prior distributions, we are able to conduct the Bayesian inference. From 

(3), the joint posterior distribution is given by the following:  

𝜋𝜋(𝜽𝜽|𝒀𝒀,𝑺𝑺) ∝ 𝐿𝐿(𝒀𝒀|𝜽𝜽,𝑺𝑺)𝑝𝑝(𝑺𝑺|𝜽𝜽)𝜋𝜋(𝜌𝜌)𝜋𝜋(𝜴𝜴)𝜋𝜋(𝝁𝝁)𝜋𝜋(𝜱𝜱)𝜋𝜋(𝒑𝒑11)𝜋𝜋(𝒑𝒑00), (9) 

where an independent joint prior distribution across parameters and regions is assumed. For ease of explanation, let us 

define the following vectors with respect to region 𝑛𝑛 : 𝝁𝝁𝑛𝑛 = (𝜇𝜇𝑛𝑛,0, 𝜇𝜇𝑛𝑛,1)⊤ , 𝒔𝒔𝑛𝑛 = (𝑠𝑠2,𝑛𝑛, 𝑠𝑠3,𝑛𝑛, … , 𝑠𝑠𝑇𝑇,𝑛𝑛)⊤ , 𝒚𝒚𝑛𝑛 =

(𝑦𝑦2,𝑛𝑛,𝑦𝑦3,𝑛𝑛, … ,𝑦𝑦𝑇𝑇,𝑛𝑛)⊤ , �̄�𝒚𝑛𝑛 = (∑ 𝑤𝑤𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1 𝑦𝑦2,𝑛𝑛,∑ 𝑤𝑤𝑛𝑛𝑛𝑛𝑁𝑁

𝑛𝑛=1 𝑦𝑦3,𝑛𝑛, … ,∑ 𝑤𝑤𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1 𝑦𝑦𝑇𝑇,𝑛𝑛)⊤ , and 𝒚𝒚�𝑛𝑛 =

(𝑦𝑦1,𝑛𝑛,𝑦𝑦2,𝑛𝑛, … ,𝑦𝑦𝑇𝑇−1,𝑛𝑛)⊤. However, a difficulty concerning sampling from the posterior distribution arises because a 

Markov switching model includes hidden variables 𝑺𝑺 . Therefore, we present a more detailed discussion for the 

sampling methodology.  

The sampling methodology is based on the conditional posterior distributions. Although we assumed an 

independent joint prior, the conditional posterior distributions are from the same family of distributions as the priors, 

except for parameter 𝜌𝜌.8 As the conditional posterior distribution for 𝜌𝜌 takes an unknown distributional form, we 

rely on the MH algorithm. However, those for 𝜴𝜴, 𝝁𝝁, 𝜱𝜱, 𝒑𝒑11, and 𝒑𝒑00 take known distributional forms, and we thus 

apply the Gibbs sampler for posterior sampling of these parameters.  

We derive conditional posterior distributions distribution for each parameter below. The conditional posterior 

distribution for 𝜌𝜌|𝒀𝒀,𝑺𝑺,𝝁𝝁,𝜱𝜱,𝜴𝜴 is given by the following:  

 𝜋𝜋(𝜌𝜌|𝒀𝒀,𝑺𝑺,𝝁𝝁,𝜱𝜱,𝜴𝜴) ∝��|𝑰𝑰𝑁𝑁 − 𝜌𝜌𝑾𝑾| exp �−
1
2
𝜺𝜺𝑡𝑡⊤(𝜌𝜌)𝜴𝜴−1𝜺𝜺𝑡𝑡(𝜌𝜌)��

𝑇𝑇

𝑡𝑡=1

, (10) 

where 𝜺𝜺𝑡𝑡(𝜌𝜌) = (𝑰𝑰𝑁𝑁 − 𝜌𝜌𝑾𝑾)𝒚𝒚𝑡𝑡 − 𝜱𝜱𝒚𝒚𝑡𝑡−1 − 𝝁𝝁0 ⊙ (𝜾𝜾𝑁𝑁 − 𝒔𝒔𝑡𝑡) − 𝝁𝝁1 ⊙ 𝒔𝒔𝑡𝑡 . Note that 𝜌𝜌  is independent of 𝑝𝑝𝑛𝑛,11  and 

𝑝𝑝𝑛𝑛,00. As mentioned previously, this is an unknown distributional form. We therefore rely on the MH algorithm. In the 

literature on spatial econometrics, LeSage and Pace (2009) described a sampling method for a parameter on spatial 

dependence using the MH algorithm. Our sampling follows their method. See Appendix A for more technical details.  

As for the sampling for the other conditional posterior distribution, although there are slight changes, the sampling 

strategy is the same as the one proposed in Kim and Nelson (1998, 1999a, b). Samples from these conditional posteriors 

are drawn via the Gibbs sampler. First, the conditional posterior distribution for 𝜎𝜎𝑛𝑛2|𝒀𝒀,𝑺𝑺,𝝁𝝁𝑛𝑛,𝜌𝜌 takes the following 

form:  

 
8The priors for 𝜴𝜴, 𝝁𝝁, 𝜱𝜱, 𝒑𝒑11, 𝒑𝒑00 are conditionally conjugate. 
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 𝜋𝜋(𝜎𝜎𝑛𝑛2|𝒀𝒀,𝑺𝑺,𝝁𝝁𝑛𝑛,𝜙𝜙𝑛𝑛,𝜌𝜌) ∝ �
1
𝜎𝜎𝑛𝑛2
�
𝜈𝜈/2+1

exp �
𝛿𝛿𝑛𝑛

2𝜎𝜎𝑛𝑛2
�, (11) 

where 𝜈𝜈 = 𝜈𝜈 + 𝑇𝑇  and 𝛿𝛿𝑛𝑛 = 𝛿𝛿 + 𝜺𝜺𝑛𝑛⊤𝜺𝜺𝑛𝑛 . Note that 𝜎𝜎𝑛𝑛2  is independent of 𝑝𝑝𝑛𝑛,11  and 𝑝𝑝𝑛𝑛,00 . We can see that this 

conditional posterior for 𝜎𝜎𝑛𝑛2|𝒀𝒀,𝑺𝑺,𝝁𝝁𝑛𝑛,𝜙𝜙𝑛𝑛,𝜌𝜌 is distributed as an inverse gamma distribution IG(𝜈𝜈/2,𝛿𝛿𝑛𝑛/2).  

Next, the conditional posterior distribution for 𝝁𝝁𝑛𝑛|𝒀𝒀,𝑺𝑺,𝜎𝜎𝑛𝑛2,𝜙𝜙𝑛𝑛,𝜌𝜌 is obtained as follows:  

𝜋𝜋(𝝁𝝁𝑛𝑛|𝒀𝒀,𝑺𝑺,𝜎𝜎𝑛𝑛2,𝜙𝜙𝑛𝑛,𝜌𝜌) ∝ exp �−
1
2 �
𝝁𝝁𝑛𝑛 −𝒎𝒎𝜇𝜇,𝑛𝑛�

⊤𝑴𝑴𝜇𝜇,𝑛𝑛
−1
�𝝁𝝁𝜇𝜇,𝑛𝑛 −𝒎𝒎𝜇𝜇,𝑛𝑛��, (12) 

where  

 

𝑴𝑴𝜇𝜇,𝑛𝑛 = �𝑴𝑴𝜇𝜇
−1 + 𝜎𝜎𝑛𝑛−2𝑿𝑿𝑛𝑛⊤𝑿𝑿𝑛𝑛�

−1, 

𝒎𝒎𝜇𝜇,𝑛𝑛 = 𝑴𝑴𝜇𝜇,𝑛𝑛�𝑴𝑴𝜇𝜇
−1𝒎𝒎𝜇𝜇 + 𝜎𝜎𝑛𝑛−2𝑿𝑿𝑛𝑛⊤(𝒚𝒚𝑛𝑛 − 𝜌𝜌�̄�𝒚𝑛𝑛 − 𝜙𝜙𝑛𝑛𝒚𝒚�𝑛𝑛)�, 

𝑿𝑿𝑛𝑛 = (𝜾𝜾𝑇𝑇 − 𝒔𝒔𝑛𝑛  𝒔𝒔𝑛𝑛). 

(13) 

Note that 𝝁𝝁𝑛𝑛 is independent of 𝑝𝑝𝑛𝑛,11 and 𝑝𝑝𝑛𝑛,00. The conditional posterior for 𝝁𝝁𝑛𝑛|𝒀𝒀,𝑺𝑺,𝜎𝜎𝑛𝑛2,𝜙𝜙𝑛𝑛,𝜌𝜌 is distributed as a 

bivariate normal distribution with mean 𝒎𝒎𝜇𝜇,𝑛𝑛 and variance 𝑴𝑴𝜇𝜇,𝑛𝑛, that is, N2(𝒎𝒎𝜇𝜇,𝑛𝑛,𝑴𝑴𝜇𝜇,𝑛𝑛).  

The conditional posterior distribution for 𝜙𝜙𝑛𝑛|𝒀𝒀,𝑺𝑺,𝜎𝜎𝑛𝑛2,𝝁𝝁𝑛𝑛,𝜌𝜌 is obtained as follows:  

 𝜋𝜋(𝜙𝜙𝑛𝑛|𝒀𝒀,𝑺𝑺,𝜎𝜎𝑛𝑛2,𝝁𝝁𝑛𝑛,𝜌𝜌) ∝ exp �−
1
2

(𝜙𝜙𝑛𝑛 −𝑚𝑚𝜙𝜙,𝑛𝑛)2

𝑀𝑀𝜙𝜙,𝑛𝑛
�, (14) 

where  

𝑀𝑀𝜙𝜙,𝑛𝑛 = �𝑀𝑀𝜙𝜙
−1 + 𝜎𝜎𝑛𝑛−2𝒚𝒚�𝑛𝑛⊤𝒚𝒚�𝑛𝑛�

−1, 

𝑚𝑚𝜙𝜙,𝑛𝑛 = 𝑀𝑀𝜙𝜙,𝑛𝑛 �𝑀𝑀𝜙𝜙
−1𝑚𝑚𝜙𝜙 + 𝜎𝜎𝑛𝑛−2𝒚𝒚�𝑛𝑛⊤�𝒚𝒚𝑛𝑛 − 𝜌𝜌�̄�𝒚𝑛𝑛 − 𝜇𝜇0,𝑛𝑛𝑠𝑠𝑡𝑡𝑛𝑛 − 𝜇𝜇1,𝑛𝑛(1 − 𝑠𝑠𝑡𝑡𝑛𝑛)��. 

(15) 

Note that 𝜙𝜙𝑛𝑛 is independent of 𝑝𝑝𝑛𝑛,11 and 𝑝𝑝𝑛𝑛,00. The conditional posterior for 𝝓𝝓𝑛𝑛|𝒀𝒀,𝑺𝑺,𝜎𝜎𝑛𝑛2,𝝁𝝁𝑛𝑛,𝜌𝜌 is distributed as a 

univariate normal distribution with mean 𝑚𝑚𝜙𝜙,𝑛𝑛 and variance 𝑀𝑀𝜙𝜙,𝑛𝑛, that is, N1(𝑚𝑚𝜙𝜙,𝑛𝑛,𝑀𝑀𝜙𝜙,𝑛𝑛).  

