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Abstract

To explain the links between population distribution and economic integration, we construct

a spatial economics model with endogenous fertility. A higher population concentration

increases real wages and child-raising costs, thus lowering the fertility rate. However, people

migrate to more populated regions to obtain higher real wages. We show that mobility across

regions results in more people flowing into highly populated regions, but lowers fertility

rates there. The population growth path resembles a logistic curve in the early phase,

but population decreases in the last phase. Additionally, economic integration leads to

population concentration and decreases population size in the whole economy.
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1. Introduction

It is clear that regional population change is determined by the number of births, deaths,

and population migration. In fact, given an initial population size, we can describe com-

pletely its change over time as sequences of fertility, mortality, inflow, and outflow rates are

determined. Population geography, as in Demko et al. (1970), traditionally has explained

and predicted regional population change simply by measuring these rates. Generally, such

a prediction can be credible if fertility, mortality, inflow, and outflow rates are stable across

time and can be measured with high accuracy. However, economists might be dissatisfied

with simply measuring the rates as accurately as possible.

Economists usually suppose that fertility, mortality, and migration depend on economic

conditions (e.g., income, commodity prices, and levels of economic development,). For ex-

ample, many theoretical macroeconomic studies focus on the relationship between economic

growth and fertility and most such studies find that a negative relationship exists.1 New

Economic Geography (NEG) shows that real income tends to be high in regions with large

markets, and hence, the population tends to concentrate in these regions because of this

potential for higher real income.2 In short, economists may believe that the market has the

power to effect population change and that it is, therefore, not sufficient to conduct an anal-

ysis that ignores the market. The purpose of this paper is to construct a simple benchmark

model that can describe regional population change in a market economy.

Population change itself is a traditional issue in economics. As early as around the turn of

the 19th century, Malthus (1798) pointed out that population growth is curbed by the power

of land to provide human subsistence.3 Since then, as mentioned, economists have conducted

many studies on population change. However, in many cases, they focused on only country-

1Galor and Weil (1996) argue that wages for women are increasing as economic growth progresses, which

raises the opportunity cost for child-rearing and decreases the fertility rate. Becker et al. (1990) propose

that people invest more in human capital and have fewer children with advancing economic growth.
2For details on NEG, see Fujita et al. (1999).
3Malthus was the first to point out that the process of population growth takes the form of a logistic

curve. Even though our model does not consider land, the model shows that the population growth path of

the whole economy takes the form of a logistic curve, which is induced by the market.
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level population change (i.e., they ignored migration) or migration (i.e., they ignored fertility

and mortality). In other words, thus far, natural population change induced by fertility and

mortality has been analyzed independently of social population change induced by migration.

Except for a few studies, these issues have not been addressed simultaneously. In this paper,

to fill this gap, we propose a model that considers not only natural population change but

also social population change.4

We can easily imagine that in the era of Malthus, the movement of people and goods

between regions was difficult. This would justify the exclusion of migration in favor of only

one closed region. However, this approach is clearly not appropriate in considering a modern

economy. Nowadays, people as well as goods can move among regions much more easily;

this is called economic integration. Nevertheless, the majority of economic studies that

address population growth have neglected this aspect. Similarly, approaches that address

economic integration (e.g., NEG) have largely ignored population growth, perhaps because

of the difficulty of addressing it. The absence of migration and population growth from the

literature has rendered research on the impact of economic integration on population change

inaccurate. Therefore, we set out to explore the relationship between economic integration

and population change.

To construct a model to describe regional population change, we must address three

important facts. First, population change and economic conditions differ radically across

regions. In Figure 1(a), we plot total fertility rates of Japan’s 47 prefectures in 2010 according

to per capita income.5 Regional differences are apparent in prefectures’ total fertility rates

and income per capita. Regions with higher per capita income tend to have lower total

fertility rates.6 On the other hand, net migration tends to be higher in regions with higher

4Similar concerns are addressed by Sato and Yamamoto (2005) and Sato (2007). However, their model

assumes that the fertility rate decreases by the externalities of urbanization. This is a shortcoming of their

model because the aim is to describe population change as adjusted by the market.
5We use Ministry of Health, Labour and Welfare (2014) and Statistics Bureau (2013a, 2013b) as date

sources of Figure 1, Figure 2, and Figure 3.
6Someone may concern that some outliers determine the relationship between income per capita and total

fertility rate. However we confirmed that this relationship holds even if we exclude these outliers. We can

say similar things for Figure 1(b) and Figure 3.
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Figure 1: Total Fertility Rate and Net Migration in Japan in 2010

per capita income (see Figure 1(b)). Thus, higher per capita income may have two opposite

effects on regional population changes: lower fertility and higher net migration.

The second important fact is that the existence of differences in regional population

change may change the population distribution across regions over time. Figure 2 describes

the Gini concentration ratio for Japan for 1947–2010, which shows an upward trend in this

period (we can see the same trend in other countries).7 This trend means that unequal popu-

lation distribution across regions becomes larger over time and that people have congregated

in particular regions (e.g., Tokyo).

Finally, even though the total fertility rate differs among regions, its change has a certain

tendency at the country level: it has been declining over time. Figure 2 shows the total

fertility rate of Japan in 1947–2010. It clearly indicates a negative trend of the total fertility

7The Gini concentration ratio is derived using the Lorenz curve, which plots the proportion of the total

population (on the vertical axis) that is cumulatively held in the total inhabitable area of regions (horizontal

axis). Note that the area share is measured by ordering regions according to population density. Here, we

use Japan’s 47 prefectures as regions, but Okinawa is excluded before 1972. Before 1975, inhabitable area

data are not available, so we use 1975 data for inhabitable area before 1975.
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Figure 2: Gini Concentration Ratio and Total Fertility Rate in Japan from 1947 to 2010

rate in this period.8 In particular, we should note that this decline in the total fertility

rate seems to be associated with population concentration. In fact, Galor (2011) points out

that economic development increases the level of urbanization and Schultz (1985) shows that

progress of urbanization reduces the fertility rate.

Thus, the model that we construct in this paper should be able to explain these facts. To

this end, it must consist of multiple regions (at least two) and take into account migration,

fertility, and trade. For this purpose, we construct a basic NEG model with endogenous

fertility, but mortality is excluded from our model for simplicity.

Today, NEG provides the standard model to explain why the distribution of population

and economic activities among regions is radically uneven. In the NEG model, real income

tends to be high in highly populated regions and people migrate to these regions to gain

higher real income. Figure 3 describes the relationship between population density and per

capita income in Japan in 2010. This shows that highly populated regions tend to offer

higher incomes. Moreover, as illustrated in Figure 1(b), net migration tends to be higher

in regions with higher real income. These facts justify use of the NEG model to describe

8The total fertility rate declined sharply in 1966. This is because 1966 was a bingwu year according

to the Chinese calendar; many East Asian people believe that children born in such years will have a bad

personality.
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2010

regional population change.

To endogenize fertility, we employ a framework introduced by Becker (1965) that con-

siders a time allocation problem between working and child-rearing in which parents obtain

utility from the number of children.9 When substitutability between consumption goods and

children is strong, a rise in the real wage reduces the fertility rate by increasing the oppor-

tunity cost of rearing children relative to the price of consumption goods. Note that the

NEG model employs monopolistic competition of the Dixit and Stiglitz (1977) type. Then,

population growth expands the variety of consumption goods, which raises the real wage,

and thus, reduces the fertility rate.10 This mechanism is proposed originally by Maruyama

and Yamamoto (2010), but they do not address regions. We expand this model to the NEG

framework.

Then, using this model, we analyze the regional population change, focusing on the

effects of economic integration (i.e., higher migration and trade freeness among regions).

9The endogenous fertility choice problem is studied by Becker and Lewis (1973), Eckstein and Wolpin

(1985), Becker and Barro (1988), Barro and Becker (1989), Becker et al. (1990), Galor and Weil (1996),

Shoven (2008), and so on.
10For example, Docquier (2004) and Jones and Tertilt (2008) show a negative relationship between income

and the fertility rate in the United States. Borg (1989) finds the same relationship in Korea.
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We show that if people cannot migrate between regions, regional differences related to the

initial population disappear in the long run. This result is contrary to the aforementioned

facts. On the other hand, if migration is permitted, we obtain quite different results. Even

though there are only subtle differences between regions, these differences become sufficiently

large through migration with a snowball effect as the population concentrates in a region

with an initially larger population share. Moreover, the region in which the population

is concentrated has a higher real income, which results in a decreased fertility rate and

increased net migration compared to less concentrated regions. Thus, in the long run, regions

exhibit differences in population change and real income. Typically, higher migration and

trade freeness bring about a more concentrated population, which leads to more regional

differences. Additionally, as population concentration lowers the fertility rate in large regions,

the population in the whole economy is suppressed. These results are consistent with the

facts and imply that economic integration has a huge impact on population change in regional

economies as well as the whole economy.

