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Abstract

In this paper we show a simple no-bubble theorem that applies to
a wide range of deterministic economies with infinitely lived agents.
In particular, we show that asset bubbles are impossible if there is at
least one agent who can reduce his asset holdings permanently from
some period onward. This is a substantial generalization of Kocher-
lakota’s (1992, Journal of Economic Theory 57, 245–256) result on as-
set bubbles and short sales constraints; our result requires virtually no
assumption except for the strict monotonicity of preferences. We also
provide a substantial generalization of his result on asset bubbles and
the present value of a single agent’s endowment. As a consequence of
these results, we extend Huang and Werner’s (2000, Economic Theory
15, 253–278) no-bubble theorem to an economy with multiple assets.
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1 Introduction

Since the global financial crisis of 2007-2008, there has been a surge of inter-
est in rational asset pricing bubbles, or simply “asset bubbles.” Numerous
economic mechanisms that give rise to asset bubbles are still being proposed,
and the implications of asset bubbles on various economic issues are actively
discussed in the current literature; we refer the reader to Miao (2014) for a
short survey on recent developments.

In constructing models of asset bubbles, it is important to understand
conditions under which bubbles exist or do not exist. While conditions for
existence are mostly restricted to specific models, some general conditions for
nonexistence are known. In fact, it is well known that bubbles are impossible
if the present value of the aggregate endowment is finite. This was shown by
Santos and Woodford (1997) for a general equilibrium model with incomplete
markets and possibly infinitely many agents each of whom may be finitely
or infinitely lived. Wilson’s (1981) result on the existence of a competitive
equilibrium in a deterministic economy with infinitely many agents can be
viewed as an earlier version of this no-bubble theorem. Huang and Werner
(2000) showed a version of the no-bubble theorem applicable to an asset
in zero net supply for a deterministic economy with finitely many agents.
Werner (2014) extended Santos and Woodford’s (1997) no-bubble theorem
to a complete market economy with debt constraints (instead of borrowing
constraints).

While these results are based on equilibrium prices and allocations, there
are closely related results based mostly on the optimal behavior of a single
agent. For example, in a deterministic economy with finitely many agents,
Kocherlakota (1992) showed that in an equilibrium with a positive bubble,
the short sales constraints of all agents must be asymptotically binding;
equivalently, bubbles can be ruled out if there is at least one agent whose as-
set holdings can be lowered permanently from some period onward. A similar
idea was used earlier by Obstfeld and Rogoff (1986) to rule out deflationary
equilibria in a money-in-the-utility-function model.

The results mentioned in the preceding paragraph rely on the necessity
of some transversality condition,1 and a general no-bubble result based on
the necessity of a transversality condition was shown in Kamihigashi (2001,

1Various results on necessity of transversality conditions were established in Kamihi-
gashi (2001, 2002, 2003, 2005).
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p. 1007) for deterministic representative agent models. Essentially, this re-
sult only requires the differentiability and strict monotonicity of instanta-
neous utility functions; thus it can be used to rule out bubbles in various
representative-agent models.

In this paper, we establish a simple no-bubble theorem that can be used
to rule out bubbles in a considerably broader range of deterministic models.
More specifically, we consider the problem of a single agent facing a sequential
budget constraint and having strictly monotone preferences. We show that
bubbles are impossible if the agent can reduce his asset holdings permanently
from some period onward. This result uses the same idea as those based on
transversality conditions mentioned above; the contribution of this paper is
to show that the result holds true under extremely general conditions.

In addition to our no-bubble theorem, we show a general version of the
result shown by Kocherlakota (1992) on the relation between the existence of
a bubble and the present value of an agent’s endowment. Our result here is
independent of our no-bubble theorem; it is shown merely as a consequence of
the agent’s sequential budget constraint. Hence the result is extremely gen-
eral in that it requires no assumption on preferences and constraints except
for the sequential budget constraint.

To clarify the relations between our theorems and related results in the
literature, we consider a general equilibrium model with a finite number of
infinitely many agents and a finite number of assets. Using our theorems
mentioned above, we establish various results on bubbles in general equi-
librium. In particular, we show substantial generalizations of Propositions
3 and 4 in Kocherlakotoa (1992), and an extension of Huang and Werner’s
(2000) no-bubble theorem to our economy with multiple assets. In Section
6 we fully discuss our results in relation to these and other results in the
literature.

The rest of the paper is organized as follows. In Section 2 we present
a single agent’s problem along with necessary assumptions, and formally
define asset bubbles. In Section 3 we offer several examples satisfying our
assumptions. In Section 4 we state our no-bubble theorem and show some
immediate consequences. We also show a general result on bubbles and the
present value of an agent’s endowment. In Section 5 we present a general
equilibrium model. In Section 6 we show various results on bubbles in general
equilibrium. In Section 7 we discuss how our general results can be extended
to stochastic models. In Section 8 we offer some concluding comments.
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2 Single-Agent/Single-Asset Framework

2.1 Feasibility and Optimality

Time is discrete and denoted by t ∈ Z+. In this section we assume that there
are one consumption good (used as the numeraire) and one asset that pays
a dividend of dt units of the consumption good in each period t ∈ Z+. Let pt
be the price of the asset in period t ∈ Z+. Consider an infinitely lived agent
who faces the following constraints:

ct + ptst = yt + (pt + dt)st−1, ct ≥ 0, ∀t ∈ Z+, (2.1)

s ∈ S(s−1, y, p, d), (2.2)

where ct is consumption in period t, yt ∈ R is (net) income in period t,
st is asset holdings at the end of period t with s−1 historically given, and
S(s−1, y, p, d) is a set of sequences in R with s = {st}∞t=0, y = {yt}∞t=0,
p = {pt}∞t=0, and d = {dt}∞t=0, We present several examples of (2.2) in Section
3.

Although we consider a single agent’s problem and assume that there is
only one asset here, we apply our results shown within this framework to a
general equilibrium model with many agents and many assets in Section 5.

Let C be the set of sequences {ct}∞t=0 in R+. For any c ∈ C, we let
{ct}∞t=0 denote the sequence representation of c, and vice versa. In other
words, we use c and {ct}∞t=0 interchangeably; likewise, we use s and {st}∞t=0

interchangeably. We define the inequalities < and ≤ on the set of sequences
in R (which includes C) as follows:

c ≤ c′ ⇔ ∀t ∈ Zt, ct ≤ c′t, (2.3)

c < c′ ⇔ c ≤ c′ and ∃t ∈ Z+, ct < c′t. (2.4)

The agent’s preferences are represented by a binary relation ≺ on C. For
any c, c′ ∈ C, the agent strictly prefers c′ to c if and only if c ≺ c′. In Sections
2–4 we maintain the following assumption.

Assumption 2.1. dt ≥ 0 and pt ≥ 0 for all t ∈ Z+.

Unless otherwise stated, we also assume the following.

Assumption 2.2. pt > 0 for each t ∈ Z+.
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This assumption is required for some of the variables introduced below to
be well defined (see, e.g., (2.5)), but it is not always assumed. In particular,
if the asset is intrinsically useless, i.e., dt = 0 for all t ∈ Z+, then it is more
than natural to consider the possibility that pt = 0 for all t ∈ Z+. One of
our results deals with this particular case without assuming Assumption 2.2;
see Proposition 4.2.

