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Abstract

A policy change that involves redistribution of income or wealth
is typically controversial, affecting some people positively but others
negatively. In this paper we extend the “robust comparative statics”
result on large aggregative games established by Acemoglu and Jensen
(2010, 49th IEEE Conference on Decision and Control, 3133–3139) to
possibly controversial policy changes. In particular, we show that
both the smallest and the largest equilibrium values of an aggregate
variable increase in response to a policy change to which individuals’
reactions may be mixed but the overall aggregate response is positive.
We provide sufficient conditions for such a policy change in terms of
distributional changes in parameters.
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Sorbonne, France. Email: maria.camacho-perez@univ-paris1.fr
‡Research Institute for Economics and Business Administration (RIEB), Kobe Univer-

sity, Japan. Email: tkamihig@rieb.kobe-u.ac.jp
§Department of Economics, Bilkent University, Turkey. Email: csaglam@bilkent.edu.tr



1 Introduction

Recently, Acemoglu and Jensen (2010, 2014) developed new comparative
statics techniques for large aggregative games, where there are a continuum
of individuals interacting with each other only through an aggregate variable
(which integrates all individuals’ actions). The surprising insight of their
analysis is that in such games, one can obtain a “robust comparative statics”
result without considering the interaction between the aggregate variable
and individuals’ actions. In particular, Acemoglu and Jensen (2010) defined
a positive shock as a policy change that positively affects each individual’s
action for each value of the aggregate variable. Then they showed that both
the smallest and the largest equilibrium values of the aggregate variable
increase in response to a positive shock.1

Although positive shocks are common in economic models, many im-
portant policy changes in reality tend to be non-positive or controversial,
affecting some people positively but others negatively. For example, a policy
change that involves redistribution of income typically affects some people’s
income positively but others’ negatively. There are many such practical pol-
icy changes that cannot be expressed as positive shocks.

The purpose of this paper is to show that Acemoglu and Jensen’s (2010,
2014) analysis can in fact be extended to such policy changes to a large
extent. This is a significant extension since many important policy changes
in reality tend to be controversial, as mentioned above. To accommodate
possibly controversial policy changes, we define an “overall positive shock”
as a policy change to which individuals’ reactions may be mixed but the
overall aggregate response is positive for each value of the aggregate variable.
Clearly, a positive shock is an overall positive shock, but not vice versa.
Following Acemoglu and Jensen’s (2010) argument, we show that both the
smallest and the largest equilibrium values of the aggregate variable increase
in response to an overall positive shock. Then we provide sufficient conditions
for an overall positive shock in terms of distributional changes in parameters.
When used with these sufficient conditions, our robust comparative statics
result becomes particularly powerful.

The concept of overall positive shocks is closely related not only to that of
positive shocks but also to Acemoglu and Jensen’s (2013) concept of “shocks

1While Acemoglu and Jensen (2014) considered the stationary states of dynamic
stochastic models, we focus on static models in this paper; see Martimort and Stole (2012)
for recent developments on static large aggregative games.
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that hit the aggregator,” which were defined as policy changes that directly
affect the “aggregator” positively along with additional restrictions. Such
policy changes are not considered in this paper, but they can easily be incor-
porated by slightly extending our framework.

This paper is not the first to study the comparative statics of distribu-
tional changes. In a general dynamic stochastic model with a continuum of
individuals, Acemoglu and Jensen (2014) considered the comparative statics
of changes in the stationary distributions of individuals’ idiosyncratic shocks,
but their analysis was restricted to positive shocks in the above sense. Jensen
(2013) and Nocetti (2015) studied the comparative statics of more general
distributional changes, but neither of them considered the comparative stat-
ics of the smallest and the largest equilibrium values of an aggregate variable.
The novelty of this paper is to show some useful robust comparative statics
results on distributional changes in parameters for large aggregative games.