The remainder of this paper is organized as follows. First, in the following Section 2,

we construct a basic model without time and generations. Then, we discuss agglomeration

force and spatial equilibrium in Section 3. In Section 4, we present an extension of the model

that introduces time and generations for demographic analysis. Numerical simulations are

conducted in Section 5 with several examples. Finally, Section 6 concludes.

2. The Basic Model

In this section, we construct a basic model without time and generations. Consider an

economy with a finite set of regions, R (the number of regions is r). The economy consists

of one differentiated goods sector characterized by monopolistic competition following Dixit

and Stiglitz (1977).

2.1. Preference and Demand

All individuals gain utility from the consumption of a composite of differentiated goods,

X, and their number of children, n. They share the same preference represented by the
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following utility function:

U =

[
αXρ + (1− α)nρ

] 1
ρ

, 0 < α < 1, (1)

where ρ is the substitution parameter, and σ (≡ 1/(1 − ρ)) represents the elasticity of

substitution between the composite differentiated goods and the number of children. α

represents the intensity of the preference for the consumption of differentiated goods. When

ρ is close to zero (i.e., when the utility function is close to the Cobb–Douglas form), α

becomes the expenditure share of differentiated goods.

The composite index X takes the form of a CES function defined over a continuum of

varieties of differentiated goods. Taking x(γ) and Γ as the consumption of each available

variety γ and the set of available varieties respectively, X is given by

X ≡
[∫

Γ

x(γ)ρXdγ

] 1
ρX

, 0 < ρX < 1,

where ρX is the substitution parameter for variety in differentiated goods and σX (≡ 1/(1−

ρX)) is the elasticity of substitution between any two varieties. A smaller ρX (i.e., a smaller

σX) means that differentiated goods are more highly differentiated or that individuals have

a stronger preference for variety.

Individuals have one unit of time. They allocate this time to working and rearing children,

while a positive constant time b must be spent to rear a child. Then, given the wage rate wi

in region i and price pji(γ) for each variety that is produced in region j and sold in region

i, the budget constraint of individuals in region i becomes

∑
j∈R

(∫
Γj

pji(γ)x(γ)dγ

)
≦ wi(1− bn), i ∈ R,

where Γj is the set of varieties produced in region j. The measure of Γj denoted by Nj is

interpreted as the number of varieties produced in region j.

Solving the utility maximization problem, individual demand for both the composite

index and for children in region i are given by

Xi = X(wi, Pi) ≡
µ(wi, Pi)wi

Pi

, i ∈ R,

ni = n(wi, Pi) ≡
1− µ(wi, Pi)

b
, i ∈ R,

(2)
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where Pi is the price index for differentiated goods in region i, which is defined by

Pi ≡

[∑
j∈R

(∫
Γj

pji(γ)
1−σXdγ

)] 1
1−σX

, i ∈ R, (3)

and µ(·) is the expenditure share of the composite differentiated goods, which is given by

µ(wi, Pi) ≡
βP 1−σ

i

βP 1−σ
i + (1− β)(bwi)

1−σ =
β

β + (1− β)(bwi/Pi)
1−σ , i ∈ R,

where β = ασ/ (ασ + (1− α)σ). Then, individual demand in region i for variety γ produced

in region j can be written as

xji(γ) = x(wi, pji(γ), Pi) ≡
µ(wi, Pi)wi

Pi

(
Pi

pji(γ)

)σX

, γ ∈ Γj, j, i ∈ R. (4)

Let us denote the real wage in region i as ωi (≡ wi/Pi). A rise in the real wage has

two opposite effects on the number of children per individual. Clearly, because children are

superior goods, the rise in the real wage increases the number of children (income effect).

The rise in the real wage, however, also increases the opportunity costs of having them,

which reduces the number of children (substitution effect). If the elasticity of substitution

between the composite differentiated goods and the number of children is larger than one

(i.e., σ > 1), this latter effect is sufficiently large to outweigh the former, and thus, a rise in

the real wage reduces the number of children. This can be checked easily by

ωi

n(ωi, 1)

∂n(ωi, 1)

∂ωi

= − ωi

1− µ(ωi, 1)

∂µ(ωi, 1)

∂ωi

= (1− σ)µ(ωi, 1), i ∈ R,

In the remainder of this paper, we restrict the range of parameters to 1 < σ < σX . One

reason for this restriction is, of course, to ensure that a rise in the real wage reduces the

fertility rate. Another reason is to ensure that demand for each variety decreases when the

price index falls (see (4)). If the amount of composite differentiated goods, X, is fixed at a

given level, a fall in the price index always reduces the demand for a single variety because

it is substitutable for other varieties. However, since a fall in the price index also increases

the demand for X, in general, it is unclear whether the demand for a single variety becomes

smaller with a smaller price index. The restriction 1 < σ < σX makes this point clear.

We show in Subsection 2.2 that the equilibrium output of any active firm, q∗, is constant

and that the profits of a single firm become positive or negative as its output becomes
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larger or smaller than q∗. Thus, this limitation is important for the stability of the long-run

equilibrium characterized by the free-entry condition.

Substituting the demand for composite differentiated goods and for children (2) into

utility function (1), we can express the maximized utility as a function of the real wage as

follows:

Vi = V (ωi) ≡
[

ω1−σ
i

ασ + (1− α)σ(bωi)1−σ

] 1
1−σ

, i ∈ R.

Obviously, Vi increases with respect to ωi. In Section 4, we assume that individuals move

to the regions where they can gain higher utility, which is equivalent to assuming that

individuals move to the regions where they can gain higher real wages.

2.2. Production

Next, we turn to the production side of the economy. Each variety γ of differentiated

goods is produced by a monopolistic firm indexed by γ. All firms in all regions have the same

increasing-returns technology, which uses labor only, with a fixed input of f and marginal

input of a. Then, the labor input requirement for the production of a quantity qj(γ) of any

variety γ ∈ Γj at any given region j is given by lj(γ) = f + aqj(γ).

The shipment of differentiated goods between regions must incur transport costs, which

are formalized as iceberg transport costs: that is, if one unit of any variety γ ∈ Γj of

differentiated goods is shipped from region j to region i, 1/τji (τji ≧ 1, τjj = 1, τij = τji)

units of it actually arrive.11 Thus, τji units of the variety must be sent from the origin for

one unit to arrive at the destination.

Given the demand for each variety in (4) and transportation technology, the output of

firm γ ∈ Γj in region j ∈ R is equal to qj(γ) =
∑

i∈R τjixji(γ)Li, where Li is the number of

individuals (workers) in region i. Then, with given prices in each region, firm γ’s profit is

given by

πj(γ) =
∑
i∈R

pji(γ)xji(γ)Li − wj

(
f + a

∑
i∈R

τjixji(γ)Li

)
, j ∈ R.

11The iceberg form of transport costs is first introduced by Von Thünen (1826) and then formalized by

Samuelson (1952).
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Each firm γ chooses its prices, pji(γ), to maximize profit, which leads to a well-known pricing

rule as follows:

pji(γ) = pji ≡
a

ρX
τjiwj, γ ∈ Γj, i, j ∈ R. (5)

We suppose that there is free entry and exit of firms. Then, as long as some firms are

producing, the profits of any active firm must be driven to zero. Given pricing rule (5), the

profit of firm γ in region j becomes

πj(γ) = wj

[
aqj(γ)

σX − 1
− f

]
, γ ∈ Γj, i, j ∈ R.

Therefore, the zero-profit condition ensures that the equilibrium output is constant common

to every active firm in all regions as q∗ = (σX − 1)f/a, which implies that the associated

equilibrium labor input also becomes constant common to every active firm as l∗ ≡ f+aq∗ =

σXf . Note that the labor supply per individual in region j is µ(wj, Pj). Therefore, in

equilibrium, the number of firms located in region j is given by

N∗
j ≡ µ(wj, Pj)λjL

fσX

, j ∈ R, (6)

where L is the total number of workers and λj (≡ Lj/L) is the share of workers in region j.