We say that a pair of sequences c = {ct}∞t=0 and s = {st}∞t=0 in R is a plan;
a plan (c, s) is feasible if it satisfies (2.1) and (2.2); and a feasible plan (c∗, s∗)
is optimal if there exists no feasible plan (c, s) such that c∗ ≺ c. Whenever
we take an optimal plan (c∗, s∗) as given, we assume the following.

Assumption 2.3. For any c ∈ C with c∗ < c, we have c∗ ≺ c.

This assumption is satisfied if ≺ is strictly monotone in the sense that for
any c, c′ ∈ C with c < c′, we have c ≺ c′. Although this latter requirement
is also reasonable, there are important cases in which it is not satisfied; see
Section 3. We present some examples of preferences satisfying Assumption
2.3 in Section 3.

2.2 Asset Bubbles

In this subsection we define the fundamental value and the bubble component
of the asset by using only the price sequence {pt} and the dividend sequence
{dt}. For t ∈ Z+ and i ∈ N, we define

qit =
t+i−1∏
j=t

pj
pj+1 + dj+1

, (2.5)

which can be interpreted as the period t price of one unit of consumption
in period t + i. We also define q0t = 1 for all t ∈ Z+. Note that for all
t, i, n ∈ Z+, we have

qitq
n
t+i = qi+nt . (2.6)

Let t ∈ Z+. Note from (2.5) that pt = q1t (pt+1 + dt+1). By repeated
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application of this equation and (2.6), we have

pt = q1t dt+1 + q1t pt+1 (2.7)

= q1t dt+1 + q2t dt+2 + q2t pt+2 (2.8)

... (2.9)

=
n∑
i=1

qitdt+i + qnt pt+n (∀n ∈ N) (2.10)

=
∞∑
i=1

qitdt+i + lim
n→∞

qnt pt+n. (2.11)

To see that both the infinite sum and the limit above exist, note that the
finite sum in (2.10) is increasing in n ∈ N (as a consequence of Assumptions
2.1 and 2.2). Since the right-hand side of (2.10) equals pt for all n ∈ N, it
follows that

∀n ∈ Z+, qnt pt+n ≥ qn+1
t pt+n+1. (2.12)

Thus the limits of both terms in (2.10) as n ↑ ∞ exist in R.
Using (2.11), we decompose pt into two components:

pt = ft + bt, (2.13)

where ft and bt are called the fundamental value and the bubble component
of the asset, which are defined, respectively, as follows:

ft =
∞∑
i=1

qitdt+i, (2.14)

bt = lim
n↑∞

qnt pt+n. (2.15)

Note from (2.15) and (2.6) that

b0 = lim
i↑∞

qi0pi = lim
i↑∞:i≥t

qt0q
i−t
t pi = qt0 lim

n↑∞
qnt pt+n = qt0bt. (2.16)

Therefore (under Assumptions 2.1 and 2.2)

b0 = 0 ⇔ ∀t ∈ Z+, bt = 0. (2.17)

This together with (2.13) implies that

p0 = f0 ⇔ ∀t ∈ Z+, pt = ft. (2.18)
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3 Examples

In this section, we present several examples of (2.2) as well as some examples
of preferences that satisfy Assumption 2.3. Many of these examples are used
in subsequent sections.

3.1 Constraints on Asset Holdings

The simplest example of (2.2) would be the following:

∀t ∈ Z+, st ≥ 0. (3.1)

This constraint is often used in representative-agent models; see, e.g., Lucas
(1978) and Kamihigashi (1998).

Kocherlakota (1992) uses a more general version of (3.1):

∀t ∈ Z+, st ≥ σ, (3.2)

where σ ∈ R. If σ < 0, then the above constraint is called a short sales
constraint.

The following constraint is even more general:

∀t ∈ Z+, st ≥ σt, (3.3)

where σt ∈ R for all t ∈ Z+. Note that (3.2) is a special case of (3.3) with
σt = σ for all t ∈ Z+.

So far we have only considered inequality constraints on st, but other
types of constraints are also covered by (2.2). For example, the right-hand
side of the budget constraint in (2.1) is the agent’s wealth at the beginning
of period t; thus it may be reasonable to require it to be nonnegative:

∀t ∈ N, (pt + dt)st−1 + yt ≥ 0. (3.4)

This is clearly an example of (2.2); it is also a special case of (3.3) with

∀t ∈ Z+, σt = −yt+1/(pt+1 + dt+1). (3.5)

In addition to (3.2), Kocherlakota (1992) considers the following “wealth
constraint”:

∀t ∈ Z+, ptst +
∞∑
i=1

qityt+i ≥ 0, (3.6)
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which is another example of (2.2). The left-hand side above is the period
t value of the agent’s current asset holdings and future income. Note that
(3.6) is a special case of (3.3) with

∀t ∈ Z+, σt = −
∞∑
i=1

qityt+i/pt. (3.7)

See, e.g., Wright (1987) and Huang and Werner (2000) for equivalence rela-
tions between different budget constraints.

3.2 Preferences

Example 3.1. A typical objective function in an agent’s maximization prob-
lem takes the form

∞∑
t=0

βtu(ct), (3.8)

where β ∈ (0, 1) and u : R+ → [−∞,∞) is a strictly increasing function.
Suppose further that u is bounded, and define the binary relation ≺ by

c ≺ c′ ⇔
∞∑
t=0

βtu(ct) <
∞∑
t=0

βtu(c′t). (3.9)

Then ≺ clearly satisfies Assumption 2.3.
If u is unbounded, i.e., if u(0) = −∞, then the above definition of ≺

may not satisfy Assumption 2.3. In particular, given c∗, c ∈ C with c∗ < c,
Assumption 2.3 does not hold if c∗t = ct = 0 for some t ∈ Z+ and if u is
bounded above. In this case,

∞∑
t=0

βtu(c∗t ) =
∞∑
t=0

βtu(ct) = −∞. (3.10)

The next example considers an optimality criterion that handles this and
other problems.

Example 3.2. For t ∈ Z+, let ut : R+ → [−∞,∞) be a strictly increasing
function. In this case, the infinite sum

∑∞
t=0 ut(ct) may not be well defined.

Even if it is always well defined, it may not be strictly increasing, as discussed
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above. To deal with these problems, consider the binary relation ≺ defined
by

c ≺ c′ ⇔ lim
T↑∞

T∑
t=0

[ut(ct)− u(c′t)] < 0, (3.11)

where we follow the convention that (−∞)−(−∞) = 0; see Dana and Le Van
(2006) for related optimality criteria. It is easy to see that ≺ here satisfies
Assumption 2.3.