Finally, we derive the conditional posterior distributions for 𝑝𝑝𝑛𝑛,11|𝒀𝒀, 𝑺𝑺  and 𝑝𝑝𝑛𝑛,00|𝒀𝒀,𝑺𝑺  that are given by the 

following:  

𝜋𝜋(𝑝𝑝𝑛𝑛,11|𝒀𝒀,𝑺𝑺) ∝ 𝑝𝑝𝑛𝑛,11
𝛼𝛼11−1(1 − 𝑝𝑝𝑛𝑛,11)𝛼𝛼10−1 and 𝜋𝜋(𝑝𝑝𝑛𝑛,00|𝒀𝒀,𝑺𝑺) ∝ 𝑝𝑝𝑛𝑛,00

𝛼𝛼00−1(1 − 𝑝𝑝𝑛𝑛,00)𝛼𝛼01−1, (16) 

where 𝛼𝛼11 = 𝛼𝛼11 + 𝑛𝑛11 , 𝛼𝛼10 = 𝛼𝛼10 + 𝑛𝑛10 , 𝛼𝛼00 = 𝛼𝛼00 + 𝑛𝑛00 , 𝛼𝛼01 = 𝛼𝛼01 + 𝑛𝑛01 , and 𝑛𝑛𝑗𝑗𝑖𝑖  is the number of 

transitions from state 𝑗𝑗  to state 𝑖𝑖 . Note that 𝑝𝑝𝑛𝑛,11  and 𝑝𝑝𝑛𝑛,00  are independent of 𝜎𝜎𝑛𝑛2 , 𝝁𝝁𝑛𝑛 , and 𝜌𝜌 . We see that 

𝑝𝑝𝑛𝑛,11|𝒀𝒀,𝑺𝑺 and 𝑝𝑝𝑛𝑛,00|𝑜𝑜𝑜𝑜𝑜𝑜,𝑺𝑺 follow the beta distributions Beta(𝛼𝛼11,𝛼𝛼10) and Beta(𝛼𝛼00,𝛼𝛼01), respectively.  
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3.3. Drawing Parameters from Posterior Distributions 

We conduct the Bayesian inference via multiple-block MH sampling.9 Besides parameters, a Markov switching model 

includes hidden variables 𝑺𝑺. Following Kim and Nelson (1998, 1999a, b), we use multi-move Gibbs sampling for 

drawing 𝒔𝒔𝑛𝑛. In summary, our sampling algorithm is as follows:  

 

1. Set hyperparameters and the initial parameter values.  

2. Draw 𝒔𝒔𝑛𝑛
(𝑔𝑔)|𝒀𝒀,𝜽𝜽(𝑔𝑔−1) (𝑛𝑛 = 1, … ,𝑁𝑁) from the multi-move Gibbs sampling.10  

3. Draw 𝑝𝑝𝑛𝑛,11
(𝑔𝑔) |𝒀𝒀, 𝒔𝒔𝑛𝑛

(𝑔𝑔) (𝑛𝑛 = 1, … ,𝑁𝑁) from Beta(𝛼𝛼11,𝛼𝛼10).  

4. Draw 𝑝𝑝𝑛𝑛,00
(𝑔𝑔) |𝒀𝒀, 𝒔𝒔𝑛𝑛

(𝑔𝑔) (𝑛𝑛 = 1, … ,𝑁𝑁) from Beta(𝛼𝛼00,𝛼𝛼01).  

5. Draw 𝜎𝜎𝑛𝑛
2,(𝑔𝑔)|𝒀𝒀, 𝒔𝒔𝑛𝑛

(𝑔𝑔),𝝁𝝁𝑛𝑛
(𝑔𝑔−1),𝜙𝜙𝑛𝑛

(𝑔𝑔−1), 𝜌𝜌(𝑔𝑔−1) (𝑛𝑛 = 1, … ,𝑁𝑁) from IG(𝜈𝜈/2,𝛿𝛿/2).  

6. Draw 𝝁𝝁𝑛𝑛
(𝑔𝑔)|𝒀𝒀, 𝒔𝒔𝑛𝑛

(𝑔𝑔),𝜎𝜎𝑛𝑛
2,(𝑔𝑔),𝜙𝜙𝑛𝑛

(𝑔𝑔−1),𝜌𝜌(𝑔𝑔−1) (𝑛𝑛 = 1, … ,𝑁𝑁) from N(𝒎𝒎𝜇𝜇,𝑛𝑛,𝑴𝑴𝜇𝜇,𝑛𝑛).  

7. Draw 𝜙𝜙𝑛𝑛
(𝑔𝑔)|𝒀𝒀, 𝒔𝒔𝑛𝑛

(𝑔𝑔),𝜎𝜎𝑛𝑛
2,(𝑔𝑔),𝝁𝝁𝑛𝑛

(𝑔𝑔),𝜌𝜌(𝑔𝑔−1) (𝑛𝑛 = 1, … ,𝑁𝑁) from N(𝑚𝑚𝜙𝜙,𝑛𝑛,𝑀𝑀𝜙𝜙,𝑛𝑛).  

8. Draw 𝜌𝜌(𝑔𝑔)|𝒀𝒀,𝑺𝑺(𝑔𝑔),𝜴𝜴𝑛𝑛
(𝑔𝑔),𝝁𝝁0

(𝑔𝑔),𝝁𝝁1
(𝑔𝑔),𝜱𝜱(𝑔𝑔) based on the MH algorithm.  

(a) Draw 𝜌𝜌′  from a truncated normal distribution TN(1/𝜔𝜔min,1)(𝜌𝜌(𝑔𝑔−1), 1)  as a proposal 

distribution 𝑞𝑞(⋅).  

(b) Calculate the acceptance probability. 

 𝛼𝛼(𝜌𝜌(𝑔𝑔−1),𝜌𝜌′) = min �
𝜋𝜋(𝜌𝜌′|𝒀𝒀,𝑺𝑺(𝑔𝑔),𝜴𝜴𝑛𝑛

(𝑔𝑔),𝝁𝝁0
(𝑔𝑔),𝝁𝝁1

(𝑔𝑔),𝜱𝜱(𝑔𝑔))𝑞𝑞(𝜌𝜌′,𝜌𝜌(𝑔𝑔−1))
𝜋𝜋(𝜌𝜌(𝑔𝑔−1)|𝒀𝒀,𝑺𝑺(𝑔𝑔),𝜴𝜴𝑛𝑛

(𝑔𝑔),𝝁𝝁0
(𝑔𝑔),𝝁𝝁1

(𝑔𝑔),𝜱𝜱(𝑔𝑔))𝑞𝑞(𝜌𝜌(𝑔𝑔−1),𝜌𝜌′)
, 1� . (17) 

(c) Generate 𝑢𝑢 ∼ U(0,1) and determine 𝜌𝜌(𝑔𝑔) by using the following rule:  

 𝜌𝜌(𝑔𝑔) = �𝜌𝜌
′, if 𝑢𝑢 ≤ 𝛼𝛼(𝜌𝜌(𝑔𝑔−1),𝜌𝜌′),
𝜌𝜌(𝑔𝑔−1), otherwise.

 (18) 

(d) Repeat steps (a)–(c) 𝐻𝐻 times (𝐻𝐻 = 10 in this study) and determine 𝜌𝜌(𝑔𝑔).  

9. Repeat steps 2–8.  

 

In the above algorithm, superscript (𝑔𝑔) refers to the sample from the posterior distributions obtained in the 𝑔𝑔th 

iteration. Hyperparameters and initial parameter values are shown in Table 1. For the MH algorithm of parameter 𝜌𝜌, 

we use a truncated normal distribution TN(1/𝜔𝜔min,1)(𝜌𝜌(𝑔𝑔−1), 1)  as a proposal distribution. To avoid high 

 
9Our sampling method is also called Metropolis within Gibbs sampling, which indicates a hybrid sampler of the MH algorithm and 

the Gibbs sampling. We assume that the parameters are drawn from the Gibbs sampling in steps 2–7 and from the MH algorithm in step 

8. However, consistent with Chib (2001, p. 3591), we use the notation of a multiple-block MH sampling because the Gibbs sampling is a 

special case of the multiple-block MH sampling. 
10See Appendix B for more details. In the process of the multi-move Gibbs sampling, it is also necessary to apply the Hamilton filter. 

See Appendix C for details of the Hamilton filter. 
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autocorrelation and poor mixing in the MH algorithm, drawing 𝜌𝜌 from the posterior distributions is repeated 𝐻𝐻 times 

within step 8. See Appendix A for more technical details. In the simulation of the posterior distributions, we discard 

the first 2,000 draws as a burn-in period. Descriptive statistics concerning the sampled posterior distributions are based 

on an additional 10,000 draws.  

[Table 1]  

4. Data 

4.1. Quarterly Indicator of State Economic Activity 

In this study, we use seasonally adjusted quarterly data of economic activity by state in Mexico. The National Institute 

of Statistics and Geography (Instituto Nacional de Estadística y Geografía, INEGI) provides the Quarterly Indicator 

of State Economic Activity (Indicador Trimestral de la Actividad Económica Estatal, ITAEE) on their website.11 The 

period covered in this study is 2003:Q1–2015:Q4 for all 31 states and the Federal District (Distrito Federal).12 

Although the ITAEE provides only data on aggregated sectors (primary, secondary, and tertiary; financial 

intermediation services indirectly measured; and total economic activity), it offers more disaggregated time-series data 

on state economic activity. Regarding the estimation of business cycles, the ITAEE is the best proxy for gross state 

product (GSP) and hence can be used to capture regional business cycles. We therefore use quarterly growth rates of 

total economic activity from ITAEE. The line plot of the time-series data is shown in Supplementary Information. 

4.2. Spatial Weight Matrix 

To estimate a Markov switching model with the spatial lag, we need to specify the SWM in advance. In this study, we 

use the distance-based SWM, which takes the following form:  

 𝑤𝑤𝑛𝑛𝑛𝑛 =
𝑑𝑑𝑛𝑛𝑛𝑛
−𝜂𝜂

∑ 𝑑𝑑𝑛𝑛𝑛𝑛
−𝜂𝜂𝑁𝑁

𝑛𝑛=1
, (19) 

where 𝑤𝑤𝑛𝑛𝑛𝑛  is the 𝑛𝑛𝑚𝑚 th element of the SWM, 𝑑𝑑𝑛𝑛𝑛𝑛  is a bilateral distance between states 𝑛𝑛  and 𝑚𝑚 , 𝑁𝑁  is the 

number of states, and 𝜂𝜂 is a distance decay parameter. This study uses 𝜂𝜂 = 4 as a baseline.13 Note that the SWM 

describes how a spatial spillover spreads across regions.  

 
11Owyang et al. (2008) and Hamilton and Owyang (2012) used employment data because of data limitations. In the Mexican context, 

quarterly data of state economic activity are readily available and serve as a more appropriate measure than employment data in the formal 

sector. 
12The Federal District became Mexico City (Ciudad de México) on January 29, 2016. In this study, we use Federal District because 

our data cover the period before the reform. 
13The estimate of 𝜌𝜌 obtained from this value was close to the average estimate of 𝜌𝜌 obtained among 𝜂𝜂 = {2, … ,8}. In addition, we 

prefer the distance-based SWM to the contiguity-based one because the former can account for continuous space across regions. 
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The bilateral distance is based on the route distance between two state capitals, which is taken from the Point to 

Point Routes (Rutas punto a punto) provided by the Ministry of Communications and Transportation (Secretaría de 

Comunicaciones y Transportes) of Mexico.  