The rest of the paper is organized as follows. In Section 2 we present our
general framework along with basic assumptions, and prove the existence
of a pure-strategy Nash equilibrium. In Section 3 we formally define over-
all positive shocks. We also introduce a more general definition of “overall
monotone shocks.” We then present our robust comparative statics result. In
Section 4 we provide sufficient conditions for an overall monotone shock in
terms of distributional changes in parameters based on first-order stochastic
dominance and mean-preserving spreads. In Section 5 we provide two ap-
plications. The first is a contest game; the second is a partial-equilibrium
model of aggregate labor supply. In Section 6 we conclude the paper.

2 Large Aggregative Games

We consider a large aggregative game as defined by Acemoglu and Jensen
(2010, Sections II, III). There are a continuum of players indexed by i ∈ I ≡
[0, 1], and player i’s action space is denoted by Xi ⊂ R. The assumption
made in this section are maintained throughout the paper.

Assumption 2.1. For each i ∈ I, Xi is nonempty and compact. Further-
more, there exists a compact set K ⊂ R such that Xi ⊂ K for all i ∈ I.

Let X =
∏

i∈I Xi. Let H be a function from K to a subset Ω of R. We
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define G : X → Ω, called the aggregator, by

G(x) = H

(∫
i∈I

xidi

)
. (2.1)

Assumption 2.2. The set Ω is compact and convex, and H : K → Ω is
continuous.

Each player i’s payoff depends on his own action xi ∈ Xi, the entire
action profile x ∈ X through the aggregate G(x), and a parameter ti specific
to player i. In other words, player i’s payoff takes the form

πi(xi, G(x), ti). (2.2)

Let Ti be the underlying space for ti for each i ∈ I; i.e., ti ∈ Ti. Let
T ⊂

∏
i∈I Ti. We regard T as a set of well-behaved parameter profiles; for

example, T can be a set of measurable functions from I to R. We only
consider parameter profiles t in T .

Assumption 2.3. For each i ∈ I, player i’s payoff function πi maps each
(k,Q, τ) ∈ K × Ω × Ti into R.2 Furthermore, for each t ∈ T , πi(·, ·, ti) is
continuous on K×Ω, and for each (k,Q) ∈ K×Ω, πi(k,Q, ti) is measurable
in i ∈ I.3

Instead of assuming that πi(k,Q, τ) is continuous in k, Acemoglu and
Jensen (2010) assume that it is upper semicontinuous in k under the addi-
tional assumption that there are only a finite number of player types. On
the other hand, Acemoglu and Jensen (2014) essentially assume a continuum
of player types by using the Pettis integral in (2.1). We assume a continuum
of player types while using the Lebesgue integral in (2.1).

The game here is aggregative in the sense that each player’s payoff is
affected by other players’ actions only through the aggregate G(x). Accord-
ingly, each player i’s best response correspondence depends on other players’
actions only through Q = G(x):

Ri(Q, ti) = arg max
xi∈Xi

πi(xi, Q, ti). (2.3)

2If πi is defined only on Xi × Ω × Ti, then this means that πi can be extended to
K × Ω× Ti in such a way as to satisfy Assumption 2.3.

3Unless otherwise specified, measurability means Lebesgue measurability.
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Let X be the set of action profiles x ∈ X such that the mapping i ∈ I 7→
xi is measurable. We need to restrict attention to measurable action profiles
so that the equilibrium aggregate G(x) can be computed through (2.1). The
following technical assumption ensures that given any Q ∈ Ω, we can find a
measurable action profile x ∈X such that xi ∈ Ri(Q, ti) for all i ∈ I.

Assumption 2.4. For each open subset U of K, the set {i ∈ I : Xi∩U 6= ∅}
is measurable.

Throughout the paper, we restrict attention to pure-strategy Nash equi-
libria, which we simply call equilibria. To be more precise, given t ∈ T , an
equilibrium of this game is an action profile x ∈X such that xi ∈ Ri(G(x), ti)
for all i ∈ I. Given t ∈ T , we define an equilibrium aggregate as Q(t) ∈ Ω
such that Q(t) = G(x) for some equilibrium x. We define Q(t) and Q(t) as
the smallest and the largest equilibrium aggregates, respectively, provided
that they exist.