Continuing with this example, suppose that (2.2) is given by (3.1). Sup-
pose further that each ut is differentiable on R++, and that there exists an
optimal plan (c∗, s∗) such that

∀t ∈ Z+, c∗t > 0, s∗t = 1. (3.12)

Then the standard Euler equation holds for all t ∈ Z+:

u′t(c
∗
t )pt = u′t+1(c

∗
t+1)(pt+1 + dt+1). (3.13)

This together with (2.5) implies that

∀t ∈ Z+,∀i ∈ N, qit =
u′t+i(c

∗
t+i)

u′t(c
∗
t )

. (3.14)

In this case, the fundamental value ft takes the familiar form:

∀t ∈ Z+, ft =
∞∑
i=1

u′t+i(c
∗
t+i)

u′t(c
∗
t )

dt+i. (3.15)

Example 3.3. Let v : C → R be a strictly increasing function. Define the
binary relation ≺ by

c ≺ c′ ⇔ v(c0, c1, c2, . . .) < v(c′0, c
′
1, c
′
2, . . .). (3.16)

Note that (3.16) satisfies Assumption 2.3 without any additional condition
on v. For example, v can be a recursive utility function.
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4 Implications of Optimality and Feasibility

4.1 No-Bubble Theorem

Given any sequence {s∗t}∞t=0 in R, τ ∈ Z+, and ε > 0, let Sτ,ε(s∗) be the set
of sequences {st}∞t=0 in R such that

st

{
= s∗t if t < τ ,

≥ s∗t − ε if t ≥ τ .
(4.1)

We are ready to state our no-bubble theorem.

Theorem 4.1. Let (c∗, s∗) be an optimal plan. Suppose that there exist
τ ∈ Z+ and ε > 0 such that

Sτ,ε(s∗) ⊂ S(s−1, y, p, d). (4.2)

Then b0 = 0.

Proof. See Appendix A.

It seems remarkable that asset bubbles can be ruled out by such a simple
condition. In particular, no explicit utility function is assumed, and the only
requirement on the binary relation ≺ is Assumption 2.3, which only requires
strict monotonicity at the given optimal consumption plan c∗. In Section
5 we show some general equilibrium results using Theorem 4.1 and discuss
related results in the literature,

The idea of the proof of Theorem 4.1 is simple. In the proof, we construct
an alternative plan as follows. Let δ > 0, and let sτ = s∗τ − δ, where τ is
given by the statement of the theorem. For t > τ , let st be given by the
budget constraint (2.1) with ct = c∗t . This alternative plan gives the same
consumption sequence except in period τ , where consumption is increased
by pτδ > 0. Hence this plan is strictly preferred to the original plan (c∗, s∗).
We derive a contradiction by showing that the alternative plan is feasible for
sufficiently small δ > 0 provided that b0 > 0.

Similar constructions are used as “Ponzi schemes” in the proofs of Huang
and Werner (2000, Theorems 5.1, 6.1), but they are not directly linked to
the nonexistence of bubbles. In Subsection 6.4 we show a general version of
Huang and Werner’s no-bubble theorem (Huang and Werner, 2000, Theorem
6.1) and discuss their result in some detail. We further discuss the proof of
Theorem 4.1 in the following subsection.
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4.2 Consequences of Theorem 4.1

In this subsection we provide fairly simple consequences of Theorem 4.1 in
the current single-agent framework, partly to discuss related results in the
literature. We start by presenting an intermediate result shown in the proof
of Theorem 4.1. More specifically, it is shown ((A.1)–(A.3)) that if b0 > 0,
then

∞∑
t=1

dt
pt
<∞. (4.3)

Since d0/p0 <∞, we have the following implication:

b0 > 0 ⇒
∞∑
t=0

dt
pt
<∞. (4.4)

The contrapositive of this result is the following.

Proposition 4.1. Suppose that

∞∑
t=0

dt
pt

=∞. (4.5)

Then b0 = 0.

Essentially the same result is shown by Montrucchio (2004, Theorem
2) for a fairly general stochastic model using a martingale argument. A
similar result is shown by Bosi et al. (2014) for “capital asset bubbles” in a
production economy with heterogenous agents. We should emphasize that
Proposition 4.1 is independent of the agent’s behavior. The result depends
only on the price and dividend sequences {pt, dt} and the definition of b0
based on them.

The following result assumes that the feasibility constraint on asset hold-
ings (2.2) is given by a sequence of short sales constraints of the form (3.3).

Corollary 4.1. Let (c∗, s∗) be an optimal plan. Suppose that (2.2) is given
by (3.3) with σt ∈ R for all t ∈ Z+. Then the following equivalent conclusions
hold:

(a) If limt↑∞(s∗t − σt) > 0, then b0 = 0.

10



(b) If b0 > 0, then limt↑∞(s∗t − σt) = 0.

Proof. We verify conclusion (a). Suppose that limt↑∞(s∗t − σt) > 0. Let
ε ∈ (0, limt↑∞(s∗t − σt)). Then there exists τ ∈ Z+ such that s∗t − σt ≥ ε,
or s∗t − ε ≥ σt, for all t ≥ τ . This implies (4.2). Hence b0 = 0 by Theorem
4.1.

If there is a constant lower bound on asset holdings st, the above result
reduces to the following.

Corollary 4.2. Let (c∗, s∗) be an optimal plan. Suppose that (2.2) is given
by (3.2) for some σ ∈ R. Then the following equivalent conclusions hold:

(a) If limt↑∞ s
∗
t > σ, then b0 = 0.

(b) If b0 > 0, then limt↑∞ s
∗
t = σ.

Proof. Both conclusions follow from those of Corollary 4.1 by setting σt = σ
for all t ∈ Z+.

In Subsection 6.2 we present some consequences of the above two results in
the context of general equilibrium and discuss them in relation to Proposition
3 in Kocherlakota (1992).

The next result considers the case of fiat money, or an asset with no
dividend payment. Since the fundamental value of fiat money is zero, its
price is also zero if there is no bubble. Hence the case of fiat money is not
directly covered by Theorem 4.1, which requires Assumption 2.2,

Proposition 4.2. Let (c∗, s∗) be an optimal plan. Drop Assumption 2.2 but
maintain Assumptions 2.1 and 2.3. Suppose that there exist τ ∈ Z+ and
ε > 0 satisfying (4.2). Suppose further that

∀t ≥ τ, dt = 0. (4.6)

Then

∀t ≥ τ, pt = 0. (4.7)

Proof. See Appendix B.

Finally, we present two results that apply to representative-agent models.
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Corollary 4.3. Suppose that (2.2) is given by (3.1). Let (c∗, s∗) be an opti-
mal plan such that

∀t ∈ Z+, s∗t = 1. (4.8)

Then b0 = 0.

Proof. Note that (4.8) and (3.1) imply (4.2) with τ = 0 and ε = 1. Thus
Theorem 4.1 applies.

The following result is immediate from the above and (3.15).

Proposition 4.3. In the setup of Example 3.2 (up to (3.15)), we have

p0 =
∞∑
i=1

u′i(c
∗
t )

u′0(c
∗
0)
dt. (4.9)

A similar result is shown in Kamihigashi (2001, Section 4.2.1) for a
continuous-time model with a nonlinear constraint. It is known that a
stochastic version of Corollary 4.3 requires additional assumptions; see Kami-
higashi (1998) and Montrucchio and Privileggi (2001).