5. Estimation Results 

5.1. Determination of Recession Phase 

Figure 1 shows the probabilities of recession estimated from the Markov switching model for selective states that were 

in recession during the Great Recession. We define that a state is in recession at date 𝑡𝑡 if the probability of recession 

during the quarterly periods 𝑡𝑡 − 1 to 𝑡𝑡 takes a value of 0.5 or higher.14 The national recession period recorded by 

the INEGI was 2008:Apr–2009:Jun, and these six states (Aguascalientes, Baja California, Guanajuato, México, Nuevo 

León, and Tamaulipas) showed higher probabilities of recession than 0.5 for at least three quarterly periods from 

2008:Q3 (see Supplementary Information for the results for all states).15  

Following Owyang et al. (2005), in Table 2 we show when each state was in recession during the period 2003:Q1–

2011:Q4. The black bars represent state recessions, and the recessions that occurred in 21 of the states coincided with 

the national recession period by the INEGI.16 We also find that some states were not in recession during the national 

recession period. According to our estimation results, 11 states (Baja California Sur, Colima, Chiapas, Michoacán, 

Morelos, Nayarit, Oaxaca, Sinaloa, Tabasco, Tlaxcala, and Zacatecas) did not experience any recessions during the 

study period. 

[Table 2; Figure 1]  

Table 3 shows that the average growth rates controlled by the spatial lag in the recession and expansion phases (𝜇𝜇0 

and 𝜇𝜇1) differ considerably among states.17 Although all states showed that the average growth rates in the recession 

phase are negative, the 95% credible interval includes zero except for two states, Campeche and México. All states 

except Campeche show positive average growth rates, and the 95% credible interval does not include zero for most 

states.  

The estimated coefficient of the temporal lag is negative for most states, but only six states (Guerrero, Morelos, 

Oaxaca, Sinaloa, Tlaxcala, and Veracruz) have a 95% credible interval that does not include zero, suggesting that these 

 
14The probability of recession is calculated by 1 − 𝐺𝐺−1 ∑ 𝑠𝑠𝑡𝑡,𝑛𝑛

(𝑔𝑔)𝐺𝐺
𝑔𝑔=1 , where 𝐺𝐺 is the number of iterations, and the superscript (𝑔𝑔) is 

the 𝑔𝑔th iteration. Note that our results might not identify state recessions in their entirety. Determining whether states are in recession 

simply depends on whether the probability of recession is higher than 0.5 or not. 
15Another national recession period is 2000:Aug–2003:Sep. However, we were not able to identify state recessions for that period 

because of data limitations. 
16Campeche showed a different trend from the other states. Annual growth rates of real GSP (2013 = 100) were highly negative, such 

as −1.98% in 2004–2005, −2.34% in 2005–2006, −6.58% in 2006–2007, −8.48% in 2007–2008, −9.97% in 2008–2009, −3.43% 

in 2009–2010, and −3.64% in 2010–2011. This tendency is consistent with our estimation results in Table 2. 
17The complete estimation results are available in Supplementary Information. 
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six states show countercyclical patterns. In fact, these states, except Veracruz, were estimated not to be in recession 

during the Great Recession.  

To explain which states were likely to be in recession during the Great Recession, we additionally ran simple linear 

regressions for industrial structure differences across states. The explanatory variable is the intrastate industrial 

specialization index, which is here defined as the ratio of the GSP share of sector 𝑠𝑠 in state 𝑛𝑛 to the national share 

of sector 𝑠𝑠 at time 𝑡𝑡. The value 1 of this specialization index means that the share of sector 𝑠𝑠 in state 𝑛𝑛 is the same 

level as the national share of that sector. To avoid endogeneity, we followed the methodology adopted by Owyang et 

al. (2008), and thus we used the average values in the initial period (i.e., average values in the period 2003–2005) as 

an explanatory variable.  

Table 4 shows the estimation results of these regressions. 18  First, the dependent variable is the number of 

recessions in 2008:Q2-2009:Q2 (i.e., number of black bars in Table 2). The regression results show that states with a 

higher manufacturing share were likely to be in recession. The adjusted R-squared is also high (𝑅𝑅2 = 0.273). The 

recession period extends by 1.6 quarters if the specialization index is two (i.e., twice as high as the share of the 

manufacturing sector at the national level). We also find that states with larger shares for the primary sector, mining, 

and educational services, health care and social assistance were likely not to be in recession even during the Great 

Recession. These findings are similar to those of Erquizio-Espinal (2010) and Mejía-Reyes and Erquizio-Espinal 

(2012), who constructed a recession resistance index by state. They found that the states of Chiapas, Oaxaca, Sinaloa, 

Tabasco, and Zacatecas demonstrated a relatively high level of endurance against recession. Regressions for other 

sectors showed no relationship and the adjusted R-squared was low. 

In the second and third regressions of Table 4, the average growth rates in the recession and expansion phases (𝜇𝜇0 

and 𝜇𝜇1) were regressed on the specialization index of each industry separately. We find that the manufacturing sector 

significantly shows a lower average growth rate in the recession phase at the 1% level. The adjusted R-squared is also 

high (𝑅𝑅2 = 0.407 ). The average growth rate in the recession phase decreases by 0.71 percentage points if the 

specialization index is two (i.e., twice as high as the share of the manufacturing sector at the national level). As 

discussed in Erquizio-Espinal (2010) and Mejía-Reyes and Erquizio-Espinal (2012), although the border states have 

been growing rapidly by exporting manufactured goods, their economies have been more adversely affected in the 

recession phase. Mejía-Reyes and Erquizio-Espinal (2012) emphasized this point as the “heads and tails” of 

globalization. Our results confirm that states with a higher manufacturing share are likely to experience negative 

economic shocks.  

We also find that the average growth rate in recessions is positively correlated with the shares of the primary sector, 

construction, educational services, health care and social assistance, arts, entertainment and recreation, and 

accommodation and food services. In fact, states with higher shares of these industries were not in recession.  

In the expansion phase, the results should be interpreted carefully because the regressions did not provide a good 

fit (i.e., the adjusted R-squared was low for all regressions). States with higher shares of wholesale and retail trades 

experienced higher growth rates, whereas states with a higher share of transportation and warehousing experienced 

relatively low growth rates in the expansion phase. 

 
18The constant term is suppressed because the sum of shares equals 1. Campeche, Quintana Roo, and Tabasco are excluded as outliers 

because in these states, the mining and commerce, restaurant, and hotel sectors are comparatively large. 
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[Tables 3–4]  

5.2. Spatial Dependence in Business Cycles 

Figure 2 shows how the recession of 2008–2009 spread across states. As we have shown that interstate business cycles 

are spatially dependent, Figure 2 also suggests that spatial proximity affects the propagation process of recessions. 

Thus, we observe that in 2008:Q2–Q3, seven states with a higher manufacturing share (Aguascalientes, Baja California, 

Coahuila, México, Guanajuato, Nuevo León, and Tamaulipas) had entered a recessionary phase. The recessions seem 

to propagate toward neighboring states from 2008:Q4 to 2009:Q2. To evaluate the extent to which regional recessions 

caused conditions in neighboring economies to deteriorate, we conduct a numerical simulation of spatial spillover 

effects, as discussed in Section 6.  

[Figure 2]  

In Table 3, we present the point and interval estimates of the parameters drawn from the posterior distributions.19 

Our particular interest is in whether spatial dependence exists across regional business cycles, which is tested by the 

parameter 𝜌𝜌. The point estimates, namely mean and median, are 0.23, and the interval estimate, namely the 95% 

credible interval, is [0.18, 0.27]. Our estimation results, therefore, show that business cycles across Mexican states 

are spatially dependent.  

Note that the spatial dependence in regional business cycles is estimated as a time-invariant parameter during the 

study period 2003:Q1–2015:Q4. However, spatial dependence might fluctuate over time. As a robustness check, we 

conducted additional analyses for time-varying spatial dependence based on spatial statistics and econometric 

approaches and found that spatial dependence was statistically significant only during the Great Recession of 2008–

2009. However, the qualitative results in this study do not change only if the spatial dependence is observed during the 

Great Recession. See Appendix D for additional discussions. Considering the model specification with and without a 

spatial autoregressive process, the selection of the SWM is also important in terms of spatial spillover effects. See 

Appendix E for other estimation results.  

6. Numerical Simulations of Spatial Spillover Effects 

An advantage of the spatial autoregressive model is that it enables us to simulate spatial spillover effects. Based on the 

above-mentioned estimation results, we conduct a numerical simulation of spatial spillover effects. We quantify the 

extent to which states that experienced a transition from expansion to recession during the Great Recession caused 

deterioration in their neighboring states’ economies.  

From the Markov switching model (2), we have the following equation:  

𝒚𝒚𝑡𝑡 = (𝑰𝑰𝑁𝑁 − 𝜌𝜌𝑾𝑾)−1𝜱𝜱𝒚𝒚𝑡𝑡−1 + (𝑰𝑰𝑁𝑁 − 𝜌𝜌𝑾𝑾)−1(𝝁𝝁0 ⊙ (𝜾𝜾𝑁𝑁 − 𝒔𝒔𝑡𝑡) + 𝝁𝝁1 ⊙ 𝒔𝒔𝑡𝑡) + (𝑰𝑰𝑁𝑁 − 𝜌𝜌𝑾𝑾)−1𝜺𝜺𝑡𝑡 , (20) 

 
19Estimation of the Markov switching model was conducted using Ox Professional 7.20 (Doornik and Ooms, 2006). 
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where (𝑰𝑰𝑁𝑁 − 𝜌𝜌𝑾𝑾)−1 is a global spatial multiplier that generates spatial spillover effects following Anselin (2003). 

We should note that there are no spillover effects when 𝜌𝜌 = 0. Let 𝛥𝛥𝑠𝑠𝑡𝑡,𝑛𝑛 denote a regime switch from 𝑠𝑠𝑡𝑡−1,𝑛𝑛 = 1 to 

𝑠𝑠𝑡𝑡,𝑛𝑛 = 0 , and 𝛥𝛥𝒚𝒚𝑡𝑡(≡ 𝒚𝒚𝑡𝑡 − 𝒚𝒚𝑡𝑡−1)  denotes an 𝑁𝑁 × 1  vector of the first differences in growth rates 𝒚𝒚𝑡𝑡  (i.e., 

percentage points). The direct impact of a switch to a recessionary regime in region 𝑛𝑛  can be calculated by the 

following:  

 
𝛥𝛥𝒚𝒚𝑡𝑡
𝛥𝛥𝑠𝑠𝑡𝑡,𝑛𝑛

= −(𝑰𝑰𝑁𝑁 − 𝜌𝜌∗𝑾𝑾)𝑛𝑛−1⊤ × (𝜇𝜇𝑛𝑛,1
∗ − 𝜇𝜇𝑛𝑛,0

∗ ), (21) 

where (𝑰𝑰𝑁𝑁 − 𝜌𝜌∗𝑾𝑾)𝑛𝑛−1⊤ is the 𝑛𝑛th column vector of the matrix, and 𝜌𝜌∗, 𝜇𝜇𝑛𝑛,0
∗ , and 𝜇𝜇𝑛𝑛,1

∗  are the posterior means. For 

the sake of simplicity, the spillover effects through the autoregressive term 𝛥𝛥𝒚𝒚𝑡𝑡−1 are omitted in this specification.20  

As a simulation exercise, we show the spillover effects of a switch from an expansionary to a recessionary regime 

for selective states (Aguascalientes, Baja California, Guanajuato, Mexico, and Nuevo Leon, Tamaulipas), which were 

in recession in the early phase (2008:Q3) among other states, as shown in Table 2. The estimation results of the other 

states are available in Supplementary Information.  

Figure 3 visualizes the spatial spillover effects of a transition from expansion to recession. In panel (a), a switch to 

a recessionary regime in Aguascalientes decreases the quarterly growth rate in Zacatecas by 0.35 percentage points. 

According to Table 2, Zacatecas did not experience a recession in 2008–2009. However, our simulation results suggest 

that the recession in Aguascalientes caused a modest slowdown in the economy of Zacatecas.  