The following result shows that an equilibrium as well as the smallest and
the largest equilibrium aggregates exit.

Theorem 2.1. For any t ∈ T , an equilibrium exists. Furthermore, the set
of equilibrium aggregates is nonempty and compact. Thus the smallest and
the largest equilibrium aggregates Q(t) and Q(t) exist.

Proof. See Appendix A.

Following Acemoglu and Jensen (2010, Theorem 1), we prove the above
result using Kakutani’s fixed point theorem and Aumann’s (1965, 1976) re-
sults on the integral of a correspondence. Our result differs from Acemoglu
and Jensen’s in that we assume a continuum of player types rather than a
finite number of player types, as mentioned above.

3 Overall Monotone Shocks

By a parameter change, we mean a change in t ∈ T from one value to another.
Given t, t ∈ T , the parameter change from t to t means the change in t from
t to t. The following definitions take t, t ∈ T as given.

Definition 3.1 (Acemoglu and Jensen, 2010). The parameter change from
t to t is a positive shock if for each Q ∈ Ω the following properties hold:
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(i) For each xi ∈ Ri(Q, ti) there exists xi ∈ Ri(Q, ti) such that xi ≤ xi.

(ii) For each yi ∈ Ri(Q, ti) there exists y
i
∈ Ri(Q, ti) such that y

i
≤ yi.

For comparison purposes, it is useful to define “negative shocks” and more
general “monotone shocks.”

Definition 3.2. The parameter change from t to t is a negative shock if the
parameter change from t to t is a positive shock. A parameter change is a
monotone shock if it is either a positive shock or a negative shock.

Acemoglu and Jensen (2010, Theorem 2) show that if the parameter
change from t to t is a positive shock, then the following inequalities hold:

Q(t) ≤ Q(t), Q(t) ≤ Q(t). (3.1)

In this section we show that these inequalities hold for a substantially larger
class of parameter changes. To this end, for Q ∈ Ω and t ∈ T , we define

G(Q, t) = {G(x) : x ∈X ,∀i ∈ I, xi ∈ Ri(Q, ti)} . (3.2)

The following definitions play a central role in our comparative statics results.

Definition 3.3. The parameter change from t to t is an overall positive shock
if for each Q ∈ Ω the following properties hold:

(i) For each q ∈ G(Q, t) there exists q ∈ G(Q, t) such that q ≤ q.

(ii) For each r ∈ G(Q, t) there exists r ∈ G(Q, t) such that r ≤ r.

Definition 3.4. The parameter change from t to t is an overall negative shock
if the parameter change from t to t is an overall positive shock. A parameter
change is an overall monotone shock if it is either an overall positive shock
or an overall negative shock.

We are ready to state our result on robust comparative statics:

Theorem 3.1. Let t, t ∈ T . Suppose that the parameter change from t to t
is an overall positive shock. Then both inequalities in (3.1) hold. The reserve
inequalities hold if the parameter change is an overall negative shock.

Proof. See Appendix B.
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Since a positive shock is an overall positive shock, Acemoglu and Jensen’s
(2010, Theorem 2) result mentioned above immediately follows under our
assumptions. On the other hand, the proof of Theorem 3.1 closely follows
that of their result, and Definitions 3.3 and 3.4 may not be easy to verify
directly. As we see in Section 5, however, Theorem 3.1 becomes particularly
powerful when used with sufficient conditions for an overall monotone shock
such as those in the next section.

4 Sufficient Conditions

In this section we assume that players differ only in their parameters ti.
This by itself entails no loss of generality since ti can include i as one of its
components. More specifically, we assume the following for the rest of the
paper.