4.3 Bubbles and Individual Wealth

Kocherlakota (1992) shows that there is a close relation between the possi-
bility of a bubble and an agent’s life time wealth, or the present value of his
endowment. In this subsection we establish some closely related results. In
Subsection 6.3 we present general equilibrium versions of these results and
discuss them in relation to Proposition 4 in Kocherlakota (1992).

Theorem 4.2. Suppose that b0 > 0. Suppose further that there exists a
feasible plan (c, s) such that

lim
t↑∞

st > −∞. (4.10)

Then the following equivalent conclusions hold:

(a) If limT↑∞
∑T

t=0 q
t
0yt exists in R, then limt↑∞ st exists in R.

(b) If limt↑∞ st does not exist in R, then limT↑∞
∑T

t=0 q
t
0yt does not exist

in R.
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Proof. See Appendix C.

If yt is taken to be the agent’s endowment in period t, then it is reasonable
to assume that

∀t ∈ Z+, yt ≥ 0. (4.11)

This assumption is used in the following result.

Corollary 4.4. Assume (4.11). Suppose further that b0 > 0, and that there
exists a feasible plan (c, s) satisfying (4.10). Then the following equivalent
conclusions hold:

(a) If
∑∞

t=0 q
t
0yt <∞, then limt↑∞ st exists in R.

(b) If limt↑∞ st does not exist in R, then
∑∞

t=0 q
t
0yt <∞.

Proof. Assume (4.11). Then limT↑∞
∑T

t=0 q
t
0yt always exists in [0,∞] and can

be written as
∑∞

t=0 q
t
0yt. Hence the result follows from Theorem 4.2.

5 General Equilibrium with Multiple Agents

and Multiple Assets

5.1 Feasibility, Optimality, and Equilibrium

Consider an exchange economy with a finite number of infinitely lived agents
indexed by a ∈ A, where A = {1, 2, . . . , a} with a ∈ N. There are a finite
number of assets indexed by k ∈ K, where K = {1, 2, . . . , k} with k ∈ N.
Agent a ∈ A faces the following constraints:

cat +
∑
k∈K

pk,ts
a
k,t = yat +

∑
k∈K

(pk,t + dk,t)s
a
k,t−1, c

a
t ≥ 0, ∀t ∈ Z+, (5.1)

sa ∈ Sa(sa−1, ya, p, d), (5.2)

where cat and yat are agent a’s consumption and endowment in period t; for
each k ∈ K, sak,t is agent a’s holdings of asset k at the end of period t, pk,t
is the price of asset k in period t, and dk,t is the dividend payment of asset
k in period t. In (5.2), sa−1 = (sak,−1)k∈K is agent a’s initial holdings of all
assets k ∈ K, which are historically given, and S(sa−1, y

a, p, d) is a set of
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sequences in Rk with sa = {(sak,t)k∈K}∞t=0, y
a = {yat }∞t=0, p = {(pk,t)k∈K}∞t=0,

and d = {(dk,t)k∈K}∞t=0.
The supply of each asset k ∈ K is given by sk and is constant over time.

We assume the following for the rest of the paper.

Assumption 5.1. For each asset k ∈ K we have∑
a∈A

sak,−1 = sk ≥ 0. (5.3)

For any k ∈ K, t ∈ Z+, and a ∈ A, we have dk,t ≥ 0 and yat ≥ 0.

Agent a’s preferences are represented by a binary relation ≺a on C. We
say that a pair of sequences ca = {cat }∞t=0 and sa = {(sak,t)k∈K}∞t=0 in R and

Rk, respectively, is a plan; a plan (c, s) is feasible for agent a if it satisfies
(5.1) and (5.2); and a feasible plan (ĉa, ŝa) is optimal for agent a if there
exists no feasible plan (ca, sa) for agent a such that ĉa ≺ ca.

An equilibrium of this economy is a set of sequences (p, {ca, sa}a∈A) such
that (i) (ca, sa) is optimal for each agent a ∈ A, (ii) for each k ∈ K and
t ∈ Z+, we have pk,t ≥ 0, and (iii) the asset and good markets clear in all
periods: ∑

a∈A

sak,t = sk, ∀k ∈ K, ∀t ∈ Z+, (5.4)∑
a∈A

cat = yt +
∑
k∈K

skdk,t. ∀t ∈ Z+, (5.5)

where

yt =
∑
a∈A

yat . (5.6)

Whenever we take an equilibrium (p, {ca, sa}a∈A) as given, we assume the
following.

Assumption 5.2. For any a ∈ A and c̃a ∈ C with ca < c̃a, we have ca ≺ c̃a.

In addition to equilibria, we often wish to consider allocations that need
not be optimal from agents’ point of view. For this purpose, we define a
quasi-equilibrium as a set of sequences (p, {ca, sa}a∈A) such that (a) (ca, sa)
is feasible for each agent a ∈ A, and (b) conditions (ii) and (iii) above hold.
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5.2 Asset Bubbles

We define the fundamental value and the bubble component of an asset k ∈ K
as in Subsection 2.2. For this purpose, fix k ∈ K for the moment. We assume
that

∀t ∈ Z+, pk,t > 0. (5.7)

Let t ∈ Z+. For i ∈ N, we define

qik,t =
t+i−1∏
j=t

pk,j
pk,j+1 + dk,j+1

. (5.8)

Given this equation, we define fk,t and bk,t for t ∈ Z+ as we defined ft and bt
in Subsection 2.2:

fk,t =
∞∑
i=1

qik,tdk,t+i, (5.9)

bk,t = lim
n↑∞

qnk,tpk,t+n. (5.10)

The price pk,t of asset k can be decomposed into these two components:

pk,t = fk,t + bk,t. (5.11)

Although it is reasonable to expect that all assets have the same rate of
return in each period (i.e., q1k,t = q1k′,t for all k, k′ ∈ K), this may or may not
be the case depending on the exact specification of (5.2). For example, it is
possible that agents may not have access to all assets, in which case the rates
of return on assets may not be equalized.

6 General Equilibrium Results

6.1 Restatements of Theorems 4.1 and 4.2

To develop results on asset bubbles in general equilibrium, we start by re-
stating Theorems 4.1 and 4.2 in the current general equilibrium setting. We
discuss the results shown here in subsequent subsections.
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Theorem 6.1. Let (p, {ca, sa}a∈A) be an equilibrium. Suppose that there
exist an agent a ∈ A and an asset k ∈ K satisfying (5.7) such that for some
τ ∈ Z+ and ε > 0, we have

Sτ,ε(sa) ⊂ Sa(sa−1, ya, p, d). (6.1)

Then bk,0 = 0.

Proof. This follows from Theorem 4.1 because (ca, sa) is optimal for agent a
and Assumptions 2.1–2.3 hold by Assumptions 5.1 and 5.2 and (5.7).

To state the next result, we need to introduce an additional definition.
Given a feasible plan (ca, sa) for agent a ∈ A, for each asset k ∈ K and
t ∈ Z+, we define

yak,t = yat +
∑

h∈K:h6=k

(ph,t + dh,t)s
a
h,t−1 −

∑
h∈K:h6=k

ph,ts
a
h,t. (6.2)

Note that yak,t is agent a’s net income in period t excluding the income gen-
erated by trading in asset k.