Similarly, in panel (b), a switch to a recessionary regime in Baja California decreases the quarterly growth rate in 

Sonora by 0.25 percentage points. In panel (c), a switch to a recessionary regime in Guanajuato decreases the quarterly 

growth rate in Querétaro by 0.18 percentage points. In panel (d), a switch to a recessionary regime in México decreases 

the quarterly growth rate in the Federal District by 0.59 percentage points. In panel (e), a switch to a recessionary 

regime in Nuevo León decreases the quarterly growth rate in Coahuila by 0.50 percentage points. In panel (f), a switch 

to a recessionary regime in Tamaulipas decreases the quarterly growth rate in Nuevo León by 0.15 percentage points. 

Because the average growth rate in expansion phases was estimated to be around 1, states with higher manufacturing 

shares caused modest economic slowdowns in their nearest neighboring economy.  

Table 2 presents the potential spatial spillover effects for all states. Note that spatial spillover effects do not exist 

for 11 states because they did not switch to a recessionary regime in our estimation results. As discussed in Section 1, 

the states with a higher manufacturing share in GSP, such as Aguascalientes, Coahuila, México, Nuevo León, and 

Puebla, were in recession and had negative impacts on their nearest neighboring states’ economies when experiencing 

a switch from an expansionary to recessionary regime.  

Our numerical simulations demonstrate that states that experienced a switch from an expansionary to recessionary 

regime during the Great Recession reduced the quarterly growth rate of their nearest neighboring state by an average 

of 0.26 percentage points and that of the second-nearest neighboring state by an average of 0.09 percentage points. It 

is also worth mentioning that the negative impacts of the switch to a recessionary regime on distant neighboring 

 
20In this framework, the spillover effects are symmetric between the two regimes of economic recession and expansion. However, they 

could be asymmetric if the degree of spatial dependence changes between recession and expansion phases. 
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economies was negligible.  

[Figure 3; Table 5]  

7. Concluding Remarks 

The motivation for this study derived from the idea that spatial proximity—which facilitates business with neighboring 

economies through commuting, migration, and trade—might result in spatial similarities in regional business cycles. 

In such situations, region-specific recessions would affect the neighboring economies. Thus, to investigate the regional 

propagation process, we introduced a spatial autoregressive process into a Markov switching model. This framework 

enabled a numerical simulation of the spatial spillover effects. Thus, using data from Mexican states, we conducted 

numerical simulations to investigate how the economic crisis occurring in a Mexican state during the period 2008–

2009 affected the neighboring states’ economies.  

We showed that a parameter measuring spatial dependence takes a positive value only during the Great Recession, 

suggesting that spillover effects existed across Mexican states in this period, and a region-specific shock thus caused 

deterioration in the neighboring states’ economies through these effects. The numerical simulations showed that a 

switch from an expansionary to recessionary regime during the Great Recession decreased the quarterly growth rate 

of economic activity for the nearest state by an average of 0.26 percentage points. However, the spatial spillover effects 

had only limited impacts on the economies of distant states. As such, this study emphasizes that geographical proximity 

does matter in regional business cycles. Therefore, our results have important implications for policymakers. For 

example, if a regional economy begins experiencing an economic downturn, the nearest neighboring economies are 

also likely to experience modest economic slowdowns through the propagation process. Therefore, economic 

cooperation with neighboring state governments may be a solution for quicker recovery from a recession.  

Finally, this study has some limitations. First, this study has not looked at the factors that strengthen spatial 

dependence in regional business cycles, such as trade, migration, and capital flows. Although states with higher 

manufacturing shares faced common external shocks during the Great Recession, it is important to identify how their 

economic slowdowns affected their neighboring states’ economies through domestic economic factors (e.g., Mejía-

Reyes et al., 2018). It is possible to replace the geography-based SWM with the economic-distance-based SWM, 

although the latter is no longer an exogenous variable, and the endogeneity must be controlled for. Second, this study 

considered time-invariant spatial dependence in a Markov switching model. However, this assumption might be too 

strong because dynamic changes in spatial dependence were not considered (e.g., Ductor and Leiva-Leon, 2016; Mejía-

Reyes et al., 2018). Analyzing asymmetric spatial dependence between expansion and recession phases will shed light 

on how regions benefit from neighboring economies in an expansion phase. Thus, further research clarifying these 

should be undertaken.  
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Appendix A. Drawing 𝝆𝝆 by the Metropolis-Hastings Algorithm 

We use a truncated normal distribution as a proposal distribution. When the random variable 𝑥𝑥 has the truncated 

normal distribution TN(𝑎𝑎,𝑏𝑏)(𝜇𝜇,𝜎𝜎2), the probability density function (p.d.f.) is as follows:  

 𝑞𝑞(𝑥𝑥) = �
(1/𝜎𝜎)𝜙𝜙((𝑥𝑥 − 𝜇𝜇)/𝜎𝜎)

𝛷𝛷((𝑏𝑏 − 𝜇𝜇)/𝜎𝜎) −𝛷𝛷((𝑎𝑎 − 𝜇𝜇)/𝜎𝜎)
, if 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏,

0, otherwise,
 (A.1) 

where 𝜙𝜙(⋅)  and Φ(⋅)  are the p.d.f. and the cumulative distribution function (c.d.f.) of the standard normal 

distribution, respectively.  

To avoid high autocorrelation and poor mixing, generating 𝜌𝜌 from the posterior distributions is repeated 𝐻𝐻 times 

within the 𝑔𝑔th iteration. Superscript (ℎ) refers to the sample from the posterior distributions obtained in the ℎth 

iteration within the 𝑔𝑔th iteration as 𝜌𝜌(𝑔𝑔−1,ℎ). Note that the index ℎ is reset in each 𝑔𝑔th iteration.  

We use the probability integral transformation method for sampling from the truncated normal distribution. We set 

𝜇𝜇(𝑔𝑔−1,ℎ) = 𝜌𝜌(𝑔𝑔−1,ℎ) , 𝜎𝜎2 = 1 , 𝑎𝑎 = 1/𝜔𝜔min , and 𝑏𝑏 = 1 . Following Holloway et al. (2002), we introduce a tuning 

parameter 𝑐𝑐 into the variance term, so that the acceptance rate might fall within the interval [0.3, 0.7].21  

For convenience of explanation, we omit the superscript (𝑔𝑔 − 1)  as 𝜌𝜌(ℎ) = 𝜌𝜌(𝑔𝑔−1,ℎ) . Note that 𝜌𝜌(𝑔𝑔−1) =

𝜌𝜌(𝑔𝑔−1,0)  if ℎ = 0 . When 𝑢𝑢  is distributed as a uniform distribution U(0,1) , we can draw 𝜌𝜌′  from 

TN(1/𝜔𝜔min,1)(𝜌𝜌(ℎ−1), 1) as follows:  

𝜌𝜌′ = 𝜌𝜌(ℎ−1) + 𝑐𝑐Φ−1�Φ(1/𝜔𝜔min − 𝜌𝜌(ℎ−1)) + 𝑢𝑢�Φ(1 − 𝜌𝜌(ℎ−1)) −Φ(1/𝜔𝜔min − 𝜌𝜌(ℎ−1))��. (A.2) 

The acceptance probability 𝛼𝛼(𝜌𝜌(ℎ−1), 𝜌𝜌′) is calculated by:  

𝛼𝛼�𝜌𝜌(ℎ−1),𝜌𝜌′� = min �
𝜋𝜋(𝜌𝜌′|𝒀𝒀,𝑺𝑺(ℎ),𝜴𝜴(ℎ),𝝁𝝁(ℎ),𝜱𝜱(ℎ))�Φ(1 − 𝜌𝜌(ℎ−1)) −Φ(1/𝜔𝜔𝑛𝑛𝑖𝑖𝑛𝑛 − 𝜌𝜌(ℎ−1))�
𝜋𝜋(𝜌𝜌(ℎ−1)|𝒀𝒀,𝑺𝑺(ℎ),𝜴𝜴(ℎ),𝝁𝝁(ℎ),𝜱𝜱(ℎ))(Φ(1 − 𝜌𝜌′) −Φ(1/𝜔𝜔𝑛𝑛𝑖𝑖𝑛𝑛 − 𝜌𝜌′)) , 1�. (A.3) 

where 𝜋𝜋(𝜌𝜌|𝒀𝒀,𝑺𝑺(ℎ),𝜴𝜴(ℎ),𝝁𝝁(ℎ),𝜱𝜱(ℎ))  is calculated from equation (10). Because a standard normal distribution is 

symmetric, 𝜙𝜙(𝜌𝜌′,𝜌𝜌(ℎ−1)) and 𝜙𝜙(𝜌𝜌(ℎ−1),𝜌𝜌′) are offset. We repeat this step 𝐻𝐻 = 10 times in each 𝑔𝑔th iteration to 

avoid high autocorrelation and poor mixing. Following step 8(c) in the algorithm, we judge whether 𝜌𝜌′ is accepted 

or not after the 𝐻𝐻 iteration as follows:  

 
21Holloway et al. (2002) originally set the interval to [0.4, 0.6], and LeSage and Pace (2009, Ch. 5) adopted the same strategy. We 

chose a slightly wider interval of the acceptance rate. The aim of tuning the proposals is to ensure that the MH sampling moves over the 

entire conditional distribution. Thus, we adjust the tuning parameter 𝑐𝑐 in the following way. First, we set 𝑐𝑐 = 1 as an initial value. Next, 

the tuning parameter 𝑐𝑐 is adjusted by scale factor 1.01 depending on the acceptance rate (𝑐𝑐 × 1.01 if the acceptance rate exceeds 0.7, 

while 𝑐𝑐/1.01 if the acceptance rate falls below 0.3). 



20 

 𝜌𝜌(𝑔𝑔) = �𝜌𝜌
′, if 𝑢𝑢 < 𝛼𝛼(𝜌𝜌(𝑔𝑔−1,𝐻𝐻),𝜌𝜌′),
𝜌𝜌(𝑔𝑔−1), otherwise.

 (A.4) 

 

Appendix B. Multi-Move Gibbs Sampling for 𝒔𝒔𝒏𝒏 

Kim and Nelson (1998, 1999a, b) were the first to apply multi-move Gibbs sampling to a Markov switching model. 