2.3. Market Equilibrium

We describe the market equilibrium. Using pricing rule (5), we rewrite price index (3) in

the following form:

Pi =
a

ρX

[∑
j∈R

ϕjiNjw
1−σX
j

] 1
1−σX

, i ∈ R, (7)

where ϕji (≡ τ 1−σX
ji ∈ (0, 1]) is a measure of the freeness of trade from region j to region i,

which increases as τji falls and is equal to 1 when trade is free (i.e., τji = 1). Thus, from (6),

we can express region i’s price index as a function of ϕi = (ϕ1i, · · · , ϕri), L, λ = (λ1, · · · , λr),

w = (w1, · · · , wr) and µ = (µ1, · · · , µr) as follows:

Pi = P (ϕi, L,λ,w,µ) ≡ a

ρX

[
L

fσX

∑
j∈R

ϕjiµjλjw
1−σX
j

] 1
1−σX

, i ∈ R, (8)

where µj = µ(wj, Pj).
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Because the fact that firms make no profits is equivalent to the condition that they

produce equilibrium output q∗, any active firm in region i must allocate q∗ to consumers

in each region, that is,
∑

j∈R τijxij(γ)Lj = q∗, which yields the following wage equation

(substituting the demand function for each variety (4) and pricing rule (5)):

wi = wP
i ≡

(
a

ρX

) 1−σX
σX

[
1

σXf

∑
j∈R

ϕijYjP
σX−1
j

] 1
σX

, i ∈ R, (9)

where Yj (≡ wjµjLj) is the income of region j. Given the income levels, price indexes, and

trade freeness, wP
i gives the wage rate that firms can afford to pay in region i. In the short

run, the actual wage rate in region i may differ from wP
i . When the actual wage rate in region

i is lower than wP
i , firms in region i can gain rent owing to being protected from competition

with other firms. In this case, however, through the entry of firms, the wage rate in region

i must be adjusted to wP
i , which cancel out the rent in the long run. In this regard, we call

wP
i the Wage Potential in region i; this is the wage rate that workers potentially can gain

in region i. Substituting (8) and Yj = wjµjλjL, region i’s wage potential can be written as

a function of ϕ1, · · · , ϕr, λ, w and µ as follows:

wP
i (ϕ1, · · · ,ϕr,λ,w,µ) ≡

[∑
j∈R

ϕijµjλjwj∑
k∈R ϕkjµkλkw

1−σX
k

] 1
σX

, i ∈ R.

Then the market equilibrium is given by

µ (w∗
i , P (ϕi, L,λ,w

∗,µ∗)) = µ∗
i , i ∈ R,

wP
i (ϕ1, · · · ,ϕr,λ,w

∗,µ∗) = w∗
i , i ∈ R.

We can then express w∗ and µ∗ as a function of ϕ1, · · · , ϕr, L and λ. Clearly, if w∗ is

an equilibrium wage rate vector, for any scalar c > 0, cw∗ is also an equilibrium wage rate

vector. Hence, without loss of generality, we can normalize wage rates as
∑

i∈R wi = 1. We

can prove the following proposition.

Proposition 1. Suppose that 1 < σ < σX holds. Then, for any ϕ1, · · · , ϕr (0 < ϕij <

1, i, j ∈ R), L > 0 and λ (0 < λi < 1,
∑

i∈R λi = 1, i ∈ R), the equilibrium wage rate vector,

w∗, exists and it is always in Rr
++. In particular, for two-region case, the equilibrium wage

ratio, w∗
1/w

∗
2, is determined uniquely.

Proof See Appendix A.
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3. Agglomeration Force and Spatial Equilibrium

3.1. Agglomeration Force: Price Index Effect and Home Market Effect

We now explore the agglomeration force in the economy, which causes a concentration

of the population in particular regions. First, suppose that a fraction of firms in region j

changes their location to region i, holding other things constant. Then, the relationship

between the change in the number of firms in region j and that in region i is represented

by dNj = −dNi. Using this relationship and differentiating price index (7) while keeping all

other things constant, we obtain

Ni

Pi

dPi

dNi

=
Ni

σX − 1

ϕjiw
1−σX
j − w1−σX

i∑
k∈R ϕkiNkw

1−σX
k

⋚ 0 ⇔
(
wi

wj

)1−σX

⋛ ϕji, i, j ∈ R.

Thus, when the trade freeness from region j to region i is sufficiently low, the price index of

region i declines because of the relocation of firms. In particular, if the wage rates in region

j and region i are the same, the price index in region i always falls. This is called the Price

Index Effect ; it implies that, all other things being equal, the price index becomes lower

in a region with the larger number of firms because a smaller proportion of this region’s

consumption of differentiated goods incurs transport costs.

Next, suppose that a fraction of the income in region j is transferred to region i and that

all other things are constant. Then, the relationship between the change in the income level

of region j and that of region i is represented by dYj = −dYi. Using this relationship, differ-

entiating wage potential (9), and keeping all other things constant, we obtain the following

relationship:

Yi

wP
i

dwP
i

dYi

=
Yi

σX

P σX−1
i − ϕijP

σX−1
j∑

k∈R ϕikYkP
σX−1
k

⋛ 0 ⇔
(
Pi

Pj

)σX−1

⋛ ϕij, i, j ∈ R.

Thus, when the trade freeness from region i to region j is sufficiently low, the wage potential

in region i rises because of the transfer of income. Specifically, if the price indexes are the

same between regions j and i, the wage potential always rises. This is called the Home

Market Effect ; it implies that, all other things being equal, the wage potential becomes

higher in a region with the larger home market and the wage rate in this region tends to be

high.
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Figure 4 depicts the circular causality in the spatial agglomeration. Because the region

with the larger number of firms has the lower cost of living, consumers migrate to that region.

This, in turn, induces an increase in the market size of the region with the larger number

of firms. On the other hand, because the region with the larger market has the higher wage

potential, workers and firms flow into it. This enlarges the number of firms and the size

of the market in that region. Obviously, this circular causality leads to a concentration of

population in particular regions.

In the above discussion, we arbitrarily hold some endogenous variables constant. Un-

fortunately, since these endogenous variables cannot be constant in general equilibrium, the

price index effect and the home market effect may not hold.12 However, for two-region case,

we obtain the following proposition:

Proposition 2. Suppose r = 2 and 1 < σ < σX . Then, the equilibrium wage ratio, w∗
1/w

∗
2,

and the equilibrium real wage ratio, ω∗
1/ω

∗
2, monotonically increase with respect to the share

of workers of region 1, while the equilibrium price index ratio, P ∗
1 /P

∗
2 , decreases. When

both regions have the same share of workers, w∗
1/w

∗
2, ω∗

1/ω
∗
2 and P ∗

1 /P
∗
2 are equal to one.

In addition, when λ1 > λ2 (λ1 < λ2) holds, an increase in the total number of workers, L,

reduces (raises) w∗
1/w

∗
2 and ω∗

1/ω
∗
2, but raises (reduces) P ∗

1 /P
∗
2 .

12Conditions under which the home market effect holds are studied by Davis (1998), Yu (2005) and Behrens

et al. (2009).
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Proof See Appendix B.

Proposition 2 states that population concentration is always the cause of the wider real

wage gap between regions, while population growth works as a device that reduces the

regional gap. Therefore, when the economy is in a phase in which population grows rapidly,

a regional gap is not apparent, which leads to a lower population concentration. However,

if population growth stops, the regional gap caused by the difference in population share

is actualized and population concentration advances rapidly. Especially, in a phase where

population decreases, regional gap rapidly expands.

3.2. Spatial Equilibrium

According to the usual NEG model, spatial equilibrium is defined as the state in which

no agents have an incentive to change location. In this regard, in the spatial equilibrium,

the share of workers in each region, λs
i , is defined by(

ωs
i

ω̄s
− 1

)
≦ 0 and

(
ωs
i

ω̄s
− 1

)
λs
i = 0, i ∈ R, (10)

where ω̄ (≡
∑

i∈R λiωi) is the average real wage among regions and the superscript “s”

represents the value in the spatial equilibrium. At the market equilibrium, the wage ratio

w∗
i /w

∗
j and the real wage ratio ω∗

i /ω
∗
j are given by (see Appendix A.2.2.)

w∗
i

w∗
j

=

[∑
k∈R ϕkiµ

∗
kλk (w

∗
k)

1−σX∑
k∈R ϕkjµ∗

kλk (w∗
k)

1−σX

] 1
σX

and
ω∗
i

ω∗
j

=

(
w∗

i

w∗
j

) 2σX−1

σX−1

, i, j ∈ R. (11)

Thus, if workers are fully agglomerated in region i (i.e., λi = 1 and λj = 0 for j ̸= i), then

we have

ω∗
i

ω̄∗ = 1 and
ω∗
j

ω̄∗ =

(
ϕij

ϕii

) 1
σX

2σX−1

σX−1

≦ 1, i, j ∈ R, j ̸= i,

which means that full agglomeration in any region i ∈ R is always a spatial equilibrium. It

is difficult, unfortunately, to find all spatial equilibrium in general. However, we can obtain

the following proposition for a two-region case:
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Proposition 3. Suppose r = 2 and 1 < σ < σX . Then, there exists only three spatial equi-

librium: two fully agglomerated configurations and one symmetry configuration, as follows

(λs
1, λ

s
2) =


(1, 0)

(0, 1)

(1/2, 1/2)

.