Theorem 6.2. Let (p, {ca, sa}a∈A) be a pseudo-equilibrium. Suppose that
there exists an asset k ∈ K satisfying (5.7) such that bk,0 > 0. Suppose
further that

∀a ∈ A, lim
t↑∞

sak,t > −∞. (6.3)

Then the following equivalent conclusions hold:

(a) For any a ∈ A such that limT↑∞
∑T

t=0 q
t
k,0y

a
k,t exists in R, limt↑∞ s

a
k,t

exists in R.

(b) For any a ∈ A such that limt↑∞ s
a
k,t does not exist in R, limT↑∞

∑T
t=0 q

t
k,0y

a
k,t

does not exist in R.

Proof. This follows from Theorem 4.2 since Assumptions 2.1 and 2.2 hold by
Assumption 5.1 and (5.7).
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6.2 Bubbles and Short Sales Constraints

In this subsection we present some results that can be regarded as gener-
alizations of Proposition 3 in Kocherlakota (1992). We discuss his and our
results after showing our results. For the rest of the paper we maintain the
following assumption.

Assumption 6.1. For each agent a ∈ A, there exists a sequence {(σak,t)k∈K}∞t=0

in Rk such that given any sequence sa = {(sak,t)k∈K}∞t=0 in Rk, we have

sak,t ≥ σak,t,∀k ∈ K, ∀t ∈ Z+ ⇔ sa ∈ S(sa−1, y
a, p, d). (6.4)

This assumption means that the feasibility constraint on asset holdings
for each agent, (5.2), consists of sequences of short sales constraints of the
form (3.3) for all assets. The following result is a restatement of Corollary
4.1 in the current general equilibrium setting.

Proposition 6.1. Let (p, {ca, sa}a∈A) be an equilibrium. Suppose that there
exists an asset k ∈ K satisfying (5.7). Then the following equivalent conclu-
sions hold:

(a) If there exists an agent a ∈ A such that limt↑∞(sak,t − σak,t) > 0, then
bk,0 = 0.

(b) If bk,0 > 0, then limt↑∞(sak,t − σak,t) = 0 for all agents a ∈ A.

Proof. Conclusion (a) follows from conclusion (a) of Corollary 4.1 applied to
the given agent a. (Conclusion (b) follows from conclusion (b) of Corollary
4.1 applied to all agents a ∈ A.)

To state the next result, we define the following for a ∈ A and k ∈ K:

σak = lim
t↑∞

σak,t. (6.5)

Corollary 6.1. Let (p, {ca, sa}a∈A) be an equilibrium. Suppose that there
exists an asset k ∈ K satisfying (5.7). Then the following equivalent conclu-
sions hold:

(a) If there exists an agent a ∈ A such that limt↑∞ s
a
k,t > σak,t, then bk,0 = 0.

(b) If bk,0 > 0, then limt↑∞ s
a
k,t ≤ σak,t for all agents a ∈ A.
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Proof. We verify conclusion (a). Let a ∈ A be such that limt↑∞ s
a
k,t > σak,t.

This strict inequality implies that limt↑∞ s
a
k,t > −∞ and σak,t <∞. Hence

lim
t↑∞

(sak,t − σak,t) ≥ lim
t↑∞

sak,t − σak,t > 0. (6.6)

Thus bk,0 = 0 by conclusion (a) of Proposition 6.1.

If there is a constant lower bounded on asset k for each agent a ∈ A, the
above result reduces to the following.

Corollary 6.2. Let (p, {ca, sa}a∈A) be an equilibrium. Suppose that there
exists an asset k ∈ K satisfying (5.7) such that

∀a ∈ A, ∃σak ∈ R, ∀t ∈ Z+, σak,t = σak . (6.7)

Then the following equivalent conclusions hold:

(a) If there exists an agent a ∈ A such that limt↑∞ s
a
k,t > σak, then bk,0 = 0.

(b) If bk,0 > 0, then limt↑∞ s
a
k,t = σak for all agents a ∈ A.

Proof. Under (6.7), both conclusions follow from the conclusions of Proposi-
tion 6.1.

If there is only one asset, the above result further reduces to the following.

Corollary 6.3. Suppose that k = 1. Let (p, {ca, sa}a∈A) be an equilibrium
satisfying (5.7) and (6.7) with k = 1. Then the following equivalent conclu-
sions hold:

(a) If there exists an agent a ∈ A such that limt↑∞ s
a
1,t > σa1 , then b1,0 = 0.

(b) If b1,0 > 0, then limt↑∞ s
a
1,t = σa1 for all agents a ∈ A.

Proof. This result is immediate from Corollary 6.2.

Kocherlakota (1992, Proposition 3) shows conclusion (b) above under the
following additional assumptions: (i) the binary relation ≺a of each agent
a ∈ A is represented by (3.9) with β and u replaced by βa ∈ (0, 1) and
ua : R+ → [−∞,∞); (ii) ua is C1 on R++, strictly increasing, concave, and

18



bounded above or below by zero; and (iii) the optimal plan (ca, sa) of each
agent a ∈ A satisfies

∀t ∈ Z+, cat > 0, (6.8)∣∣∣∣∣
∞∑
t=0

(βa)
tua(c

a
t )

∣∣∣∣∣ <∞. (6.9)

Corollary 6.3 shows that none of Kocherlakota’s additional assumptions
is needed under Assumption 5.2, which is implied by his assumptions. Hence
Corollary 6.3 is a substantial generalization of Proposition 3 in Kocherlakota
(1992).

Corollary 6.2 extends Corollary 6.3 to the case of multiple assets. Corol-
lary 6.1 generalizes Corollary 6.2 by relaxing (6.7). Proposition 6.1 strength-
ens Corollary 6.1 by offering somewhat sharper conclusions. We obtain these
generalizations thanks to Theorem 4.1, which requires none of Kocherlakota’s
additional assumptions as long as Assumption 5.2 holds. Kocherlakota uses
the extra assumptions mostly to derive a transversality condition, which is
crucial to his approach but is not needed in ours.

6.3 Bubbles and Individual Wealth

In this subsection we present some results that can be regarded as gener-
alizations of Proposition 4 in Kocherlakota (1992). We discuss his and our
results after showing our results. We start by simplifying the conclusions of
Theorem 6.2 under an additional assumption.

Corollary 6.4. Let (p, {ca, sa}a∈A) be a pseudo-equilibrium. Suppose that
there exists an asset k ∈ K satisfying (5.7) and (6.3) such that bk,0 > 0.
Suppose further that

∀a ∈ A, ∀t ∈ Z+, yak,t ≥ 0. (6.10)

Then the following equivalent conclusions hold:

(a) For any a ∈ A such that
∑∞

t=0 q
t
k,0y

a
k,t <∞, limt↑∞ s

a
k,t exists in R.

(b) For any a ∈ A such that limt↑∞ s
a
k,t does not exist in R,

∑∞
t=0 q

t
k,0y

a
k,t =

∞.
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Proof. By (6.10), limT↑∞
∑T

t=0 q
t
k,0y

a
k,t exists in [0,∞] and can be written as∑∞

t=0 q
t
k,0y

a
k,t. Hence the result follows from Theorem 6.2.2

If there are only one asset and a constant lower bound on each agent’s
asset holdings, the above result reduces to the following.