Assumption 4.1. There exists a convex set T ⊂ Rn with n ∈ N such that
Ti ⊂ T for all i ∈ I. There exists a correspondence X : T → 2T such
that Xi = X (ti) for all i ∈ I and ti ∈ Ti. Moreover, there exists a function
π : K × Ω× T → R such that

∀i ∈ I,∀(k,Q, τ) ∈ K × Ω× T , πi(k,Q, τ) = π(k,Q, τ). (4.1)

This assumption implies that player i’s best response correspondence
Ri(Q, τ) does not directly depend on i; we denote this correspondence by
R(Q, τ). For (Q, τ) ∈ Ω× T , we define

R(Q, τ) = minR(Q, τ), R(Q, τ) = maxR(Q, τ). (4.2)

Both R(Q, τ) and R(Q, τ) are well-defined since R(Q, τ) is a compact set for
each (Q, τ) ∈ (Ω, T ) (see Lemma A.1). To consider distributional changes in
t ∈ T , we assume the following for the rest of the paper.

Assumption 4.2. T is a set of measurable functions from I to T , and
H : K → Ω is a nondecreasing function.

For any t ∈ T , let Ft : Rn → I denote the distribution function of t:

Ft(z) =

∫
i∈I

1{ti ≤ z}di, (4.3)

where 1{·} is the indicator function; i.e., 1{ti ≤ z} = 1 if ti ≤ z, and = 0
otherwise. Note that Ft(z) is the proportion of players i ∈ I with ti ≤ z.
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4.1 First-Order Stochastic Dominance

Given a pair of distributions F and F , F is said to (first-order) stochasti-
cally dominate F if

∫
φdF ≤

∫
φdF for any nondecreasing bounded Borel-

measurable function φ : Rn → R, where Rn is equipped with the usual partial
order ≤.4 It is well known (e.g., Müller and Stoyan, 2002, Section 1) that in
case n = 1, F stochastically dominates F if and only if

∀z ∈ R, F (z) ≥ F (z). (4.4)

The following result provides a sufficient condition for an overall mono-
tone shock based on stochastic dominance.

Theorem 4.1. Let t, t ∈ T . Suppose that Ft stochastically dominates Ft.
Suppose that both R(Q, τ) and R(Q, τ) are nondecreasing (resp. nonincreas-
ing) Borel-measurable functions of τ ∈ T for each Q ∈ Ω. Then the param-
eter change from t to t is an overall positive (resp. negative) shock.

Proof. We only consider the case in which both R(Q, τ) and R(Q, τ) are
nondecreasing in τ ∈ T since the other case is symmetric. Let q ∈ G(Q, t).
Then there exists x ∈ X such that xi ∈ R(Q, ti) for all i ∈ I and q =

H(
∫
i∈I xidi). Since xi ≤ R(Q, ti) for all i ∈ I by (4.2), and since H is a

nondecreasing function by Assumption 4.2, we have

q ≤ H

(∫
i∈I

R(Q, ti)di

)
= H

(∫
R(Q, z)dFt(z)

)
(4.5)

≤ H

(∫
R(Q, z)dFt(z)

)
= H

(∫
i∈I

R(Q, ti)

)
∈ G(Q, t), (4.6)

where the inequality in (4.6) holds since Ft stochastically dominates Ft and
R(Q, ·) is a nondecreasing function. It follows that condition (i) of Defini-
tion 3.3 holds. By a similar argument, condition (ii) also holds. Hence the
parameter change from t to t is an overall positive shock.

If the parameter change from t to t is a positive shock, then it is easy to
see from (4.3) that Ft stochastically dominates Ft. However, there are many
other ways in which Ft stochastically dominates Ft. Figure 1 shows a simple
example. In this example, the parameter change from t to t is clearly not

4To be precise, given a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, we write a ≤ b if aj ≤ bj
for all j = 1, . . . , n.
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Figure 1: The parameter change from t to t is not a monotone shock (left
panel), but Ft stochastically dominates Ft (right panel).

a monotone shock, but Ft stochastically dominates Ft by (4.4). Thus the
parameter change here is an overall positive shock by Theorem 4.1 if both
R(Q, τ) and R(Q, τ) are nondecreasing in τ .