Proof This is obvious from (10), (11) and Proposition 2.

4. Extension of the Model for Demographic Analysis

We now introduce time and generations to the model. All individual lives for two periods:

childhood and adulthood. We denote the number of adults in region i in period t as Li,t and

the total number of adults in time t as Lt (=
∑

i∈R Li,t). In adulthood, individuals choose

where they live, supply labor in those regions, and decide their amount of consumption and

number of children.

4.1. Population Dynamics

At the beginning of period t, each adult in region i has ni,t children, which means ni,t

also represents the fertility rate in region i at time t. Thus, region i has ni,tLi,t number of

children at time t and the total number of children in the economy at time t becomes

∑
i∈R

ni,tLi,t =

(∑
i∈R

λi,tni,t

)
Lt = n̄tLt, t ∈ N,

where λi,t (≡ Li,t/Lt) is region i’s share of adults (workers) at time t and n̄t (≡
∑

i∈R λi,tni,t)

is the average fertility rate in the economy at time t. Since n̄tLt children grow to adulthood

in the economy at the beginning of period t+ 1, we have the following law of motion of the

total number of adults:

Lt+1 = n̄tLt =

(
t∏

s=0

n̄s

)
L0, t ∈ N. (12)
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4.2. Dynamics of Inter-Regional Population Movement

Next, we consider the process of inter-regional migration. Workers choose the regions in

which they live and subsequently choose their number of children and amount of consumption

in that region.

We first define λpre
i,t+1 as region i’s share of pre-movement workers at time t + 1 which is

also region i’s share of children at time t:

λpre
i,t+1 ≡

ni,tLi,t∑
j∈R nj,tLj,t

=
λi,tni,t

n̄t

, i ∈ R, t ∈ N. (13)

Similar to Fujita et al. (1999), we assume workers gradually move to regions where they

can gain a higher real wage. We capture this adjustment process by the following replicator

dynamics:13

λi,t+1 − λpre
i,t+1 = ν

(
ωi,t

ω̄t

− 1

)
λi,t, i ∈ R, t ∈ N,

where ω̄t (≡
∑

i∈R λi,tωi,t) is the average real wage among regions at time t and ν (> 0) is

the adjustment parameter which we call freeness of migration. Using (13), we can rewrite

the above system as follows:14

λi,t+1 − λi,t =

(
ni,t

n̄t

− 1 + ν

(
ωi,t

ω̄t

− 1

))
λi,t, i ∈ R, t ∈ N. (14)

Then, we have the following law of motion of the number of workers in region i:

Li,t+1 =

(
ni,t

n̄t

+ ν

(
ωi,t

ω̄t

− 1

))
n̄tLi,t, i ∈ R t ∈ N,

which implies that the total change of workers in region i at time t, TCi,t (≡ Li,t+1 − Li,t),

can be divided into natural change, NCi,t, and social change, SCi,t, as TCi,t = NCi,t+SCi,t,

where NCi,t and SCi,t are defined by

NCi,t = (ni,t − 1)Li,t, i ∈ R, t ∈ N,

SCi,t = ν

(
ωi,t

ω̄t

− 1

)
n̄tLi,t i ∈ R, t ∈ N.

13The replicator dynamics are used often in evolutionary game theory (see Weibull (1995)).
14The dynamics given by (14) are equivalent essentially to the replicator dynamics, but the natural change

of the population is introduced into the equation.
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4.3. Definition of Steady State

In a steady state, both the total number of workers in the economy and the share of

workers in each region are stationary such that Lt+1 = Lt = L∗∗ and λi,t+1 = λi,t = λ∗∗
i .

From (12) and (14), this steady state is given by

n̄∗∗ = 1 and

(
n∗∗
i

n̄∗∗ − 1 + ν

(
ω∗∗
i

ω̄∗∗ − 1

))
λ∗∗
i = 0, i ∈ R, (15)

where the superscript “∗∗” represents the value in the steady state.

Note that, in the spatial equilibrium, the real wage is equalized in all regions that have a

positive share, which leads to identical fertility rates in these regions. Therefore, the second

condition of (15) is satisfied in the spatial equilibrium. Especially, for the two-region case,

we have the following three steady states that are the spatial equilibrium (see Appendix C):

(L∗∗, λ∗∗
1 , λ∗∗

2 ) =


(D, 1, 0)

(D, 0, 1)

(2D/(1 + ϕ), 1/2, 1/2)

, (16)

where ϕ = ϕ12 = ϕ21 and D is given by

D ≡
(
1− β

β

)σX−1

σ−1
(

a

ρX

)σX−1(
1− b

b

)σX−σ

σ−1 fσX

bσX
.

However, the steady state does not have to be the spatial equilibrium. If some region has

a higher real wage, there will be a population inflow, but the fertility rate will be lower in that

region. Therefore, it is possible for the second condition of (15) to be satisfied in a steady

state that is not the spatial equilibrium. In fact, we can obtain the following proposition for

the two-region case:

Proposition 4. Suppose r = 2, 1 < σ < σX and 0 < b < 1. Then, a steady state exists such

that 1/2 < λ∗∗
1 < 1 or 0 < λ∗∗

1 < 1/2, if either of the following (a) or (b) is satisfied:

(a) : 0 < ϕ < 1, νb < ν < νs

(b) : νb < ν <
1− b

b
, 0 < ϕ < ϕs

,
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Figure 5: Relationship between νs and ϕs

where νs and νb are given by

νs ≡
1− b

b+ (1− b)ϕ
σ−1
σX

2σX−1

σX−1

1− ϕ
σ−1
σX

2σX−1

σX−1

1− ϕ
1

σX

2σX−1

σX−1

νb ≡ (σ − 1)(1− b)

,

and ϕs is defined implicitly by

(1− b)− bν − (1− b)(1 + ν)ϕ
σ−1
σX

2σX−1

σX−1
s + ν

[
bϕ

1
σX

2σX−1

σX−1
s + (1− b)ϕ

σ
σX

2σX−1

σX−1
s

]
= 0.

Proof See Appendix D.

(a) and (b) are the conditions that make both fully agglomerated steady states (λ∗∗
1 = 0

and λ∗∗
1 = 1) and the symmetric steady state (λ∗∗

1 = 1/2) unstable. Thus, if either of (a)

or (b) hold, partial agglomeration appears as a steady state. Since Proposition 2 ensures

that the larger region has the higher real wage compared to the smaller region, this partial

agglomeration is obviously not spatial equilibrium.

ϕs is what Fujita et al. (1999) call the sustain point ; that is, if trade freeness ϕ is

higher than the sustain point ϕs, fully agglomerated configurations become sustainable. We

can interpret νs analogically as the sustain point of migration freeness. In addition, νb is

analogous to what Fujita et al. (1999) call the break point ; that is, if migration freeness

is higher than the break point, stable symmetry configuration is broken. The relationship

between νs and ϕs is described in Figure 5.
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Figure 6: Demographics with No Migration

σ = 1.2, σX = 4, α = 0.7, b = 0.25, ϕ = 0.25, f = 1/3, a = 1/3, ν = 0

5. Numerical Examples

In this section, we analyze how economic integration affects population demographics.

Since our model is highly non-linear, it is difficult to obtain analytical results. Therefore, we

employ a numerical simulation method and show some examples.