Our explanation here is based on Kim and Nelson (1999b). For convenience of explanation, we define vectors 𝒔𝒔�𝑛𝑛𝑡𝑡  and 

𝒔𝒔𝑛𝑛𝑡𝑡 , and a matrix 𝒀𝒀�𝑡𝑡 using the following notation:  

 𝒔𝒔�𝑛𝑛𝑡𝑡 = �

𝑠𝑠1,𝑛𝑛
𝑠𝑠2,𝑛𝑛
⋮
𝑠𝑠𝑡𝑡,𝑛𝑛

� ,  𝒔𝒔𝑛𝑛𝑡𝑡 = �

𝑠𝑠𝑡𝑡,𝑛𝑛
𝑠𝑠𝑡𝑡+1,𝑛𝑛
⋮

𝑠𝑠𝑇𝑇,𝑛𝑛

� ,  𝒀𝒀�𝑡𝑡 = �

𝑦𝑦1,𝑛𝑛 𝑦𝑦1,2 ⋯ 𝑦𝑦1,𝑁𝑁
𝑦𝑦2,𝑛𝑛 𝑦𝑦2,2 ⋯ 𝑦𝑦2,𝑁𝑁
⋮ ⋮ ⋱ ⋮
𝑦𝑦𝑡𝑡,𝑛𝑛 𝑦𝑦𝑡𝑡,2 ⋯ 𝑦𝑦𝑡𝑡,𝑁𝑁

�. (B.1) 

The aim here is to obtain 𝑝𝑝(𝒔𝒔�𝑛𝑛𝑇𝑇|𝒀𝒀�𝑇𝑇 ,𝜽𝜽). This can be rewritten as follows:  

 

𝑝𝑝(𝒔𝒔�𝑛𝑛𝑇𝑇|𝒀𝒀�𝑇𝑇 ,𝜽𝜽) = 𝑝𝑝(𝑠𝑠𝑇𝑇,𝑛𝑛|𝒀𝒀�𝑇𝑇 ,𝜽𝜽)𝑝𝑝(𝒔𝒔�𝑛𝑛𝑇𝑇−1|𝑠𝑠𝑇𝑇,𝑛𝑛,𝒀𝒀�𝑇𝑇 ,𝜽𝜽) 

= 𝑝𝑝(𝑠𝑠𝑇𝑇,𝑛𝑛|𝒀𝒀�𝑇𝑇 ,𝜽𝜽)�𝑝𝑝
𝑇𝑇−1

𝑡𝑡=1

(𝑠𝑠𝑡𝑡,𝑛𝑛|𝒔𝒔𝑛𝑛𝑡𝑡+1,𝒀𝒀�𝑇𝑇 ,𝜽𝜽). 
(B.2) 

Furthermore, the second term can be expressed as follows:  

 𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛|𝒔𝒔𝑛𝑛𝑡𝑡+1,𝒀𝒀�𝑇𝑇 ,𝜽𝜽) ∝ 𝑝𝑝(𝑠𝑠𝑡𝑡+1,𝑛𝑛|𝑠𝑠𝑡𝑡,𝑛𝑛,𝜽𝜽)𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛|𝒀𝒀�𝑡𝑡 ,𝜽𝜽), (B.3) 

where the first term on the RHS represents the transition probability. Incorporating the normalizing constant, we have 

the following probability mass function:  

𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖|𝒔𝒔𝑛𝑛𝑡𝑡+1,𝒀𝒀�𝑇𝑇 ,𝜽𝜽) =
𝑝𝑝(𝑠𝑠𝑡𝑡+1,𝑛𝑛|𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖,𝜽𝜽)𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖|𝒀𝒀�𝑡𝑡,𝜽𝜽)

∑ 𝑝𝑝1
𝑗𝑗=0 (𝑠𝑠𝑡𝑡+1,𝑛𝑛|𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑗𝑗,𝜽𝜽)𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑗𝑗|𝒀𝒀�𝑡𝑡,𝜽𝜽)

, (B.4) 

where 𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖|𝒀𝒀�𝑡𝑡 ,𝜽𝜽) is calculated using the Hamilton filter (see Appendix C for details). The calculation step for 

(2) can be summarized as follows: First, we draw 𝑠𝑠𝑇𝑇,𝑛𝑛 conditional on 𝒀𝒀�𝑇𝑇 and 𝜽𝜽; second, given 𝑠𝑠𝑇𝑇,𝑛𝑛, the sampling 

𝑠𝑠𝑡𝑡,𝑛𝑛 for 𝑡𝑡 = 𝑇𝑇 − 1, … ,1 is implemented by backward recursion based on equation (B.4).  

Appendix C. Hamilton Filter with Spatial Lag 

Hamilton’s (1989) filter is applied to calculate the conditional probabilities 𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖|𝒀𝒀�𝑡𝑡 ,𝜽𝜽) for region 𝑛𝑛 at date 𝑡𝑡. 

Based on Chib (1996, 2001), we explain how the Hamilton filter is applied in this study. Using scalar notation, model 

(2) can be rewritten as follows:  
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𝑦𝑦𝑡𝑡,𝑛𝑛 = 𝜌𝜌 � 𝑤𝑤𝑛𝑛𝑛𝑛

𝑁𝑁

𝑛𝑛=1

𝑦𝑦𝑡𝑡,𝑛𝑛 + 𝜙𝜙𝑛𝑛𝑦𝑦𝑡𝑡−1,𝑛𝑛 + 𝜇𝜇𝑛𝑛,0(1 − 𝑠𝑠𝑡𝑡,𝑛𝑛) + 𝜇𝜇𝑛𝑛,1𝑠𝑠𝑡𝑡,𝑛𝑛 + 𝜀𝜀𝑡𝑡,𝑛𝑛,  𝜀𝜀𝑡𝑡,𝑛𝑛 ∼ i. i. d.  N(0,𝜎𝜎𝑛𝑛2). (C.1) 

For the conditional p.d.f. 𝑓𝑓(𝑦𝑦𝑡𝑡,𝑛𝑛|𝑠𝑠𝑡𝑡,𝑛𝑛,𝒚𝒚𝑡𝑡,−𝑛𝑛,𝜽𝜽), the expected value and variance become E(𝑦𝑦𝑡𝑡,𝑛𝑛|𝑠𝑠𝑡𝑡,𝑛𝑛,𝒚𝒚𝑡𝑡,−𝑛𝑛,𝜽𝜽)  =

𝜌𝜌∑ 𝑤𝑤𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1 𝑦𝑦𝑡𝑡,𝑛𝑛 + 𝜙𝜙𝑛𝑛𝑦𝑦𝑡𝑡−1,𝑛𝑛 + 𝜇𝜇𝑛𝑛,0(1 − 𝑠𝑠𝑡𝑡,𝑛𝑛) + 𝜇𝜇𝑛𝑛,1𝑠𝑠𝑡𝑡,𝑛𝑛 and Var(𝑦𝑦𝑡𝑡,𝑛𝑛|𝑠𝑠𝑡𝑡,𝑛𝑛,𝒚𝒚𝑡𝑡,−𝑛𝑛,𝜽𝜽) = 𝜎𝜎𝑛𝑛2, where the subscript −𝑛𝑛 

of 𝒚𝒚𝑡𝑡,−𝑛𝑛 indicates that the 𝑛𝑛th element is excluded from the vector, and for simplicity we assumed that for each 

region 𝑛𝑛, the spatial lag ∑ 𝑤𝑤𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1 𝑦𝑦𝑡𝑡,𝑛𝑛 is exogenously given. Therefore, the conditional p.d.f., which is used in 

the iteration process of the Hamilton filter, is given by the following:  

𝑓𝑓(𝑦𝑦𝑡𝑡,𝑛𝑛|𝑠𝑠𝑡𝑡,𝑛𝑛,𝒚𝒚𝑡𝑡,−𝑛𝑛,𝜽𝜽) = 

  
1

�2𝜋𝜋𝜎𝜎𝑛𝑛2
exp �−

(𝑦𝑦𝑡𝑡,𝑛𝑛 − 𝜌𝜌∑ 𝑤𝑤𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1 𝑦𝑦𝑡𝑡,𝑛𝑛 − 𝜙𝜙𝑛𝑛𝑦𝑦𝑡𝑡−1,𝑛𝑛 − 𝜇𝜇𝑛𝑛,0(1 − 𝑠𝑠𝑡𝑡,𝑛𝑛) − 𝜇𝜇𝑛𝑛,1𝑠𝑠𝑡𝑡,𝑛𝑛)2

2𝜎𝜎𝑛𝑛2
�. 

(C.2) 

 

The algorithm of the Hamilton filter consists of two steps: prediction and update. The conditional p.d.f. 𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛 =

𝑖𝑖|𝒀𝒀�𝑡𝑡 ,𝜽𝜽) is obtained by forward recursion 𝑡𝑡 = 1, 2, … ,𝑇𝑇.  

 

1. Prediction Step: Calculate the probability  

 
𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖|𝒀𝒀�𝑡𝑡−1,𝜽𝜽) = �𝑝𝑝

1

𝑗𝑗=0

(𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖|𝑠𝑠𝑡𝑡−1,𝑛𝑛 = 𝑗𝑗,𝜽𝜽)𝑝𝑝(𝑠𝑠𝑡𝑡−1,𝑛𝑛 = 𝑗𝑗|𝒀𝒀�𝑡𝑡−1,𝜽𝜽), (C.3) 

where, when 𝑡𝑡 = 1, 𝑝𝑝(𝑠𝑠0,𝑛𝑛 = 𝑖𝑖|𝒀𝒀�0,𝜽𝜽) is replaced by the steady-state probabilities as follows:  

 𝜋𝜋𝑛𝑛,0 =
1 − 𝑝𝑝𝑛𝑛,11

2 − 𝑝𝑝𝑛𝑛,00 − 𝑝𝑝𝑛𝑛,11
 and 𝜋𝜋𝑛𝑛,1 =

1 − 𝑝𝑝𝑛𝑛,00

2 − 𝑝𝑝𝑛𝑛,00 − 𝑝𝑝𝑛𝑛,11
. (C.4) 

2. Update Step: Calculate the probability  

 
𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖|𝒀𝒀�𝑡𝑡 ,𝜽𝜽) =

𝑓𝑓(𝑦𝑦𝑡𝑡,𝑛𝑛|𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖,𝒚𝒚𝑡𝑡,−𝑛𝑛,𝜽𝜽)𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖|𝒀𝒀�𝑡𝑡−1,𝜽𝜽)
∑ 𝑓𝑓1
𝑗𝑗=0 (𝑦𝑦𝑡𝑡,𝑛𝑛|𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑗𝑗,𝒚𝒚𝑡𝑡,−𝑛𝑛,𝜽𝜽)𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑗𝑗|𝒀𝒀�𝑡𝑡−1,𝜽𝜽)

. (C.5) 

 

The probabilities 𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖|𝒀𝒀�𝑡𝑡 ,𝜽𝜽) are used in the multi-move Gibbs sampling. The probabilities 𝑝𝑝(𝑠𝑠𝑡𝑡,𝑛𝑛 = 𝑖𝑖|𝒀𝒀�𝑡𝑡−1,𝜽𝜽) 

are also used for calculating the likelihood function in the model selection.  
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Appendix D. Robustness Check by Spatial Econometrics 

D.1. Spatial Autocorrelation 

To investigate the time-varying spatial dependence in regional business cycles, this study calculates Moran’s 𝐼𝐼 

statistics across states at time 𝑡𝑡 as follows:  

 𝐼𝐼𝑡𝑡 =
𝒚𝒚𝑡𝑡⊤𝑾𝑾𝒚𝒚𝑡𝑡
𝒚𝒚𝑡𝑡⊤𝒚𝒚𝑡𝑡

, (D.1) 

where the SWM is based on the route distance between states with the distance decay parameter 𝜂𝜂 = 4.  

Figure D.1 shows the calculation results of Moran’s 𝐼𝐼 in the study period. Panel (a) shows the results in each 

quarterly period. The red marker indicates statistical significance at the 10% level. Importantly, spatial autocorrelation 

is not always significant throughout the entire period. However, spatial autocorrelation occurred during the Great 

Recession of 2008–2009. To mitigate the fluctuations, the centered moving average of order 3 is calculated in panel 

(b). The degree of spatial autocorrelation increased gradually during the Great Recession of 2008–2009 and fell after 

the Great Recession.  

Figure D.2 shows Moran’s scatterplot using annually aggregated data for 2008 and 2009. In other words, the 

quarterly data are pooled on a yearly basis. As discussed above, the positive spatial autocorrelation is confirmed 

visually during the Great Recession. Although spatial autocorrelation across regional business cycles is not obvious 

from the data, it is confirmed as being significant during the Great Recession. 

[Figures D.1 and D.2]  

D.2. Spatial Panel Econometrics 

The spatial autoregressive process of dependent variable 𝑾𝑾𝒚𝒚𝑡𝑡 considers contemporaneous interdependence across 

regions. One may consider another possibility of a spatial autoregressive process, that is, 𝑾𝑾𝒚𝒚𝑡𝑡−1 instead of 𝑾𝑾𝒚𝒚𝑡𝑡. 