There are well known sufficient conditions for both R(Q, τ) and R(Q, τ)
to be nondecreasing or nonincreasing; see Milgrom and Shannon (1994, The-
orem 4), Topkis (1998, Theorem 2.8.3), Amir (2005, Theorems 1, 2), and Roy
and Sabarwal (2010, Theorem 2). Any of those conditions can be combined
with Theorem 4.1 to replace the assumption that both R(Q, τ) and R(Q, τ)
are nondecreasing or nonincreasing. Here we state a simple result based on
Amir (2005, Theorems 1, 2).

Corollary 4.1. Suppose that T ⊂ R. Let t, t ∈ T . Suppose that Ft stochasti-
cally dominates Ft. If π(k,Q, τ) has increasing (resp. decreasing) differences
in (k, τ) ∈ K × T for each Q ∈ Ω, then the parameter change from t to t is
an overall positive (resp. negative) shock.

4.2 Mean-Preserving Spreads

Following Acemoglu and Jensen (2014), we say that Ft is a mean-preserving
spread of Ft if

∫
φdFt ≤

∫
φdFt for any convex Borel-measurable function

φ : T → R. Rothschild and Stiglitz (1970, p. 231) and Machina and Pratt
(1997, Theorem 3) show that in case n = 1, Ft is a mean-preserving spread
of Ft if ∫

Ft(z)dz =

∫
Ft(z)dz, (4.7)
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and if there exists z̃ ∈ R such that

Ft(z)− Ft(z)

{
≤ 0 if z ≤ z̃,

≥ 0 if z > z̃.
(4.8)

The following result provides a sufficient condition for an overall mono-
tone shock based on mean-preserving spreads.

Theorem 4.2. Let t, t ∈ T . Suppose that Ft is a mean-preserving spread of
Ft. Suppose that both R(Q, τ) and R(Q, τ) are convex (resp. concave) Borel-
measurable functions of τ ∈ T for each Q ∈ Ω. Then the parameter change
from t to t is an overall positive (resp. negative) shock.

Proof. The proof is essentially the same as that of Theorem 4.1 except that
the inequality in (4.6) holds since Ft is a mean-preserving spread of Ft and
R(Q, τ) is convex in τ .

Since a mean-preserving spread of the distribution of parameters forces
a tradeoff across players, it can never be a monotone shock. Our approach
differs from that of Acemoglu and Jensen (2014) in that while they con-
sider positive shocks induced by applying a mean-preserving spread to the
stationary distribution of each player’s idiosyncratic shock, we consider non-
monotone shocks induced by applying a mean-preserving spread to the entire
distribution of parameters.

Figure 2 shows a simple example of a mean-preserving spread. In this
example, the parameter change from t to t is clearly not a monotone shock,
but it is a mean-preserving spread by (4.7) and (4.8). Thus the parameter
change here is an overall positive shock by Theorem 4.2 if both R(Q, τ) and
R(Q, τ) are convex in τ ∈ T . Various conditions related to such convexity
(or concavity) properties can be found in Jensen (2013).

5 Applications

5.1 Contest Games

We consider a simplified variation on the contest games studied by Acemoglu
and Jensen (2010, 2013). There exist a continuum of players i ∈ I. Each
player i exerts costly effort xi ∈ K ≡ [0, k] with k > 0 in order to increase his
chance of winning a prize V > 0. We assume that the probability that player
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Figure 2: The parameter change from t to t is not a monotone shock (left
panel), but Ft is a mean-preserving spread of Ft (right panel).

i wins the prize is given by f(xi)/H(
∫ 1

0
xidi), where f,H : [0, k]→ R++ are

nondecreasing continuous functions. Let

Q = H

(∫
i∈I

xidi

)
. (5.1)

Let T = [0, 1]. We assume that for any t ∈ T , the expected payoff of player
i is given by

π(xi, Q, ti) =
f(xi)

Q
V − c(xi)ti, (5.2)

where c : [0, k]→ R+ is a nondecreasing cost function, and ti is a parameter
specific to player i. It is easy to see that π(k,Q, τ) has decreasing differences
in (k, τ). Thus by Corollary 4.1, for any t, t ∈ T such that Ft stochastically
dominates Ft, the parameter change from t to t is an overall negative shock.