5.1. The Case of Two-Region

Here, we show a two-region case, first with no migration and then with migration. Figure

6 describes the demographics for no migration, in which workers cannot move between regions

(i.e., ν = 0). The economy initially has one unit of labor (workers) and region 1’s initial share

of workers is set as 0.9. Then, we illustrate the dynamic paths of the share of workers (λi,t),

fertility rate (ni,t), real wage (ωi,t), number of workers (Li,t), and natural change (NCi,t) and

social change (SCi,t) in each region.
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In the two-region case, the home market effect and the price index effect always make the

real wage higher in the highly populated region (see Proposition 2). Thus, the fertility rate

in the highly populated region will be lower than in the less populated region since a higher

real wage rate means a lower fertility rate. Therefore, the real wage of region 1 is higher

than that of region 2, while it leads to a lower fertility rate in region 1 compared to region 2.

Consequently, if workers cannot move between regions, the share of workers would equalize

gradually over time (see Figure 6(a)). In this regard, we call this dispersion force; this is the

power that makes the population distribution over the regions tend toward uniformity.15

On the other hand, the number of workers monotonically increases in regions 1 and 2,

which raises real wages in both regions (see Figures 6(c) and 6(d)). This rise of the real

wage results in fertility rates decreasing (see Figure 6(b)). Natural changes in regions 1

and 2 become large in the early phase, but reach their peak at a certain point in time,

and thereafter, decrease until zero (see Figure 6(e)). Because we consider the case of no

migration, the social change is always zero (see Figure 6(f)).

Next, we consider the case with migration, in which workers can move between regions.

Figure 7 describes the dynamic paths of the variables under the same parameters as the case

of no migration except for the freeness of migration, ν.

Permitting the migration of workers greatly changes the dynamic path from Figure 6.

In Figure 7, we set the initial share of workers to be almost the same in both regions, but

the share in region 1 is slightly larger.16 As the home market effect and the price index

effect make the real wage of region 1 higher than that of region 2, the social change, SCi,t,

is positive in region 1, but negative in region 2 (see Figure 7(f)). This agglomeration force

encourages the share of workers in region 1 to increase over time (see Figure 7(a)). On

the other hand, the natural change, NCi,t, is small in region 1 and large in region 2 (see

Figure 7(e)) since a higher real wage reduces the fertility rate (dispersion force). When the

difference in the share of workers between regions becomes large, the agglomeration force

and the dispersion force are balanced and the economy is in a steady state. Interestingly, in

15Note that, in NEG, “dispersion force” is used usually to describe the power that provides a clear incentive

to migrate from large to small regions (e.g., congestion).
16We set λ1,0 = 1001/2000 and λ2,0 = 999/2000.
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Figure 7: Demographics with Migration

σ = 1.2, σX = 4, α = 0.7, b = 0.25, ϕ = 0.25, f = 1/3, a = 1/3, ν = 0.2

this steady state, the social change of region 1 is positive, which means that this economy

is not in spatial equilibrium. In particular, in the steady state, the two regions differ in

characteristics: one has a positive natural change but a negative social change, while the

other has a positive social change but a negative natural change.

The paths of the number of workers in the whole economy in the cases of no migration

and migration are described in Figure 7. In the case of no migration (i.e., ν = 0), the path

has the form of a logistic curve (see Figure 8(a)). When there are few workers in the economy,

since the real wage is low, the fertility rate is high and the population grows rapidly. As

the population grows, the real wage becomes higher and this suppresses the fertility rate.

Therefore, population growth gradually decreases and the economy reaches a steady state.

However, in the case of migration (i.e., ν > 0), the shape of the path differs, as in Figure

8(b). The population reaches its peak before the steady state and then decreases. In the

early phase, because the difference in the shares of workers between regions is not sizable,
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Figure 8: Number of Workers in the Whole Economy

σ = 1.2, σX = 4, α = 0.7, b = 0.25, ϕ = 0.25, f = 1/3, a = 1/3 ν = 0.2

the real wages in both regions are nearly the same. Hence, the migration rate of workers is

small and the population growth path in the economy is similar to that of the case of no

migration. Figure 8(c) illustrates this phase, which corresponds to the shaded area of Figure

8(b). In this phase, the path of population growth is also in the form of a logistic curve.

After the early phase, however, workers migrate to the region with the higher real wage

and gradually congregate there, which increases the real wage in the highly populated region

(region 1) and decreases the real wage in the less populated region (region 2). This brings

about further migration and reduces the fertility rate in region 1. When the difference

between the shares of workers becomes large enough, the fertility rate is less than one in

region 1. Thus, total population growth becomes negative, even though region 2 has a

fertility rate higher than one, and this overall negative growth continues until the negative

natural change in region 1 is canceled out by positive natural change in region 2.

5.2. How Integration of the Economy Affects Population Size and Spatial Structure

Next, we show how integration of the economy affects population size and spatial struc-

ture. We examine how the steady state is affected by changing trade freeness, ϕ, and

migration freeness, ν.17

First, we show the effects of changing trade freeness. Figure 9 describes the steady

17Using the initial distribution of workers and all parameters in the migration case in Subsection 5.1, we

calculate the steady state corresponding to each ϕ and ν. Note that ϕ = ϕ12 = ϕ21.
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Figure 9: Effects of the Change of Trade Freeness

σ = 1.2, σX = 4, α = 0.7, b = 0.25, f = 1/3, a = 1/3, ν = 0.2

state corresponding to each ϕ. Increased trade freeness increases the share of workers in

region 1 (Figure 9(a)). At levels higher than ϕ = ϕs ≈ 0.39, the economy completely

agglomerates. We depict the number of workers in Figure 9(d). Because trade of goods

incurs few transportation costs with higher trade freeness, an increase in the trade freeness

directly increases the real wage, which reduces the fertility rate. Hence, the steady-state

total number of workers decreases due to an increase of trade freeness. Since this reduction

of the total number of workers is large, even in region 1, the number of workers decreases

although an increase in trade freeness induces the population concentration to region 1.

Hereby, the steady-state fertility rate increases in region 1 because the reduction of the

total number of workers decreases the real wage (Figures 9(b) and 9(c)). Moreover, the

real wage gap decreases as the trade freeness increases, which brings about reduction in

the regional differences of natural change and social change (Figure 9(e) and 9(f)). After
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Figure 10: Effects of Change of the Freeness of Migration

σ = 1.2, σX = 4, α = 0.7, b = 0.25, ϕ = 0.25, f = 2/3, a = 1/3

complete agglomeration, trade freeness does not affect the number of workers, natural change

and social change in the steady state since, in this case, there is only one region in the

economy.

Next, we show the effects of changing the freeness of migration, ν. Figure 10(a) describes

the share of workers in the steady state. If freeness of migration is small, it is difficult for

workers to move even if there is a difference in the real wages between regions. However,

the fertility rate is lower in the highly populated regions; this occurs irrespective of the

level of migration freeness. Hence, the distribution of workers between regions tends to

be uniform in the steady state, as in the case of no migration. Conversely, if freeness of

migration is sufficiently large, a positive social change always overcomes a negative natural

change in the large region. Thus, the steady state of the spatial structure of the economy

is full agglomeration. Given moderate freeness of migration (0.15 = νb < ν < νs ≈ 0.23),
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the economy does not converge to be either symmetric and in full agglomeration, but it

converges to be in partial agglomeration.

Figures 10 (c) and (d) show the real wage and the number of workers. Unlike the trade

freeness, the migration freeness does not affect the real wage directly. However, the real

wage is affected by the distribution of workers. Higher freeness of migration implies higher

population concentration in region 1, which raises the real wage in region 1 given the popu-

lation. In addition, a higher real wage induces the lower fertility rate. Therefore, an increase

in migration freeness decreases the steady-state total number of workers through lowering

the fertility rate in region 1 (Figure 10(b)). In partial agglomeration near the symmetry

equilibrium, an increase of freeness of migration increases the regional difference of social

change, not only directly, but also indirectly through population concentration which raises

the real wage gap. This large gap of the real wage also leads to a large difference of natural

change between regions. On the other hand, in partial agglomeration near the full agglomer-

ation, the real wage gap decreases as the freeness of migration increases, which brings about

reduced regional differences of natural and social change. Therefore, as freeness of migra-

tion increases, the regional differences of natural change and social change increases at first

and then they decrease when the spatial structure is sufficiently close to full agglomeration

(Figures 10(e) and 10(f)). When the economy reaches the full agglomeration natural change

and social change become zero.

From the above discussion, we see that if the economy is more integrated, the number of

workers decreases. This is why economic integration not only raises the real wage directly

(consider the effects of a rise of ϕ) but also induces spatial agglomeration which in turn raises

the real wage. Hence, the fertility rate decreases given the population, which results in a

decline in the total number of workers in the steady state. This result cannot be obtained

in models that consider only natural change or only social change.