Corollary 6.5. Suppose that k = 1. Let (p, {ca, sa}a∈A) be a pseudo-equilibrium
satisfying (5.7) and (6.7) with k = 1. Suppose further that b1,0 > 0. Then
the following equivalent conclusions hold:

(a) For any a ∈ A such that
∑∞

t=0 q
t
1,0y

a
t <∞, limt↑∞ s

a
1,t exists in R.

(b) For any a ∈ A such that limt↑∞ s
a
1,t does not exist in R,

∑∞
t=0 q

t
1,0y

a
t =

∞.

Proof. Since k = 1, we have ya1,t = yat ≥ 0 for all a ∈ A by Assumption 5.1.
Thus (6.10) holds. Note that (6.7) implies (6.3). Hence the result follows
from Corollary 6.4.

Kocherlakota (1992, Proposition 4) shows conclusion (b) above as a prop-
erty of an equilibrium (p, {ca, sa}a∈A) (rather than a pseudo-equilibrium) un-
der the additional assumptions specified after Corollary 6.3. Corollary 6.5
shows that none of his extra assumptions is needed. We emphasize that
Corollary 6.5 does not even require Assumption 5.2.

Corollary 6.4 extends Corollary 6.5 to the case of multiple assets while
relaxing (6.7). We obtain these generalizations thanks to Theorem 4.2, which
holds for any feasible plan of an agent. In fact, Theorem 4.2 is merely an
implication of the sequential budget constraint (2.1). Essentially, the result
is shown by multiplying the budget constraint by qt0, summing over t = 0 to
∞, and taking limits. Hence Theorem 4.2 and its general equilibrium coun-
terpart, Theorem 6.2, are applicable to any model with a similar sequential
budget constraint.

6.4 Bubbles and Aggregate Wealth

In this subsection we present some results that can be regarded as general-
izations of Theorem 6.1 in Huang and Werner (2000). We discuss their and
our results after showing our results.

2This proof is essentially the same as that of Corollary 4.4. We include it here because
it takes two lines.
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Theorem 6.3. Let (p, {ca, sa}a∈A) be an equilibrium. Suppose that there
exists an asset k ∈ K satisfying (5.7) and (6.10) such that

∞∑
t=0

qtk,0

[
yt +

∑
h∈K:h6=k

shdh,t

]
<∞, (6.11)

−∞ <
∑
a∈A

σak < sk. (6.12)

Then bk,0 = 0.

Proof. See Appendix D.

If there is only one asset, the above result reduces to the following.

Corollary 6.6. Suppose that k = 1. Let (p, {ca, sa}a∈A) be an equilibrium
satisfying (5.7) and (6.12) with k = 1. Suppose further that

∞∑
t=0

qt1,0yt <∞. (6.13)

Then b1,0 = 0.

Proof. Suppose that k = 1. Then (6.11) reduces to (6.13). In addition,
yak,t = yat ≥ 0 for all a ∈ A and t ∈ Z+ by (6.2) and Assumption 5.1. Thus
(6.10) holds. Now the result follows from Theorem 6.3.

Huang and Werner (2000, Theorem 6.1) show the same result under the
following additional assumptions: (i) the binary relation ≺a of each agent
a ∈ A is represented by (3.16) with ≺ and v replaced by ≺a and va : C → R,
respectively; (ii) for each agent a ∈ A, va is quasi-concave, nondecreasing,
and nonsatiated; and (iii) σak ≤ 0 for all a ∈ A. Corollary 6.6 shows that
none of these assumptions is necessary under Assumption 5.2. Furthermore,
Theorem 6.3 extends Corollary 6.6 to the case of multiple assets.

The proof of Theorem 6.3 is rather similar to that of Theorem 6.1 in
Huang and Werner (2000). Our proof can be outlined as follows: First,
(6.11) implies that the present value of each agent’s endowment is finite,
which in turn implies that each agent’s holdings of asset k converge in R by
Corollary 6.4(a). This together with (6.12) implies that there must be at
least one agent whose short sales constraint is not binding asymptotically.
Then we obtain bk,0 = 0 by Corollary 6.1(a).
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Santos and Woodford (1997, Theorem 3.1) show a closely related result for
a general equilibrium model with incomplete markets and possibly infinitely
many agents. In particular, they show that no bubble exists on any asset
if the present value of the aggregate endowment is finite with respect to
any possible state price process. The general structure of their model is
considerably more general than ours, and their result is also general in that
the preferences of agents are only required to be strictly monotone.3 In
addition, there is no condition corresponding to (6.10) in their result, which
rules out bubbles on all assets simultaneously. In our result, we rule out
a bubble on asset k alone by evaluating the present value of the aggregate
endowment using the “state price process” associated with asset k.

A major advantage of our result over Santos and Woodford’s no-bubble
theorem is that while their theorem does not apply to an asset in zero net
supply, ours easily applies to such an asset. This advantage is in fact inherited
from Huang and Werner’s (2000, Theorem 6.1) result. As mentioned above,
while Huang and Werner’s result requires that σak ≤ 0 for all k ∈ K and
a ∈ A, our result does not require this additional assumption.

7 Stochastic Extensions

In this section we discuss how the results in Section 4, especially Theorems 4.1
and 4.2, can be extended to stochastic economies. To be specific, let (Ω,F ,P)
be a probability space. Let {Ft}∞t=0 be a filtration, i.e., an increasing sequence
of σ-fields with Ft ⊂ F for all t ∈ Z+. We equip R with its Borel σ-field B.
In this section, all sequences that appear in (2.1) are assumed to be adapted
to this filtration. This means that any variable with subscript t ∈ Z+ is
a measurable function from (Ω,Ft) to (R,B), i.e., the realization of the
variable is known in period t.

For simplicity, we require the equality and the inequality in (2.1) to hold
for each ω ∈ Ω rather than with probability one; we could instead require
them to hold with probability one, in which case we could weaken the fea-
sibility requirement. We redefine C to be the set of nonnegative stochastic
processes {ct}∞t=0 adapted to {Ft}∞t=0. Likewise, in (2.2), we let S(s−1, p, d, y)
be a set of stochastic processes {st}∞t=0 in R adapted to {Ft}∞t=0. The defi-

3See Kamihigashi (1998, Proposition 3.1) for another result based on the strict mono-
tonicity of preferences. Further results based on stronger assumptions on preferences are
available in Santos and Woodford (1997), Huang and Werner (2000), and Werner (2014).
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nitions of feasible and optimal plans as well as Assumptions 2.1–2.3 can be
modified accordingly. In particular, we assume that pt(ω) > 0 for all t ∈ Z+

and ω ∈ Ω.
For t ∈ Z+ and i ∈ N, we define qit, ft, and bt as random variables satis-

fying (2.5), (2.14), and (2.15). To be more precise, for all ω ∈ Ω and t ∈ Z+,
we define

qit(ω) =
t+i−1∏
j=t

pj(ω)

pj+1(ω) + dj+1(ω)
, (7.1)

ft(ω) =
∞∑
i=1

qit(ω)dt+i(ω), (7.2)

bt(ω) = lim
n↑∞

qnt (ω)pt+n(ω). (7.3)

With these definitions, all equations in Subsection 2.2 hold true for each
fixed ω ∈ Ω. For example, the following equation is valid for each ω ∈ Ω and
t ∈ Z+.

pt(ω) = ft(ω) + bt(ω). (7.4)

One can now replicate most of the arguments in the proof of Theorem
4.1 for each fixed ω ∈ Ω. In particular, one can construct an alternative
plan exactly as in the proof of Theorem 4.1 (i.e., by using (A.4) and (A.5)
for some fixed δ > 0). The problem is that this plan may not be feasible.
Hence it is necessary to introduce an additional condition to ensure that this
alternative plan is feasible for all ω ∈ Ω (for some fixed δ > 0).