Figure 1 provides a simple example. Once again, since the parameter
change in this example is not a monotone shock, Acemoglu and Jensen’s
(2010) analysis does not apply. By contrast, one can easily conclude from
Theorem 3.1 in conjunction with Corollary 4.1 that the smallest and the
largest equilibrium aggregates decrease in response to the parameter change
in Figure 1.
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5.2 Aggregate Labor Supply

Consider an economy with a continuum of agents indexed by i ∈ I. Agent i
solves the following maximization problem:

max
ci,xi≥0

u(ci)− xi (5.3)

s.t. ci = wxi + ei + si, (5.4)

where u : R+ → R ∪ {−∞} is strictly increasing, strictly concave, and
continuously differentiable, w is the wage rate, si is a lump-sum subsidy
to agent i. and ci, xi, and ei are agent i’s consumption, labor supply, and
endowment, respectively. If si < 0, then agent i pays a lump-sum tax of −si.
The government’s budget constraint is∫

i∈I
sidi = 0. (5.5)

For simplicity, we do not explicitly impose an upper bound on xi; i.e., we
assume that the upper bound on xi is never binding for relevant values of w
(to be specified below). This simply means that no agent works 24 hours a
day, 7 days a week.

Let ti = ei + si for i ∈ I. Suppose that there exists τ > 0 such that ti ∈
T ≡ [0, τ ] for all i ∈ I. The first-order condition for the above maximization
problem is written as

u′(wxi + ti)w

{
≤ 1 if xi = 0,

= 1 if xi > 0.
(5.6)

Let x(w, ti) denote the solution for xi as a function of w and ti. Then
aggregate labor supply is given by

∫
i∈I x(w, ti)di.

We assume that aggregate demand for labor is given by a demand function
D(w) such that D(0) <∞, D(w) = 0 for some w > 0, and D : [0, w]→ R+

is continuous and strictly decreasing. The market-clearing condition is

D(w) =

∫
i∈I

x(w, ti)di. (5.7)

To see that this model is a large aggregative game, let Q =
∫
i∈I xidi.

Then (5.7) implies that
w = D−1(Q). (5.8)
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Figure 3: Individual labor supply as a function of ti (w > 0).

Thus the model here is a special case of the game in Section 4 with

π(k,Q, τ) = u(D−1(Q)k + τ)− k, K = Ω = [0, k], (5.9)

where k = max(w,τ)∈[0,w]×T x(w, τ).
Since ti = ei + si for all i ∈ I, it follows from (5.5) that∫

i∈I
tidi =

∫
i∈I

eidi. (5.10)

Thus as long as the right-hand side is constant, a parameter change can never
be a monotone shock. Hence Acemoglu and Jensen’s (2010) analysis never
applies here. On the other hand, note from (5.6) that for any i ∈ I we have

x(w, ti) =

{
max {[u′−1(1/w)− ti]/w, 0} if w > 0,

0 if w = 0.
(5.11)

This function is piecewise linear and convex in ti; see Figure 3. Since
R(Q, τ) = R(Q, τ) = x(D−1(Q), τ), it follows that both R(Q, τ) and R(Q, τ)
are convex in τ ∈ T .

Let t, t ∈ T be such that Ft is a mean-preserving spread of Ft. Figure
2 provides a simple example, in which the parameter change from t to t is
clearly not a monotone shock. However, it is an overall positive shock by
Theorem 4.2. Thus by Theorem 3.1, the smallest and the largest equilibrium
aggregate labor quantities increase in response to this parameter change.
This together with (5.8) implies that the highest and the lowest equilibrium
wage rates decrease in response to the same parameter change.
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6 Concluding Comments

Acemoglu and Jensen (2010) established that the smallest and the largest
equilibrium aggregates of a large aggregative game are nondecreasing in a
positive shock, which is a parameter change that affects each player’s action
positively for each value of the aggregate variable. In this paper we extended
their result by showing that the smallest and the largest equilibrium aggre-
gates are nondecreasing in an overall positive shock, which is a parameter
change to which individuals’ reactions may be mixed but the overall aggre-
gate response is positive for each value of the aggregate variable. We provided
sufficient conditions for an overall positive shock in terms of distributional
changes in parameters based on stochastic dominance and mean-preserving
spreads. These conditions clarified that positive shocks are not necessary for
robust comparative statics.