5.3. The Case of Multi-Regions

Finally, we examine the multi-region case. If there are many regions, we can consider

various geometries of the economy. Here, however, we focus on the special case known as
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Figure 11: Conceptual Diagram of the Race Track Economy (r is an even number)

the racetrack economy which is described in Figure 11.18 Each region is arranged at equal

intervals on the circumference of a circle and transportation is carried out only along the

circumference within the shortest distance. Since we employ iceberg-type transportation

costs and regions are located along the circumference at even intervals, the trade freeness

between regions i and j becomes

ϕij =

ϕ|i−j| if |i− j| ≦ r/2

ϕr−|i−j| if |i− j| > r/2

,

where ϕ ∈ (0, 1] is constant.

In this economy, we can easily confirm that the uniform distribution of workers, called the

flat earth in Fujita et al. (1999), is always a spatial equilibrium. However, the flat earth is not

always sustainable; that is, the symmetric spatial equilibrium may turn out to be unstable.

As Figure 12 shows, we start the simulation from an almost flat but randomly deviated

distribution of workers.19 Even though the deviation is very small, the circular causality of

agglomeration shown in Figure 4 can break the flat earth: an almost even distribution of

18The racetrack economy is first introduced in NEG by Krugman (1993).
19First we draw Li randomly from the interval [0.95, 1.05]. Then we normalize the total number of workers

to one.
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Figure 12: Multi-Region Case

σ = 1.2, σX = 4, α = 0.7, b = 0.25, ϕ = 0.95, f = 1/3, a = 1/3, ν = 0.2, r = 100

workers eventually develops local concentration of workers. Figure 12(a) shows this process,

in which 100 regions are arranged along the front axis in numerical order and the share

of workers in each region is indicated by the vertical axis. The almost flat earth evolves

over time into a very uneven spatial structure in which workers become concentrated in two

regions that are positioned opposite to each other on the circumference.

While this result may appear to be the same as that obtained by Fujita et al. (1999),

there are some major differences. Figure 12(c) illustrates the social change of each region over

time. It shows that workers migrate from small regions to large regions and that the social

change of the largest region is extremely positive even after a sufficiently long time. As a

result, the region that initially has the largest number of workers tends to be extremely large

in the steady state. It has been noted that workers flow from the smaller of two regions in

which workers are concentrated. The smaller region has a large share of workers in the steady

state because its natural change is highly positive. Figure 12(b) shows the natural change

of each region over time. When workers concentrate in one region, the real wage becomes

lower in the opposite region since a larger fraction of consumption must incur transportation

costs. This leads to a higher fertility rate and increases the natural change in the region

that is positioned opposite to the region with the largest number of workers. Therefore, the

two regions in which workers are concentrated have markedly different characteristics and

sizes. These results can be obtained only by considering the endogenous fertility rate, which

is ignored in Fujita et al. (1999).
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6. Conclusion

In this paper, we constructed a model to describe regional population changes in a market

economy. Using this model, the effects of economic integration on population change were

analyzed.

If workers can migrate among regions, then regional differences in the real wage, the

natural population change, and the social population change become larger with a snowball

effect, even though there are only subtle differences initially. The population concentrates in

the region that initially has a larger population share. The region in which the population

concentrates has a higher real wage, which results in a lower fertility rate and higher net

migration compared to other less concentrated regions. Thus, regions have very different

population changes. In particular, the regional difference in the real wage does not disappear

even in the long run, which means that the steady state is not spatial equilibrium; that is,

workers have an incentive to change their location. This result differs widely from the usual

NEG model and is consistent with the facts we presented in the introduction, which enhances

the legitimacy of our model. In addition, we derived a prediction for the population growth

path of the whole economy; it resembles a logistic curve in the early phase, but the population

decreases in the last phase.

In addition, we showed that high freeness to migrate and trade of goods lead to population

concentration and decrease of the total population. If inter-regional migration is permitted,

workers would move to regions where they could earn higher real wages. This increases the

populations of regions with higher real wages. Moreover, the existence of transportation

costs leads to higher real wages in highly populated regions compared to less-populated

regions since a larger fraction of goods must incur transportation costs in the latter case.

This circular causality induces a population concentration in a particular region. Specifically,

we showed that the greater is the freeness of migration and trade of goods, the more the

population is concentrated. Furthermore, higher trade freeness means a higher real wage

because trade of goods incurs few transportation costs, which implies a lower fertility rate

given the population. Therefore, an increase of trade freeness decreases the total population

in the steady state. On the other hand, higher freeness of migration itself does not mean

a higher real wage directly. However, by concentrating the population, the fertility rate in
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the higher populated region decreases given the population. Hence, in the steady state, the

total population decreases.

In our model, we do not consider urban costs. Even though urban costs are important

factors for people who choose their locations and number of children, we omitted them for

simplicity. In addition, in this paper, we dealt with only two overlapping generations, that

is, childhood and adulthood. We paid little attention to the composition of the population.

In demographic studies, the composition of the population is typically a matter of primary

importance, as its structure changes over time just as its size and distribution do. However,

for simplicity, we omitted population structure from our analysis. In spite of this limitation,

we believe that our analysis identifies new aspects of the relationship between economic

integration and population change. We leave the consideration of urban costs and population

structure for future research.

Appendix A. Proof of Proposition 1

We divide the problem into two steps. In the first step, under condition 1 < σ < σX , we

prove that; for all L > 0, λ (0 < λi < 1,
∑

i∈R λi = 1, i ∈ R) and w ∈ Rr
++, there exist µ

uniquely such that

µ (wi, Pi(L,λ,w,µ)) = µi > 0, i ∈ R.

This µ can be express as a function of L, λ and w as µ = M(L,λ,w). Then, in the second

step, we show the existence of the equilibrium wage vector w∗ ∈ Rr
++ which is given by

wP
i (λ,w

∗,M(L,λ,w∗)) = w∗
i , i ∈ R.

Appendix A.1. The first step

For given L > 0, λ (0 < λi < 1,
∑

i∈R λi = 1, i ∈ R) and w ∈ Rr
++, we define a function

Fi : [0, 1]
r → [0, 1] as follows:

∀µ ∈ I ≡ [0, 1]r : Fi(µ) =

µ (wi, Pi(L,λ,w,µ)) if µ ̸= 0

0 if µ = 0

, i ∈ R,
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where µ(wi, Pi) and Pi(L,λ,w,µ) are defined by

µ(wi, Pi) ≡
βP 1−σ

i

βP 1−σ
i + (1− β)(bwi)

1−σ , i ∈ R,

Pi(L,λ,w,µ) ≡ a

ρX

[
L

fσX

∑
j∈R

ϕjiµjλjw
1−σX
j

] 1
1−σX

, i ∈ R.

If 1 < σ < σX holds, we have

lim
µ→0

Pi(L,λ,w,µ) = ∞ and lim
Pi→∞

µ(wi, Pi) = 0, i ∈ R,

which means that F (·) = (F1(·), · · · , Fr(·)) is a continuous function from I to I.

Let us define a function G(·) = (G1(·), · · · , Gr(·)) as follows:

∀µ ∈ I : Gi(µ) ≡ Fi(µ)− µi, i ∈ R,

We then show that there exists µ ∈ intI uniquely such that G(µ) = 0. Note that because

when we write µ−i ≡ (µ1, · · · , µi−1, µi+1, · · · , µr) and µ = (µi;µ−i) for all i ∈ R,

∀µ−i ∈ [0, 1]r−1 : µ−i ̸= 0 =⇒ Gi(0;µ−i) > 0, i ∈ R,

∀µ−i ∈ [0, 1]r−1 : Gi(1;µ−i) < 0, i ∈ R,
(A.1)

are satisfied, the no boundary points of I ever become roots of G except µ = 0.

To show the existence and uniqueness of the root of G, we construct closed and bounded

intervals on Rr, J1, J2, · · · that satisfy I ⊃ J1 ⊃ J2 ⊃ · · · and J ≡ limn→∞ Jn = {c} where

G(c) = 0, and show that I − J never contains the root of G except µ = 0.