On the other hand, the proof of Theorem 4.2 does not use any alternative
plan. Thus the conclusion of Theorem 4.2 can be regarded as a sample path
property of any feasible plan satisfying (4.10) for each ω ∈ Ω.4 In this sense,
Theorem 4.2 can be extended to stochastic economies in a straightforward
manner.

We should add however that the results suggested above must be inter-
preted with care even if they are valid under additional assumptions. This
is because none of the variables defined in (7.1)–(7.3) is Ft-measurable; i.e.,
they all depend on future information. This may not be a problem for qit(ω)
since it can be regarded as a state price of the consumption good in period

4See Kamihigashi (2011) for various results on sample path properties of bubbles.

23



t + i. With state prices given by (7.1), the fundamental value and the bub-
ble component of the asset can be defined as the conditional expectations of
ft(ω) and bt(ω) given Ft. To be more specific, it follows from (7.4) that pt
can be decomposed into two components as follows:

pt = E[ft|Ft] + E[bt|Ft], (7.5)

where E[ft|Ft] and E[bt|Ft] are the conditional expectations of ft(ω) and
bt(ω) given Ft, respectively. The stochastic versions of Theorems 4.1 and 4.2
suggested above may be useful in obtaining properties of these conditional
expectations.

8 Concluding Comments

[beigne] In this paper we showed a simple no-bubble theorem that applies
to a wide range of deterministic economies with infinitely lived agents. In
particular, we showed that asset bubbles are impossible if there is at least
one agent who can reduce his asset holdings permanently from some period
onward. This is a substantial generalization of Kocherlakota’s (1992) result
on asset bubbles and short sales constraints; our result requires virtually
no assumption except for the strict monotonicity of preferences. We also
provided a substantial generalization of his result on asset bubbles and the
present value of a single agent’s endowment. As a consequence of these
results, we extended Huang and Werner’s (2000) no-bubble theorem to an
economy with multiple assets. As a possible extension for future research, we
discussed how our general results can be extended to stochastic economies.

Although we developed numerous results on asset bubbles in a general
equilibrium setting, many of them are solely based on the optimal behavior
of a single agent. The exception is our generalization of Huang and Werner’s
no-bubble theorem, which utilizes market-clearing conditions as well. Most
of the other results are implications of optimal behavior without equilibrium
consideration. We believe that we demonstrated their usefulness by showing
various general equilibrium results based on them.
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Appendix A Proofs of Theorem 4.1

Let (c∗, s∗) be an optimal plan. Suppose by way of contradiction that

b0 = lim
n→∞

qn0 pn > 0. (A.1)

This together with (2.12) implies that

∀n ∈ Z+, qn0 pn ≥ b0. (A.2)

Note from (2.11) and (A.1) that
∑∞

n=1 q
n
0 dn < p0. Since 1/pn ≤ qn0 /b0 for all

n ∈ Z+ by (A.2), it follows that

∞∑
n=1

dn
pn
≤

∞∑
n=1

qn0 dn
b0

<
p0
b0
, (A.3)

where the strict inequality holds by (2.11) and (A.1).
Let τ ∈ Z+ and ε > 0 be as given by (4.2). Let δ ∈ (0, ε). We construct

an alternative plan (cδ, sδ) as follows:

cδt =

{
c∗t if t 6= τ ,

c∗τ + pτδ if t = τ ,
(A.4)

sδt =


s∗t if t ≤ τ − 1,

s∗τ − δ if t = τ ,

[yt + (pt + dt)s
δ
t−1 − c∗t ]/pt if τ ≥ τ + 1.

(A.5)

It suffices to show that (cδ, sδ) is feasible for δ > 0 sufficiently small; for then,
we have c∗ ≺ cδ by (A.4) and Assumption 2.3, contradicting the optimality
of (c∗, s∗).

For the rest of the proof, we only consider variables in periods t ≥ τ ; thus
for simplicity we assume without loss of generality that τ = 0. For t ≥ τ = 0,
define

δt = s∗t − sδt . (A.6)

Note from (2.1), (A.5), and (A.6) that ptδt = (pt + dt)δt−1 for all t ∈ N; thus

δt =
pt + dt
pt

δt−1 =
pt + dt
pt

pt−1 + dt−1
pt−1

δt−2 = · · · (A.7)

= δ
t∏
i=1

pi + di
pi

≤ δ
∞∏
i=1

pi + di
pi

, (A.8)
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where the equality in (A.8) holds since δ0 = δ by (A.5), and the inequality
holds since dt ≥ 0 for all t ∈ Z+ by Assumption 2.1.

Since (cδ, sδ) satisfies (2.1) by construction, to show that (cδ, sδ) is fea-
sible, it suffices to verify that δt ≤ ε for all t ∈ Z+; for then, we have
s ∈ S(s−1, y, p, d) by (4.2) and (A.6). To this end, note from (A.3) that

p0
b0
>
∞∑
i=1

di
pi
≥

∞∑
i=1

ln

(
1 +

di
pi

)
(A.9)

=
∞∑
i=1

ln

(
pi + di
pi

)
= ln

(
∞∏
i=1

pi + di
pi

)
. (A.10)

It follows that
∞∏
i=1

pi + di
pi

<∞. (A.11)

Using this and recalling (A.7) and (A.8), we can choose δ > 0 small enough
that δt ≤ ε for all t ∈ Z+, as desired.

Appendix B Proof of Proposition 4.2

Let τ ∈ Z+ and ε > 0 be as in (4.2). Without loss of generality, we assume
that τ = 0. Suppose by way of contraction that pt > 0 for some t ≥ τ = 0.
Without loss of generality, we assume that t = 0; i.e., p0 > 0.

First suppose that pt > 0 for all t ∈ Z+. Then Assumption 2.2 holds.
From (4.6) and (2.14) we have

∀t ∈ Z+, ft = 0. (B.1)

By Theorem 4.1 we have b0 = 0. But by (B.1), we obtain p0 = 0, a contra-
diction.

Next suppose that pt = 0 for some t ∈ N. Let T be the first T ∈ Z+ with

pT > 0, pT+1 = 0. (B.2)

We construct an alternative plan (c, s) as follows:

ct =

{
c∗t if t 6= T ,

c∗T + pT ε if t = T ,
(B.3)

st =

{
s∗t if t 6= T ,

s∗T − ε if t = T .
(B.4)
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It is easy to see from (4.1), (2.1), and (B.2) that (c, s) is feasible. But we
have c∗ ≺ c by (B.3) and Assumption 2.3, contradicting the optimality of
(c∗, s∗).