Although we considered only one-dimensional distributions in our appli-
cations, Theorems 4.1 and 4.2 in fact assume multidimensional distributions.
Examples with multidimensional distributions are easy to construct at least
at the informal level if each player’s parameter consists of n components,
and if the distributions of these components over all players are indepen-
dent. In this case, one can apply stochastic dominance and mean-preserving
spreads componentwise. Furthermore, Theorems 4.1 and 4.2 can be modified
to better fit this particular setting.

On the other hand, as soon as one treats parameters as random variables,
one may face technical difficulties concerning a continuum of random vari-
ables and the law of large numbers. In this paper we avoided such difficulties
entirely, but they may be overcome by following Acemoglu and Jensen (2014)
in using an alternative definition of the integral of random variables.

Appendix A Proof of Theorem 2.1

Since t is fixed here, we suppress the dependence of πi, Ri, and G on t and ti
throughout the proof. For i ∈ I, define µ(i, Q) = Ri(Q)(= Ri(Q, t)).

Lemma A.1. For any Q ∈ Ω, the correspondence µ(·, Q) from i ∈ I to
Ri(Q) ⊂ K has nonempty compact values, and admits a measurable selection.

Proof. Fix Q ∈ Ω. We show this lemma by applying the measurable maxi-
mum theorem (Aliprantis and Border 2006, p. 605) to player i’s maximization
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problem with i ∈ I taken as a parameter:

max
xi∈Xi

πi(xi, Q). (A.1)

Let φ denote the correspondence i ∈ I 7→ Xi ⊂ K. By Assumption 2.1,
φ has nonempty compact values. Note that the set {i ∈ I : Xi ∩ U 6= ∅} in
Assumption 2.4 is the lower inverse of U under φ; see Aliprantis and Border
(2006, p. 557). Thus Assumption 2.4 means that φ is weakly measurable;
see Aliprantis and Border (2006, p. 592). Assumption 2.3 means that the
mapping (i, k) ∈ I ×K 7→ πi(k,Q) ∈ R is a Carathéodory function.

It follows that the measurable maximum theorem applies to (A.1); thus
the correspondence i 7→ µ(i, Q) has nonempty compact values, and admits a
measurable selection.

Lemma A.2. For each Q ∈ Ω, the set G(Q) is nonempty and convex, where
G is defined in (3.2).

Proof. Fix Q ∈ Ω. Since µ(·, Q) admits a measurable selection by Lemma
A.1, G(Q) is nonempty. To see that G(Q) is convex, note from Aumann
(1965, Theorem 1) that the set{∫

i∈I
xidi : x ∈X ,∀i ∈ I, xi ∈ µ(i, Q)

}
(A.2)

is convex. The image of this convex set under H is convex since H is contin-
uous and real-valued.5 Recalling (3.2) we see that G(Q) is convex.

Lemma A.3. The correspondence G(·) has compact values and a closed (in
fact, compact) graph.

Proof. Fix i ∈ I. Note that Xi does not depend on Q; thus the correspon-
dence Q 7→ Xi is continuous in a trivial way. By Assumption 2.3, πi(k,Q)
is continuous in (k,Q) ∈ Xi × Ω. Hence by the Berge maximum theorem
(Aliprantis and Border, 2006, p. 570) and the closed graph theorem (Alipran-
tis and Border, 2006, p. 561), the correspondence µ(i, ·) has a closed graph.
In other words,

F (i) ≡ {(k,Q) ∈ Xi × Ω : k ∈ µ(i, Q)} is closed. (A.3)