For all µ ∈ I, the partial differentiation of Fi with respect to µj > 0 becomes

Fij(µ) ≡
∂Fi(µ)

∂µj

=
σ − 1

σX − 1

Fi(µ)(1− Fi(µ))

µj

ϕjiµjλjw
1−σX
j∑

k∈R ϕkiµkλkw
1−σX
k

, i, j ∈ R. (A.2)

Hence, for all i ∈ R we have

lim
µi→0

∂Gi(µi;0)

∂µi

= lim
µi→0

(
σ − 1

σX − 1

Fi(µi;0) (1− Fi(µi;0))

µi

− 1

)
=

σ − 1

σX − 1

(
lim
µi→0

Fi(µi;0)

µi

)
− 1

= ∞,

(A.3)
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where the last equality holds under 1 < σ < σX . Together with Gi(0;0) = 0, (A.3) implies

that real numbers ε1, · · · , εr exist, which are sufficiently close to zero and satisfy the following

Gi(µi;0) > 0, µi ∈ (0, εi], i ∈ R.

On the other hand, from (A.1), Gi(1;0) < 0 holds for all i ∈ R. Thus, we have µ1
i
∈ (εi, 1)

which satisfies Gi(µ
1
i
;0) = 0. Because of (A.2), ∂Gi(µ)/∂µi < 0 at any point µ that satisfies

Gi(µ) = 0. Hence, such µ1
i
is unique. This implies:

Gi(µ
′′

i ;0) < 0 < Gi(µ
′

i;0), µ
′

i ∈ (0, µ1

i
), µ

′′

i ∈ (µ1

i
, 1], i ∈ R.

Therefore, because under 1 < σ < σX it holds that

∀µ′
,µ

′′ ∈ I : µ
′ ≦ µ

′′
and µ

′ ̸= µ
′′
=⇒ F (µ

′
) << F (µ

′′
), (A.4)

we have the following for all i ∈ R:

(µi;µ−i) ̸= (µ1

i
;0), (0;0) =⇒ Gi(µi;µ−i) > 0, µi ∈ [0, µ1

i
], µ−i ∈ [0, 1]r−1. (A.5)

In addition, we can show that µ̄1
i ∈ (0, 1) exists uniquely, which satisfies Gi(µ̄

1
i ;1) = 0

and

Gi(µ
′′

i ;1) < 0 < Gi(µ
′

i;1), µ
′

i ∈ [0, µ̄1
i ), µ

′′

i ∈ (µ̄1
i , 1], i ∈ R.

Then using (A.4), we have the following relationship for all i ∈ R:

(µi;µ−i) ̸= (µ̄1
i ;1) =⇒ Gi(µi;µ−i) < 0, µi ∈ [µ̄1

i , 1], µ−i ∈ [0, 1]r−1. (A.6)

Note that µ1
i
< µ̄1

i holds for all i ∈ R. In fact, if µ1
i
≧ µ̄1

i holds, then we have

0 < Gi(µ̄
1
i ;µ−i) < 0, µ−i ∈ (0, 1)r−1, i ∈ R,

where the first inequality is due to (A.5) while the second inequality is derived from (A.6).

However, this relationship is a contradiction. Thus, we can define J1 as J1 ≡
∏r

i=1[µ
1
i
, µ̄1

i ],

and (A.5) and (A.6) imply that the root of G does not exist in I − J1 except µ = 0.

Therefore, we only need to search for the root of G in J1.
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Next, we define J2 in a similar way. Let us denote the vectors (µ1
1
, · · · , µ1

i−1
, µ1

i+1
, · · · , µ1

r
)

and (µ̄1
1, · · · , µ̄1

i−1, µ̄
1
i+1, · · · , µ̄1

r) by µ1
−i

and µ̄1
−i, respectively. Then we have

Gi(µ̄
1
i ;µ

1

−i
) < 0 < Gi(µ

1

i
;µ1

−i
), i ∈ R,

Gi(µ̄
1
i ; µ̄

1
−i) < 0 < Gi(µ

1

i
; µ̄1

−i), i ∈ R.

Thus, the intermediate value theorem ensures the existence of µ2
i
, µ̄2

i ∈ (µ1
i
, µ̄1

i ) which satisfy

Gi(µ
2

i
;µ1

−i
) = Gi(µ̄

2
i ; µ̄

1
−i) = 0, i ∈ R.

Because ∂Gi(µ)/∂µi < 0 holds for any point µ that satisfies Gi(µ) = 0, such µ2
i
and µ̄2

i are

determined uniquely. Therefore, the following relationships can be obtained:

Gi(µ
′′

i ;µ
1

−i
) < 0 < Gi(µ

′

i;µ
1

−i
), µ

′

i ∈ [µ1

i
, µ2

i
), µ

′′

i ∈ (µ2

i
, µ̄1

i ], i ∈ R,

Gi(µ
′′

i ; µ̄
1
−i) < 0 < Gi(µ

′

i; µ̄
1
−i), µ

′

i ∈ [µ1

i
, µ̄2

i ), µ
′′

i ∈ (µ̄2
i , µ̄

1
i ], i ∈ R.

These imply that

(µi;µ−i) ̸= (µ2

i
;µ1

−i
) =⇒ Gi(µi;µ−i) > 0, µi ∈ [µ1

i
, µ2

i
], µ−i ∈ J1

−i, i ∈ R,

(µi;µ−i) ̸= (µ̄2
i ; µ̄

1
−i) =⇒ Gi(µi;µ−i) < 0, µi ∈ [µ̄2

i , µ̄
1
i ], µ−i ∈ J1

−i, i ∈ R,

where J1
−i ≡

∏
j ̸=i[µ

1
j
, µ̄1

j ]. µ
2
i
≧ µ̄2

i leads to 0 < Gi(µ̄
2
i ;µ−i) < 0 for all µi ∈ intJ1

−i, which is

a contradiction. Thus, µ2
i
< µ̄2

i must hold. So, we can define J2 ≡
∏r

i=1[µ
2
i
, µ̄2

i ], and J1−J2

never contains the root of G.

We continue this process as depicted by Figure A1; then, we obtain the sequence of

closed and bounded interval, (Jm)∞m=1, such that Jm =
∏r

i=1[µ
m
i
, µ̄m

i ] and J1 ⊃ J2 ⊃ · · · .

Therefore, (Jm)∞m=1 converges to a non-empty, closed and bounded interval J =
∏r

i=1[ci, c̄i]

and the root of G never exists outside of J .

Because Gi(µ
m+1
i

;µm
−i
) = Gi(µ̄

m+1
i ; µ̄m

−i) = 0 for m = 1, 2, · · · , we have

Gi(ci; c−i) = lim
m→∞

Gi(µ
m+1

i
;µm

−i
) = 0 = lim

m→∞
Gi(µ̄

m+1
i ; µ̄m

−i) = Gi(c̄i; c̄−i), i ∈ R.

Thus, c = (c1, · · · , cr) and c̄ = (c̄1, · · · , c̄r) are the roots of G.

Now, we show that c = c̄. Suppose that c ̸= c̄. Let us define that µ(θ) = θc̄+ (1− θ)c

and Hi(θ) = Gi(µ(θ)) for all i ∈ R. From (A.2), we have for all µ ∈ intI:

∂2Gi(µ)

∂µl∂µk

= −
[
1− σ − 1

σX − 1
(1− 2Fi(µ))

]
Fil(µ)

µk

ϕkiµkλkw
1−σX
k∑

j∈R ϕjiµjλjw
1−σX
j

< 0, i, k, l ∈ R,
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Figure A1: Vector Field G and Construction of the Steady State

where Fil(µ) = ∂Fi(µ)/∂µl. Thus, it holds that

d2Hi(θ)

dθ2
=
∑
k∈R

∑
l∈R

∂2Gi(µ(θ))

∂µl∂µk

(c̄k − ck)(c̄l − cl) < 0, i ∈ R,

which implies that Hi(θ) is a concave function. Because Hi(1) = Hi(0) = 0, we have

dHi(0)

dθ
=
∑
j∈R

∂Gi(c)

∂µj

(c̄j − cj) > 0, i ∈ R,

dHi(1)

dθ
=
∑
j∈R

∂Gi(c̄)

∂µj

(c̄j − cj) < 0, i ∈ R.

Hence for θ < 0 and i ∈ R we have

µ(θ) ∈ I =⇒ Gi(µ(θ)) < 0.

However, this contradicts (A.5).

Appendix A.2. The second step

For any L > 0, λ (0 < λi < 1,
∑

i∈R λi = 1, i ∈ R) and w ∈ Rr
++, the wage potential in

region i, wP
i , becomes

wP
i (λ,w,M(L,λ,w)) =

[∑
j∈R

ϕijµjλjwj∑
k∈R ϕkjµkλkw

1−σX
k

] 1
σX

, i ∈ R,
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where µ = M(L,λ,w) = (M1(L,λ,w), · · · ,Mr(L,λ,w)). The equilibrium wage vector

w∗ = (w∗
1, · · · , w∗

r) is given by

wP
i (λ,w

∗,M(L,λ,w∗)) = w∗
i , i ∈ R.