Consider a simpler version of model (2) without a temporal autoregressive process as follows:  

 𝒚𝒚𝑡𝑡 = 𝜌𝜌𝑾𝑾𝒚𝒚𝑡𝑡−1 + 𝝁𝝁 + 𝜺𝜺𝑡𝑡 , (D.2) 

where 𝝁𝝁 = (𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇𝑁𝑁)  is the fixed effect of state 𝑛𝑛 . By successive iteration, we can show that 𝒚𝒚𝑡𝑡 = (𝑰𝑰 −

𝜌𝜌𝑾𝑾)−1𝝁𝝁 + (𝑰𝑰 − 𝜌𝜌𝑾𝑾)−1𝜺𝜺𝑡𝑡, which is equivalent to 𝒚𝒚𝑡𝑡 = 𝜌𝜌𝑾𝑾𝒚𝒚𝑡𝑡 + 𝝁𝝁 + 𝜺𝜺𝑡𝑡. Therefore, note that simultaneous spatial 

autoregressive processes result from dynamic spatial dependence. See LeSage and Pace (2009) for a discussion on 

time dependence in spatial econometric models.  

To control for common external shocks across the Mexican states, this study estimated a spatial panel econometric 

model with fixed effects (Lee and Yu, 2010):  
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 𝒚𝒚𝑡𝑡 = 𝜌𝜌𝑾𝑾𝒚𝒚𝑡𝑡 + 𝝁𝝁 + 𝜏𝜏𝑡𝑡 + 𝜺𝜺𝑡𝑡 , (D.3) 

where 𝝁𝝁 = (𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇𝑁𝑁)⊤ is the fixed effect of state 𝑛𝑛, 𝜏𝜏𝑡𝑡 is the fixed effect of time 𝑡𝑡, and SWM is based on the 

route distance across states with the distance decay parameter 𝜂𝜂 = 4. Time fixed effects aim to control for common 

external shocks across the county. Year and quarter and year × quarter fixed effects are included. The parameter of 

interest is 𝜌𝜌, which measures the spatial dependence in economic activities.  

Table D.1 shows the estimation results obtained by maximum likelihood estimation. In column (1), in which time 

fixed effects are not controlled for, the estimate of 𝜌𝜌 is 0.196 and significantly positive throughout the entire period. 

When the year and quarter fixed effects are controlled for in column (2), the magnitude of spatial dependence becomes 

0.169 but remains statistically significant at the 1% level. When the year × quarter fixed effects are controlled for in 

column (3), the magnitude of spatial dependence becomes 0.025 and is statistically insignificant.  

To estimate spatial dependence in regional business cycles under control for common external shocks, the entire 

period is divided into three subperiods. In columns (4) and (6), the coefficient estimates of the spatial lag are 

insignificant and close to zero in the pre and post periods of the Great Recession. In column (5), the parameter estimate 

of spatial dependence is 0.184 and significantly positive at the 10% level only during the Great Recession of 2008:Q2–

2009:Q2, suggesting that significant spatial dependence in a subperiod results in statistical significance in the entire 

period. Note that the split of the study period is exogenously determined within this regression, although the Markov 

switching model endogenously estimates expansion and recession phases by state. 

Summing up, after controlling for common external shocks across the Mexican states, we confirmed significant 

spatial dependence in regional business cycles only during the Great Recession. Although time-invariant spatial 

dependence in regional business cycles was assumed in the model, time-varying spatial dependence in regional 

business cycles will be more precise. Therefore, the quantitative magnitude of spatial spillover effects on neighboring 

economies might have a wider range than that estimated, whereas the qualitative discussion about the spatial spillover 

effects does not change. 

[Table D.1]  

Appendix E. Model Selection 

We use the log marginal likelihood to compare different econometric models. Chib (1995) proposed a procedure for 

calculating marginal likelihood under Gibbs sampling. However, in this study, a parameter measuring spatial 

dependence 𝜌𝜌 is drawn by the MH algorithm, and thus we employ a method proposed by Chib and Jeliazkov (2001). 

The calculation of the marginal likelihood is based on the following equation:  

 𝑚𝑚(𝒀𝒀) =
𝐿𝐿(𝒀𝒀|𝜽𝜽)𝜋𝜋(𝜽𝜽)
𝜋𝜋(𝜽𝜽|𝒀𝒀)

, (E.1) 

which is termed the basic marginal likelihood identity (BMI). The BMI consists of the likelihood function, prior 

distribution, and posterior distribution. This identity holds at any 𝜽𝜽. In this study, the mean of the posterior distribution 
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𝜽𝜽∗ is used. Thus, by taking the logarithms of the BMI and evaluating them at 𝜽𝜽∗, we can calculate the log marginal 

likelihood estimate as follows:  

 log 𝑚𝑚� (𝒀𝒀) = log 𝐿𝐿 (𝒀𝒀|𝜽𝜽∗) + log 𝜋𝜋 (𝜽𝜽∗) − log 𝜋𝜋� (𝜽𝜽∗|𝒀𝒀). (E.2) 

Based on equation (E.2), we calculate the following three terms: the likelihood function, the prior distribution, and the 

posterior distribution, all evaluated at 𝜽𝜽∗.  

The first term on the RHS of equation (E.2) is the log likelihood function. Note that the Markov switching model 

includes hidden variables {𝒔𝒔𝑡𝑡}𝑡𝑡=1𝑇𝑇 . The likelihood function thus takes the following form:  

 𝐿𝐿(𝒀𝒀|𝜽𝜽∗) = ���𝑓𝑓
1

𝑗𝑗=0

(𝒚𝒚𝑡𝑡|𝒔𝒔𝑡𝑡 = 𝑗𝑗,𝜽𝜽∗)𝑝𝑝(𝒔𝒔𝑡𝑡 = 𝑗𝑗|𝒀𝒀�𝑡𝑡−1,𝜽𝜽∗)�
𝑇𝑇

𝑡𝑡=1

. (E.3) 

The second term in the brackets must be calculated in advance. This term can be obtained from the prediction step in 

the Hamilton filter.  

The second term on the RHS of equation (E.2) is the logarithm of the joint prior distribution. As we assumed an 

independent prior distribution across parameters and regions, the prior distribution can be obtained as follows:  

 𝜋𝜋(𝜽𝜽∗) = 𝜋𝜋(𝜌𝜌∗) ��𝜋𝜋
𝑁𝑁

𝑛𝑛=1

(𝜎𝜎𝑛𝑛2∗)𝜋𝜋(𝝁𝝁𝑛𝑛∗ )𝜋𝜋(𝜙𝜙𝑛𝑛)𝜋𝜋(𝑝𝑝𝑛𝑛,11
∗ )𝜋𝜋(𝑝𝑝𝑛𝑛,00

∗ )�. (E.4) 

The third term on the RHS of equation (E.2) is the logarithm of the joint posterior distribution, which can be 

rewritten as follows:  

𝜋𝜋�(𝜽𝜽∗|𝒀𝒀) = 𝜋𝜋�(𝜌𝜌∗|𝒀𝒀) ��𝜋𝜋�
𝑁𝑁

𝑛𝑛=1

(𝜎𝜎𝑛𝑛2∗|𝜌𝜌∗,𝒀𝒀)𝜋𝜋�(𝝁𝝁𝑛𝑛∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝒀𝒀)𝜋𝜋�(𝜙𝜙𝑛𝑛∗|𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝝁𝝁𝑛𝑛∗ ,𝒀𝒀)   

× 𝜋𝜋�(𝑝𝑝𝑛𝑛,11
∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝝁𝝁𝑛𝑛∗ ,𝜙𝜙𝑛𝑛∗ ,𝒀𝒀)𝜋𝜋�(𝑝𝑝𝑛𝑛,00

∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝝁𝝁𝑛𝑛∗ ,𝜙𝜙𝑛𝑛∗ ,𝑝𝑝𝑛𝑛,11
∗ ,𝒀𝒀)�, 

(E.5) 

where  

𝜋𝜋�(𝜌𝜌∗|𝒀𝒀) =
𝐺𝐺−1 ∑ 𝛼𝛼𝐺𝐺

𝑔𝑔=1 (𝜌𝜌(𝑔𝑔),𝜌𝜌∗|𝒀𝒀,𝑺𝑺(𝑔𝑔),𝜴𝜴(𝑔𝑔),𝝁𝝁(𝑔𝑔),𝜱𝜱(𝑔𝑔),𝒑𝒑11
(𝑔𝑔),𝒑𝒑00

(𝑔𝑔))𝑞𝑞(𝜌𝜌(𝑔𝑔),𝜌𝜌∗)

𝐽𝐽−1 ∑ 𝛼𝛼𝐽𝐽
𝑘𝑘=1 (𝜌𝜌∗,𝜌𝜌(𝑘𝑘)|𝒀𝒀,𝑺𝑺(𝑘𝑘),𝜴𝜴(𝑘𝑘),𝝁𝝁(𝑘𝑘),𝜱𝜱(𝑘𝑘),𝒑𝒑11

(𝑘𝑘),𝒑𝒑,00
(𝑘𝑘))

, (E.6) 

𝜋𝜋�(𝜎𝜎𝑛𝑛2∗|𝜌𝜌∗,𝒀𝒀) =
1
𝐽𝐽
�𝜋𝜋
𝐽𝐽

𝑘𝑘=1

(𝜎𝜎𝑛𝑛2∗|𝜌𝜌∗,𝝁𝝁𝑛𝑛
(𝑘𝑘),𝜙𝜙𝑛𝑛

(𝑘𝑘),𝑝𝑝𝑛𝑛,11
(𝑘𝑘) ,𝑝𝑝𝑛𝑛,00

(𝑘𝑘) , 𝒔𝒔𝑛𝑛
(𝑘𝑘),𝒀𝒀), (E.7) 

𝜋𝜋�(𝝁𝝁𝑛𝑛∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝒀𝒀) =
1
𝐽𝐽
�𝜋𝜋
𝐽𝐽

𝑘𝑘=1

(𝝁𝝁𝑛𝑛∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝜙𝜙𝑛𝑛
(𝑘𝑘),𝑝𝑝𝑛𝑛,11

(𝑘𝑘) ,𝑝𝑝𝑛𝑛,00
(𝑘𝑘) , 𝒔𝒔𝑛𝑛

(𝑘𝑘),𝒀𝒀), (E.8) 

𝜋𝜋�(𝜙𝜙𝑛𝑛∗|𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝝁𝝁𝑛𝑛∗ ,𝒀𝒀) =
1
𝐽𝐽
�𝜋𝜋
𝐽𝐽

𝑘𝑘=1

(𝝁𝝁𝑛𝑛∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝝁𝝁𝑛𝑛∗ ,𝑝𝑝𝑛𝑛,11
(𝑘𝑘) , 𝑝𝑝𝑛𝑛,00

(𝑘𝑘) , 𝒔𝒔𝑛𝑛
(𝑘𝑘),𝒀𝒀), (E.9) 
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𝜋𝜋�(𝑝𝑝𝑛𝑛,11
∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝝁𝝁𝑛𝑛∗ ,𝜙𝜙𝑛𝑛∗ ,𝒀𝒀) =

1
𝐽𝐽
�𝜋𝜋
𝐽𝐽

𝑘𝑘=1

(𝑝𝑝𝑛𝑛,11
∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝝁𝝁𝑛𝑛∗ ,𝜙𝜙𝑛𝑛∗ ,𝑝𝑝𝑛𝑛,00

(𝑘𝑘) , 𝒔𝒔𝑛𝑛
(𝑘𝑘),𝒀𝒀), (E.10) 