Appendix C Proof of Theorem 4.2

First we show two lemmas.

Lemma C.1. For any feasible plan (c, s) and T ∈ Z+, we have

T∑
t=0

qt0ct + qT0 pT sT = (p0 + d0)s−1 +
T∑
t=0

qt0yt. (C.1)

Proof. Note from (2.5) that for any t ∈ N we have

qt0(pt + dt) = qt−10 pt−1. (C.2)

Let (c, s) be a feasible plan. For each t ∈ N, multiplying (2.1) through by qt0
and using (C.2), we have

qt0ct + qt0ptst = qt−10 pt−1st−1 + qt0yt. (C.3)

Summing over t = 1, . . . , T and adding (2.1) with t = 0, we obtain (C.1).

Lemma C.2. Suppose that b0 > 0. Let (c, s) be a feasible plan. Then for
any subsequence {sti}i∈N of {st}∞t=0 such that limi↑∞ sti exists in R, we have

lim
i↑∞

qti0 ptisti = b0 lim
i↑∞

sti . (C.4)

Proof. Suppose that b0 > 0. Let (c, s) be a feasible plan. Let {sti}i∈N be a
subsequence of {st}∞t=0 such that limi↑∞ sti exists in R. Note from (2.16) that

lim
i↑∞

qti0 pti = b0 > 0. (C.5)

Thus (C.4) is immediate if limi↑∞ sti ∈ R. If limi↑∞ sti =∞ (resp. −∞), then
limi↑∞ q

ti
0 ptisti =∞ (resp. −∞) by (C.5). Thus (C.4) holds in all cases.
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To prove Theorem 4.2, suppose that b0 > 0, and let (c, s) be a feasible
plan satisfying (4.10). Suppose that the following limit exists in R:

lim
T↑∞

T∑
t=0

qt0yt ∈ R. (C.6)

Recall from (2.16) that b0 = limT↑∞ q
T
0 pT . Let {sTi}i∈N be any subse-

quence of {sT}T∈N that converges in (−∞,∞]. By Lemmas C.1 and C.2 and
(C.6), we have

∞∑
t=0

qt0ct + b0 lim
i↑∞

sTi = (p0 + d0)s−1 +
∞∑
t=0

qt0yt, (C.7)

where
∑∞

t=0 q
t
0yt = limT↑∞

∑T
t=0 q

t
0yt. Since the right-hand side of (C.7) is

finite by (C.6), it follows from (C.7) and (4.10) that

∞∑
t=0

qt0ct <∞, −∞ < lim
i↑∞

sTi <∞. (C.8)

From (C.7) and (C.8) we have

b0 lim
i↑∞

sTi = (p0 + d0)s−1 +
∞∑
t=0

qt0yt −
∞∑
t=0

qt0ct. (C.9)

Since the right-hand side does not depend on the subsequence {sTi}i∈N, it
follows that limT↑∞ sT exists. This limit belongs to R by C.8.

D Proof of Theorem 6.3

Throughout the proof, we take an equilibrium (p, {ca, sa}a∈A) as given, and
assume that there exists an asset k ∈ K satisfying (5.7), (6.10), and (6.11)
such that bk,0 > 0. We show two lemmas.

Lemma D.1. We have

∀a ∈ A,
∞∑
t=0

qtk,0y
a
k,t <∞. (D.1)
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Proof. Note from (6.2) that for any t ∈ Z+ we have∑
a∈A

yak,t =
∑
a∈A

[
yat +

∑
h∈K:h6=k

(ph,t + dh,t)s
a
h,t−1 −

∑
h∈K:h6=k

ph,ts
a
h,t

]
(D.2)

=
∑
a∈A

yat +
∑
a∈A

∑
h∈K:h6=k

(ph,t + dh,t)s
a
h,t−1 −

∑
a∈A

∑
h∈K:h6=k

ph,ts
a
h,t (D.3)

= yt +
∑

h∈K:h6=k

(ph,t + dh,t)
∑
a∈A

sah,t−1 −
∑

h∈K:h6=k

ph,t
∑
a∈A

sah,t (D.4)

= yt +
∑

h∈K:h6=k

(ph,t + dh,t)sh −
∑

h∈K:h6=k

ph,tsh (D.5)

= yt +
∑

h∈K:h6=k

dh,tsh, (D.6)

where (D.5) uses (5.4). Multiplying through by qtk,0 and summing over t = 0
to T , we obtain

T∑
t=0

qtk,0

[
yt +

∑
h∈K:h6=k

dh,tsh

]
(D.7)

=
T∑
t=0

qtk,0
∑
a∈A

yak,t =
T∑
t=0

∑
a∈A

qtk,0y
a
k,t =

∑
a∈A

T∑
t=0

qtk,0y
a
k,t. (D.8)

Applying limT↑∞ we have

lim
T↑∞

T∑
t=0

qtk,0

[
yt +

∑
h∈K:h6=k

dh,tsh

]
=
∑
a∈A

lim
T↑∞

T∑
t=0

qtk,0y
a
k,t (D.9)

=
∑
a∈A

∞∑
t=0

qtk,0y
a
k,t, (D.10)

where the last equality holds by (6.10). Since the left-hand side of (D.9) is
finite by (6.11), we obtain (D.1).

Lemma D.2. We have (6.3).

Proof. Note from (5.9) and (5.11) that

∞∑
t=1

qtk,0dk,t ≤ pk,0 <∞. (D.11)
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From this and (6.11), we have

∞ >
∞∑
t=0

qtk,0

[
yt +

∑
h∈K:h6=k

shdh,t

]
+
∞∑
t=0

qtk,0skdk,t (D.12)

=
∞∑
t=0

qtk,0

[
yt +

∑
h∈K

shdh,t

]
=
∞∑
t=0

qtk,0
∑
a∈A

cat (D.13)

=
∞∑
t=0

∑
a∈A

qtk,0c
a
t =

∑
a∈A

∞∑
t=0

qtk,0c
a
t , (D.14)

where the second equality in (D.13) uses (5.5). It follows that

∀a ∈ A,
∞∑
t=0

qtk,0c
a
t <∞. (D.15)

By Lemmas C.1 and C.2, we have

bk,0 lim
T↑∞

sk,T = (pk,0 + dk,0)sk,−1 +
∞∑
t=0

qtk,0y
a
t −

∞∑
t=0

qtk,0c
a
t . (D.16)

Since the right-hand side is finite by Lemma D.1 and (D.15), we obtain
(6.3).

To complete the proof of Theorem 6.3, assume (6.12). By Lemma D.2
and Corollary 6.4(a) (or by the proof of Lemma D.2), limt↑∞ s

a
k,t exists in R

for each a ∈ A. Note from (6.12) and (5.4) that∑
a∈A

σak < sk = lim
t↑∞

∑
a∈A

sak,t =
∑
a∈A

lim
t↑∞

sak,t. (D.17)

Hence there exists at least one agent a ∈ A with limt↑∞ s
a
k,t > σak. Thus by

Corollary 6.1(a), we obtain bk,0 = 0.
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