5The image may not be convex if the range of H is not one-dimensional.
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Let G be the graph of the correspondence G(·):
G = {(Q,S) ∈ Ω× Ω : S ∈ G(Q)}. (A.4)

To verify that G is closed, it suffices to show that G contains the limit of
any sequence {(Qj, Sj)}j∈N in G that converges in Ω2. For this purpose, let
{(Qj, Sj)}j∈N be a sequence in G that converges to some (Q∗, S∗) ∈ Ω2. Then
for each j ∈ N we have Sj ∈ G(Qj); thus there exists a measurable selection
xj ∈X of µ(·, Qj) such that

Sj = H

(∫
i∈I

xjidi

)
. (A.5)

Taking a subsequence of {Sj}, we can assume that ξj ≡
∫
i∈I x

j
idi converges

to some ξ∗ ∈ K as j ↑ ∞. Since H is continuous by Assumption 2.2, it
follows that

S∗ = H(ξ∗). (A.6)

Since xj is a selection of µ(·, Qj) for all j ∈ N, recalling the definition of
F (i) we have

∀i ∈ I,∀j ∈ N, (xji , Q
j) ∈ F (i). (A.7)

Since F (i) is closed, any convergent subsequence of {(xji , Qj)}j∈N converges
in F (i). Since Qj → Q∗ as j ↑ ∞, it follows that any limit point yi of {xji}j∈N
satisfies (yi, Q

∗) ∈ F (i); i.e., yi ∈ µ(i, Q∗). In addition, |xji | ≤ max{|k| : k ∈
K} for all i ∈ I and j ∈ N. Hence by Aumann (1976, Lemma), there exists
x∗ ∈ X such that x∗i ∈ µ(i, Q∗) for all i ∈ I and

∫
i∈I x

∗
i di = ξ∗. Since

S∗ = H(
∫
i∈I x

∗
i di) by (A.6), we have S∗ ∈ G(Q∗); i.e., (Q∗, S∗) ∈ G . It

follows that G is closed.
Since G ⊂ Ω×Ω, which is compact, it follows that G is compact. Hence

G(·) has compact values.

Now by Kakutani’s fixed point theorem (Aliprantis and Border, 2006, p.
583), Assumption 2.2, and Lemmas A.2 and A.3, the set of fixed points of
the correspondence G(·) is nonempty and compact. Let Q ∈ Ω be a fixed
point. Then there exists a measurable selection x ∈ X of µ(·, Q) such that
Q = H(

∫
i∈I xidi); i.e., x is an equilibrium. Hence an equilibrium exists.

The preceding argument shows that any fixed point of G(·) is an equi-
librium aggregate. Since the set of fixed points of G(·) is nonempty and
compact, it follows that the set of equilibrium aggregates is also nonempty
and compact; thus the smallest and the largest equilibrium aggregates exist.
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Appendix B Proof of Theorem 3.1

Since the correspondence Q 7→ G(Q, t) has compact values by Lemma A.3,
the minimum and the maximum of G(Q, t) exit for each Q ∈ Ω. We define

G(Q, t) = minG(Q, t), G(Q, t) = maxG(Q, t). (B.1)

Since G(·, t) has convex values by Lemma A.2, we have

∀Q ∈ Ω, G(Q, t) = [G(Q, t),G(Q, t)]. (B.2)

Since G(·, t) has a compact graph by Lemma A.3, it is easy to see that G(·, t)
is “continuous but for upward jumps”; see Milgrom and Roberts (1994, p.
447). To conclude both inequalities in (3.1) from Milgrom and Roberts (1994,
Corollary 2), it remains to show that for all Q ∈ Ω we have

G(Q, t) ≤ G(Q, t), G(Q, t) ≤ G(Q, t). (B.3)

To see the first inequality in (B.3), let r = G(Q, t). Then by Definition
3.3(ii), there exists r ∈ G(Q, t) such that r ≤ r. Since G(Q, t) ≤ r, the
desired inequality follows. The second inequality in (B.3) can be verified in
a similar way.
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