𝜋𝜋�(𝑝𝑝𝑛𝑛,00
∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝝁𝝁𝑛𝑛∗ ,𝜙𝜙𝑛𝑛∗ ,𝑝𝑝𝑛𝑛,11

∗ ,𝒀𝒀) =
1
𝐽𝐽
�𝜋𝜋
𝐽𝐽

𝑘𝑘=1

(𝑝𝑝𝑛𝑛,00
∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝝁𝝁𝑛𝑛∗ ,𝜙𝜙𝑛𝑛∗ ,𝑝𝑝𝑛𝑛,11

∗ , 𝒔𝒔𝑛𝑛
(𝑘𝑘),𝒀𝒀). (E.11) 

 

The superscript (𝑔𝑔) refers to the sample from the posterior distribution in the 𝑔𝑔th iteration and (𝑘𝑘) refers to the 

sample from the reduced Gibbs runs obtained in the 𝑘𝑘th iteration. Note that some of the parameters are given as a 

mean in the reduced Gibbs runs, and that 𝜌𝜌(𝑘𝑘)  is drawn from a proposal distribution 𝑞𝑞(𝜌𝜌∗,𝜌𝜌(𝑘𝑘)) . Besides the 𝐺𝐺 

iterations, we need to implement an additional 5 × 𝐽𝐽 iterations for the reduced Gibbs runs. The first reduced run is 

for the denominator of 𝜋𝜋�(𝜌𝜌∗|𝒀𝒀)  and 𝜋𝜋�(𝜎𝜎𝑛𝑛2∗|𝜌𝜌∗,𝒀𝒀) ; the second is for 𝜋𝜋�(𝝁𝝁𝑛𝑛∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝒀𝒀);  the third is for 

𝜋𝜋�(𝜙𝜙𝑛𝑛∗|𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝝁𝝁𝑛𝑛∗ ,𝒀𝒀); the fourth is for 𝜋𝜋�(𝑝𝑝𝑛𝑛,11
∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝝁𝝁𝑛𝑛∗ ,𝜙𝜙𝑛𝑛∗ ,𝒀𝒀); and the fifth is for 𝜋𝜋�(𝑝𝑝𝑛𝑛,00

∗ |𝜌𝜌∗,𝜎𝜎𝑛𝑛2∗,𝝁𝝁𝑛𝑛∗ ,𝜙𝜙𝑛𝑛∗ ,𝑝𝑝𝑛𝑛,11
∗ ,𝒀𝒀). 

We set 𝐽𝐽  to have the same number of iterations as 𝐺𝐺 . Moreover, the numerical standard errors of the marginal 

likelihood estimates are also calculated. For calculation of the numerical standard errors, we need to select a lag at 

which the autocorrelation is small enough to be neglected. Thus, we set the lag length equal to 40. See Chib and 

Jeliazkov (2001) for more details. 

Table E.1 presents the log marginal likelihood estimates with numerical standard errors using the different 

econometric models. First, it is useful to compare estimates of the log marginal likelihood between the Markov 

switching model with a spatial autoregressive process (MS-SAR) and the Markov switching (MS) model because MS 

is a spatial case of MS-SAR when 𝜌𝜌 = 0. Consequently, it is supported to take into account spatial dependence in 

regional business cycles. Our estimation results also indicate that the Markov switching model with a first-order 

autoregressive process MS-AR(1) fits the data almost as well as MS-SAR. The Markov switching model with a spatial 

autoregressive process and a first-order autoregressive process MS-SAR-AR(1) is supported against MS-AR(1) or 

MS-SAR. See Supplementary Information for the full estimation results of MS, MS-AR(1), MS-SAR, and MS-SAR-

AR(1). 

[Table E.1]  

Appendix F. Map of Mexico 

State codes and names appear in Figure F.1.  

[Figure F.1] 



Table 1: Prior Distributions and Initial Values

Parameter Prior Distribution Hyperparameters Initial Values
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Notes: n = 1, 2, . . . ,N. IG indicates an inverse gamma distribution. N1 and N2 indicate univariate and bivariate normal distribu-

tions, respectively. Beta indicates a beta distribution. U indicates a uniform distribution.
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Table 2: State Recessions

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011

Quarterly II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV

1 Aguascalientes

2 Baja California

3 Baja California Sur

4 Campeche

5 Coahuila

6 Colima

7 Chiapas

8 Chihuahua

9 Federal District

10 Durango

11 Guanajuato

12 Guerrero

13 Hidalgo

14 Jalisco

15 México

16 Michoacán

17 Morelos

18 Nayarit

19 Nuevo León

20 Oaxaca

21 Puebla

22 Querétaro

23 Quintana Roo

24 San Luis Potosı́

25 Sinaloa

26 Sonora

27 Tabasco

28 Tamaulipas

29 Tlaxcala

30 Veracruz

31 Yucatán

32 Zacatecas

Notes: The black bars represent state recessions. We define that a state is in recession at date t when its recession probability during the period t − 1 to t exceeds 0.5. Shaded areas correspond to

the dates of recessions recorded by the National Institute of Statistics and Geography (Instituto Nacional de Estadı́stica y Geografı́a, INEGI). Estimation results for the period 2012:Q1–2015:Q4 are

omitted.
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Table 3: Estimated Parameters from the Bayesian Inference

ρ

Mean Median 95% CI

Spatial Dependence 0.23 0.23 [0.18, 0.27]

µ0 µ1 φ

Code State Mean Median 95% CI Mean Median 95% CI Mean Median 95% CI

1 Aguascalientes −0.83 −0.81 [−2.83, 0.84] 1.21 1.22 [0.45, 2.00] −0.13 −0.12 [−0.40, 0.15]

2 Baja California −0.84 −0.72 [−2.61, 0.44] 0.67 0.63 [−0.06, 1.57] 0.08 0.09 [−0.19, 0.34]

3 Baja California Sur −0.29 −0.20 [−2.14, 1.08] 1.23 1.20 [0.22, 2.42] −0.19 −0.20 [−0.46, 0.07]

4 Campeche −1.55 −1.49 [−2.72,−0.70] −0.27 −0.39 [−1.28, 1.37] −0.03 −0.03 [−0.31, 0.26]

5 Coahuila −0.96 −0.80 [−3.08, 0.41] 0.61 0.58 [−0.23, 1.64] 0.29 0.29 [0.04, 0.53]

6 Colima −0.39 −0.28 [−2.16, 0.81] 0.86 0.82 [0.05, 1.86] −0.13 −0.13 [−0.39, 0.14]

7 Chiapas −0.59 −0.47 [−2.12, 0.36] 0.42 0.36 [−0.23, 1.48] −0.03 −0.03 [−0.29, 0.23]

8 Chihuahua −2.28 −2.38 [−4.34, 0.20] 0.98 0.99 [0.44, 1.48] −0.11 −0.11 [−0.34, 0.16]

9 Federal District −0.72 −0.52 [−2.85, 0.57] 0.63 0.62 [0.13, 1.22] −0.04 −0.04 [−0.32, 0.22]

10 Durango −0.57 −0.34 [−2.45, 0.49] 0.63 0.60 [0.13, 1.39] −0.22 −0.22 [−0.51, 0.07]

11 Guanajuato −0.95 −1.01 [−2.37, 0.54] 1.00 1.00 [0.31, 1.72] −0.09 −0.09 [−0.36, 0.21]

12 Guerrero −0.51 −0.41 [−2.15, 0.59] 0.80 0.76 [0.23, 1.61] −0.35 −0.35 [−0.61,−0.09]

13 Hidalgo −0.98 −1.02 [−2.60, 0.56] 0.99 0.99 [0.38, 1.61] −0.07 −0.07 [−0.38, 0.25]

14 Jalisco −1.32 −1.40 [−2.88, 0.32] 0.67 0.68 [0.16, 1.14] −0.01 −0.01 [−0.32, 0.33]

15 México −2.11 −2.16 [−3.27,−0.51] 0.75 0.75 [0.39, 1.10] 0.04 0.04 [−0.16, 0.25]

16 Michoacán −0.70 −0.53 [−2.68, 0.59] 0.66 0.63 [−0.03, 1.51] −0.20 −0.20 [−0.50, 0.10]

17 Morelos −0.57 −0.48 [−2.17, 0.58] 0.64 0.58 [−0.25, 1.87] −0.31 −0.31 [−0.57,−0.05]

18 Nayarit −0.34 −0.23 [−2.09, 0.85] 0.98 0.93 [0.13, 2.18] −0.07 −0.08 [−0.35, 0.20]

19 Nuevo León −1.09 −1.15 [−2.65, 0.58] 1.02 1.02 [0.48, 1.58] −0.05 −0.05 [−0.33, 0.20]

20 Oaxaca −0.37 −0.19 [−2.34, 0.78] 0.82 0.79 [0.28, 1.52] −0.48 −0.48 [−0.75,−0.20]

21 Puebla −0.72 −0.57 [−2.84, 0.68] 0.85 0.82 [0.03, 1.85] −0.02 −0.02 [−0.33, 0.28]

22 Querétaro −0.26 −0.13 [−1.99, 0.82] 1.00 0.96 [0.37, 1.80] 0.16 0.16 [−0.13, 0.43]

23 Quintana Roo −2.06 −2.21 [−4.30, 0.67] 1.74 1.77 [0.71, 2.56] −0.16 −0.17 [−0.40, 0.11]

24 San Luis Potosı́ −1.55 −1.66 [−3.11, 0.46] 1.06 1.07 [0.52, 1.56] −0.24 −0.25 [−0.53, 0.11]

25 Sinaloa −0.35 −0.24 [−2.11, 0.86] 0.91 0.87 [0.08, 1.93] −0.38 −0.37 [−0.62,−0.12]

26 Sonora −1.28 −1.19 [−3.75, 0.66] 1.02 1.02 [0.33, 1.75] −0.07 −0.07 [−0.30, 0.18]

27 Tabasco −0.23 −0.11 [−1.91, 0.89] 1.08 1.04 [0.45, 1.84] −0.10 −0.10 [−0.38, 0.17]

28 Tamaulipas −1.28 −1.27 [−3.20, 0.35] 0.60 0.59 [0.01, 1.25] 0.16 0.16 [−0.11, 0.41]

29 Tlaxcala −0.69 −0.63 [−2.39, 0.66] 0.72 0.69 [−0.43, 2.10] −0.41 −0.41 [−0.64,−0.16]

30 Veracruz −0.35 −0.24 [−2.03, 0.72] 0.93 0.87 [0.22, 2.01] −0.44 −0.44 [−0.69,−0.20]

31 Yucatán −0.15 −0.09 [−1.92, 1.11] 1.32 1.30 [0.76, 1.97] −0.28 −0.28 [−0.60, 0.03]

32 Zacatecas −0.23 −0.15 [−1.96, 0.98] 1.27 1.19 [0.41, 2.66] −0.24 −0.24 [−0.49, 0.02]

Notes: 95% CI indicates 95% credible interval.
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Table 4: OLS Regression Results of Industrial Specialization Index

Dependent Variable:

Number of Recession Recession Expansion

during 2008:Q2–2009:Q2 Growth Rate µ0 Growth Rate µ1

OLS OLS OLS

Explanatory Variables Coef. S.E. R2 Coef. S.E. R2 Coef. S.E. R2

1. Agriculture, forestry, fishing, and hunting −0.739∗∗∗ (0.238) 0.138 0.183 ∗∗ (0.105) 0.038 −0.035 (0.062) −0.024

2. Mining −0.531∗∗∗ (0.181) 0.052 0.159∗∗∗ (0.047) 0.019 0.040 ∗ (0.025) −0.021

3. Utilities 0.163 (0.432) −0.028 0.034 (0.101) −0.034 0.002 (0.045) −0.036

4. Construction −0.700 ∗ (0.503) 0.022 0.357∗∗∗ (0.148) 0.067 0.059 (0.089) −0.023

5. Manufacturing 1.559∗∗∗ (0.435) 0.273 −0.710∗∗∗ (0.195) 0.407 −0.041 (0.101) −0.029

6. Wholesale trade; Retail trade 1.382 (1.259) 0.001 −0.141 (0.425) −0.033 0.328 ∗ (0.236) 0.027

7. Transportation and warehousing −0.323 (1.011) −0.032 0.245 (0.376) −0.020 −0.292∗∗∗ (0.111) 0.061

8. Information and cultural industries −0.013 (0.192) −0.036 −0.037 (0.081) −0.034 −0.027 (0.055) −0.031

9. Finance and insurance 0.062 (0.407) −0.035 −0.033 (0.110) −0.035 −0.121∗∗∗ (0.046) −0.001

10. Real estate and rental and leasing −0.399 (1.226) −0.032 −0.212 (0.582) −0.028 −0.220 (0.192) 0.003

11. Professional, scientific, and technical services 0.276 (0.463) −0.025 −0.142 (0.195) −0.016 0.041 (0.147) −0.028

12. Management of companies and enterprises −0.317 ∗ (0.199) −0.011 0.084 (0.069) −0.024 −0.076∗∗∗ (0.028) 0.007

13. Administrative and support, waste management, and remediation services 0.240 (0.361) −0.027 0.125 (0.118) −0.020 −0.020 (0.077) −0.034

14. Educational services; Health care and social assistance −1.627 ∗∗ (0.949) 0.084 0.661∗∗∗ (0.281) 0.101 −0.150 (0.161) −0.004

15. Arts, entertainment, and recreation; Accommodation and food services −0.124 (0.170) −0.022 0.143∗∗∗ (0.051) 0.091 0.022 (0.019) −0.022

16. Other services −0.438 (1.125) −0.030 0.048 (0.427) −0.035 −0.001 (0.181) −0.036

Notes: Heteroskedasticity-consistent standard errors are in parentheses. The explanatory variable is the state-wise specialization index of each industry averaged during the period 2003–2005. The specializa-

tion index is defined as the ratio of state industry share to national industry share. The dependent variable is regressed separately on each explanatory variable. * denotes statistical significance at the 10 %

level, ** at the 5 % level, and *** at the 1 % level. The number of observations is 30 for all regressions. Campeche and Nuevo Len are excluded from the sample as outliers because one of their industries has

a specialization index that is 10 times higher than the average. R2 indicates the adjusted coefficient of determination.
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Table 5: Ranking of Cumulative Spillover Effects by State

First Second

Code Origin State Code Destination State PP Code Destination State PP

1 Aguascalientes∗ 32 Zacatecas −0.35 11 Guanajuato −0.06

2 Baja California∗ 26 Sonora −0.25 25 Sinaloa −0.03

3 Baja California Sur 2 Baja California −0.16 26 Sonora −0.07

4 Campeche 31 Yucatán −0.28 23 Quintana Roo −0.01

5 Coahuila∗ 19 Nuevo León −0.37 32 Zacatecas −0.00

6 Colima 14 Jalisco −0.23 18 Nayarit −0.03

7 Chiapas 27 Tabasco −0.20 4 Campeche −0.01

8 Chihuahua∗ 10 Durango −0.15 5 Coahuila −0.15

9 Distrito Federal∗ 15 México −0.17 17 Morelos −0.06

10 Durango∗ 32 Zacatecas −0.14 1 Aguascalientes −0.06

11 Guanajuato∗ 22 Querétaro −0.18 16 Michoacán −0.09

12 Guerrero∗ 17 Morelos −0.19 9 Distrito Federal −0.07

13 Hidalgo∗ 9 Distrito Federal −0.27 29 Tlaxcala −0.10

14 Jalisco∗ 6 Colima −0.15 18 Nayarit −0.13

15 México∗ 9 Distrito Federal −0.59 17 Morelos −0.05

16 Michoacán 11 Guanajuato −0.11 22 Querétaro −0.10

17 Morelos 9 Distrito Federal −0.19 15 México −0.05

18 Nayarit 14 Jalisco −0.23 6 Colima −0.03

19 Nuevo León∗ 5 Coahuila −0.50 28 Tamaulipas −0.00

20 Oaxaca 21 Puebla −0.10 29 Tlaxcala −0.08

21 Puebla 29 Tlaxcala −0.36 9 Distrito Federal −0.00

22 Querétaro∗ 11 Guanajuato −0.11 15 México −0.05

23 Quintana Roo∗ 4 Campeche −0.49 31 Yucatán −0.45

24 San Luis Potosı́∗ 11 Guanajuato −0.18 32 Zacatecas −0.16

25 Sinaloa 18 Nayarit −0.09 10 Durango −0.07

26 Sonora∗ 2 Baja California −0.18 25 Sinaloa −0.17

27 Tabasco 7 Chiapas −0.21 4 Campeche −0.05

28 Tamaulipas∗ 19 Nuevo León −0.15 24 San Luis Potosı́ −0.11

29 Tlaxcala 21 Puebla −0.33 9 Distrito Federal −0.00

30 Veracruz∗ 21 Puebla −0.17 29 Tlaxcala −0.12

31 Yucatán∗ 4 Campeche −0.33 23 Quintana Roo −0.01

32 Zacatecas 1 Aguascalientes −0.29 24 San Luis Potosı́ −0.04

Average∗ −0.26 Average∗ −0.09

Notes: Based on equation (21). ∗ denotes the states that experienced a transition from expansion to recession during the Great

Recession of 2008–2009. PP denotes percentage point. Average spillover effects are calculated across the 19 states that experienced

a transition from expansion to recession.
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Table D.1: Maximum Likelihood Estimation Results of Spatial Panel Econometric Models

Dependent Variable: Growth Rate of Indicator of Economic Activity

Entire Period Subperiod

2003:Q1–

2015:Q4

2003:Q1–

2015:Q4

2003:Q1–

2015:Q4

2003:Q1–

2008:Q1

2008:Q2–

2009:Q2

2009:Q3–

2015:Q4

Explanatory Variable (1) (2) (3) (4) (5) (6)

Spatial Lag of Dependent Variable (ρ) 0.196∗∗∗ 0.169∗∗∗ 0.025 −0.017 0.184∗ −0.007

(0.024) (0.025) (0.027) (0.045) (0.093) (0.039)

State Fixed Effect Yes Yes Yes Yes Yes Yes

Year and Quarter Fixed Effects No Yes No No No No

Year × Quarter Fixed Effects No No Yes Yes Yes Yes

Number of Observations 1632 1632 1632 608 160 832

Number of States 32 32 32 32 32 32

Notes: Standard errors are in parentheses. * denotes statistical significance at the 10% level, ** at the 5% level, and *** at the 1%

level. The spatial weight matrix is based on the route distance across states with distance decay parameter η = 4.
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Table E.1: Log Marginal Likelihood Estimate

Spatial Dependence ρ Log Marginal Likelihood

Model Fitted Mean 95%CI Estimate NSE

MS −3646.468 (0.868)

MS-AR(1) −3557.985 (0.258)

MS-SAR

SWM: Distance (η = 2) 0.359 [0.301, 0.417] −3553.054 (2.321)

SWM: Distance (η = 3) 0.260 [0.211, 0.308] −3569.472 (0.727)

SWM: Distance (η = 4) 0.220 [0.174, 0.263] −3576.336 (0.590)

SWM: Distance (η = 5) 0.199 [0.158, 0.241] −3580.036 (1.082)

SWM: Distance (η = 6) 0.185 [0.144, 0.225] −3582.196 (2.658)

SWM: Distance (η = 7) 0.178 [0.139, 0.218] −3583.984 (0.653)

SWM: Distance (η = 8) 0.172 [0.133, 0.210] −3585.177 (0.188)

MS-SAR-AR1

SWM: Distance (η = 2) 0.372 [0.313, 0.432] −3433.998 (1.812)

SWM: Distance (η = 3) 0.267 [0.217, 0.317] −3452.734 (0.670)

SWM: Distance (η = 4) 0.224 [0.179, 0.269] −3459.408 (0.333)

SWM: Distance (η = 5) 0.200 [0.160, 0.242] −3462.818 (1.177)

SWM: Distance (η = 6) 0.188 [0.147, 0.229] −3466.452 (0.835)

SWM: Distance (η = 7) 0.179 [0.140, 0.219] −3468.297 (0.496)

SWM: Distance (η = 8) 0.173 [0.134, 0.212] −3469.719 (0.444)

Notes: G = J = 10, 000. SWM indicates a spatial weight matrix. η is a distance decay parameter. 95% CI indicates 95%

credible interval. NSE indicates the numerical standard errors of the marginal likelihood estimates. Models shown in the table

are as follows: MS: yt = µ0 ⊙ (ιN − st) + µ1 ⊙ st + εt, MS-AR(1): yt = Φyt−1 + µ0 ⊙ (ιN − st) + µ1 ⊙ st + εt, MS-SAR:

yt = ρWyt + µ0 ⊙ (ιN − st) + µ1 ⊙ st + εt, MS-SAR-AR(1): yt = ρWyt +Φyt−1 + µ0 ⊙ (ιN − st) + µ1 ⊙ st + εt
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Figure 1: Probabilities of Recession for Selected States

Notes: Recession probabilities estimated from MS-SAR-AR(1) are shown. Shaded areas correspond to the

dates of recessions by INEGI.
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Figure 2: Regional Distribution of State Recession

Notes: Colored states are in recession.
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Figure 3: Numerical Simulation of Spillover Effects for Selected States

Notes: Author’s calculation based on equation (21).
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(a) Moran’s I in Each Period
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(b) Moving Average of Moran’s I

Figure D.1: Time-series of Moran’s I

Notes: The variable used for Moran’s I is the quarterly growth rate of the Quarterly Indicator of State

Economic Activity (Indicador Trimestral de la Actividad Económica Estatal, ITAEE). The red marker

indicates statistical significance at the 10% level. The spatial weight matrix is based on the route distance

across states with the distance decay parameter η = 4. Centered moving average of order 3 is calculated in

panel (b).
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Figure D.2: Moran Scatter Plot

Notes: The variable is the quarterly growth rate of ITAEE. The spatial weight matrix is based on the route

distance across states with the distance decay parameter η = 4. The quarterly data are pooled on a yearly

basis.
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Figure F.1: Map of Mexico

38


	DP2015-27_revised.pdf
	SD_RBC_Mexico_Word_Ver2
	1. Introduction
	2. Markov Switching Model with Spatial Lag
	3. Bayesian Inference
	3.1. Prior Distributions and Likelihood Function
	3.2. Posterior Distributions
	3.3. Drawing Parameters from Posterior Distributions

	4. Data
	4.1. Quarterly Indicator of State Economic Activity
	4.2. Spatial Weight Matrix

	5. Estimation Results
	5.1. Determination of Recession Phase
	5.2. Spatial Dependence in Business Cycles

	6. Numerical Simulations of Spatial Spillover Effects
	7. Concluding Remarks
	References
	Appendix A. Drawing 𝝆 by the Metropolis-Hastings Algorithm
	Appendix B. Multi-Move Gibbs Sampling for ,𝒔-𝒏.
	Appendix C. Hamilton Filter with Spatial Lag
	Appendix D. Robustness Check by Spatial Econometrics
	D.1. Spatial Autocorrelation
	D.2. Spatial Panel Econometrics

	Appendix E. Model Selection
	Appendix F. Map of Mexico

	SD_RBC_Mexico_Figure_Table