Let us define function Z(·) = (Z1(·), · · · , Zr(·)) as

Zi(w) = µiλi

[
w−σX

i

∑
j∈R

ϕijµjλjwj∑
k∈R ϕkjµkλkw

1−σX
k

− 1

]
, i ∈ R.

Then, w∗ is given by Z(w∗) = 0. We show that under the condition 1 < σ < σX , w
∗ exists

in intS, where S is the unit simplex on Rr. In particular, when r = 2, w∗
1/w

∗
2 is determined

uniquely.

Appendix A.2.1. Existence

It is straightforward to see that for any w ∈ Rr
++ the function Z satisfies the following

properties:20

(B) : Z(w) ≧ −λ,

(C) : Z is continuous at w,

(H) : Z(cw) = Z(w), c ∈ R, i ∈ R,

(W) :
∑
i∈R

wiZi(w) = 0.

We shall show that for any wo = (wo
1, · · · , wo

r) ∈ ∂Rr
+ the function Z satisfies

(C
′
) : wo ̸= 0 =⇒ lim

w→wo

∑
i

Zi(w) = ∞.

Then, under (B), (C), (H), (W), and (C
′
), the existence of an equilibrium w∗ in intS is

proved by Arrow and Hahn (1971).21

Let us take any sequence (wm)∞m=0 on intS that converges to wo ∈ ∂Rr
+ (̸= 0) and define

the sequence (µm
i )

∞
m=0 as µm

i = Mi(L,λ,w
m). We then have

(∃ϵi > 0)(∀m ∈ N) : µm
i ≧ ϵi, i ∈ R. (A.7)

20Note that M is continuous and homogeneous of degree zero for w on Rr
++.

21See Arrow and Hahn (1971, Section 8 of Chapter 2).
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In fact, if the above relationship is not true, we have a subsequence (µ
m(l)
i )∞l=0 of (µm

i )
∞
m=0

such that liml→∞ µ
m(l)
i = 0. Because of µ

m(l)
i = Mi(L,λ,w

m(l)), the following relationship

must hold:

∀l ∈ N : lim
l→∞

[
βµ

m(l)
i + (1− β)

(
b
(
µ
m(l)
i

) 1
1−σ

ω
m(l)
i

)1−σ
]
= β, i ∈ R,

where ω
m(l)
i is given by

∀l ∈ N : ω
m(l)
i =

ρX
a

[
L

fσX

(
µ
m(l)
i λi +

∑
j ̸=i

ϕjiµ
m(l)
j λj

(
w

m(l)
j /w

m(l)
i

)1−σX

)] 1
σX−1

, i ∈ R.

However, if (µ
m(l)
i )∞l=0 converges to zero, 1 < σ < σX implies

lim
l→∞

(µ
m(l)
i )

1
1−σω

m(l)
i = lim

l→∞

ρX
a

 L

fσX

(µ
m(l)
i )

σX−σ

1−σ

λi +

∑
j ̸=i ϕjiµ

m(l)
j λj

(
w

m(l)
j

)1−σX

µ
m(l)
i

(
w

m(l)
i

)1−σX




1
σX−1

≧ lim
l→∞

ρX
a

[
L

fσX

(µ
m(l)
i )

σX−σ

1−σ λi

] 1
σX−1

= ∞.

Therefore, if liml→∞ µ
m(l)
i = 0, then we have

0 < β = lim
l→∞

[
βµ

m(l)
i + (1− β)

(
b(µ

m(l)
i )

1
1−σω

m(l)
i

)1−σ
]
= 0,

which is a contradiction.

Let us define Ro as a subset of R such that wo
i = 0 for any i ∈ Ro. Because of (A.7),

limm→∞ Zi(w
m) < −ϵiλi is satisfied for any i ∈ R−Ro. Thus, (W) leads to

lim
m→∞

(∑
i∈Ro

wm
i Zi(w

m)

)
= − lim

m→∞

( ∑
i∈R−Ro

wm
i Zi(w

m)

)
>

∑
i∈R−Ro

ϵiλiw
o
i > 0,

which implies that there exist i ∈ Ro such that limm→∞ Zi(w
m) = ∞. Thus we have (C

′
).

Appendix A.2.2. Uniqueness

Let us define aij as

aij ≡ ϕijµiλiw
1−σX
i µjλjw

1−σX
j

[
1−

(
wj

wi

)σX
∑

k∈R ϕkiµkλkw
1−σX
k∑

k∈R ϕkjµkλkw
1−σX
k

]
, i, j ∈ R.
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Obviously aii = 0 for all i ∈ R. In addition, since wi = wP
i holds at the equilibrium for all

i ∈ R, it holds that for all i ∈ R:

∑
j∈R

aij = µiλiw
1−σX
i

∑
j∈R

ϕijµjλjw
1−σX
j

[
1−

(
wj

wi

)σX
∑

k∈R ϕkiµkλkw
1−σX
k∑

k∈R ϕkjµkλkw
1−σX
k

]

= µiλiw
1−σX
i

[∑
j∈R

ϕijµjλjw
1−σX
j −

∑
k∈R ϕkiµkλkw

1−σX
k

wσX
i

∑
j∈R

ϕijµjλjwj∑
k∈R ϕkjµkλkw

1−σX
k

]

= µiλiw
1−σX
i

[∑
j∈R

ϕijµjλjw
1−σX
j −

∑
k∈R ϕikµkλkw

1−σX
k

wσX
i

wσX
i

]
= 0.

Thus we have

0 =
∑
i∈R

∑
j∈R

aij =
∑
i∈R

[∑
j>i

(aij + aji)

]
,

where

sgn(aij + aji) = sgn

([(
wi

wj

)σX

−
∑

k∈R ϕkiµkλkw
1−σX
k∑

k∈R ϕkjµkλkw
1−σX
k

][(
wj

wi

)σX

−
∑

k∈R ϕkjµkλkw
1−σX
k∑

k∈R ϕkiµkλkw
1−σX
k

])
≦ 0.

This means that the following equation is satisfied at the equilibrium:

w∗
i

w∗
j

=

[∑
k∈R ϕkiµ

∗
kλk (w

∗
k)

1−σX∑
k∈R ϕkjµ∗

kλk (w∗
k)

1−σX

] 1
σX

, i, j ∈ R. (A.8)

Suppose that r = 2. We define a function G as

G (λ1, λ2, µ1, µ2,W ) =

[
µ1λ1W

1−σX + ϕµ2λ2

ϕµ1λ1W 1−σX + µ2λ2

] 1
σX

,

where W = w1/w2 and ϕ = ϕ12 = ϕ21. Substituting µi = Mi(L, λ1, λ2,W, 1) into G, let us

define H as H (L, λ1, λ2,W ) = G (λ1, λ2,M1(L, λ1, λ2,W, 1),M2(L, λ1, λ2,W, 1),W ). Then,

taking the differential of H with respect to W , we have

W

H
∂H
∂W

=
W

G
∂G
∂W

+

(
µ1

G
∂G
∂µ1

)(
W

µ1

∂M1

∂W

)
+

(
µ2

G
∂G
∂µ2

)(
W

µ2

∂M2

∂W

)
=

[
1− σX +

W

µ1

∂M1

∂W
− W

µ2

∂M2

∂W

]
µ1

G
∂G
∂µ1

=
(µ1 − µ1F11 − µ2F12)(µ2 − µ1F21 − µ2F22)

µ1µ2 [(1− F11)(1− F22)− F12F21]

W

G
∂G
∂W

,

(A.9)
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where we use

µ1

G
∂G
∂µ1

= −µ2

G
∂G
∂µ2

=
1

1− σX

W

G
∂G
∂W

=
(1− ϕ)(1 + ϕ)

σX

µ1λ1W
1−σX

µ1λ1W 1−σX + ϕµ2λ2

µ2λ2

ϕµ1λ1W 1−σX + µ2λ2

,

and

W

µ1

∂M1

∂W
= (σX − 1)

F12

µ1

µ2 − µ1F21 − µ2F22

(1− F11)(1− F22)− F12F21

,

W

µ2

∂M2

∂W
= (1− σX)

F21

µ2

µ1 − µ1F11 − µ2F12

(1− F11)(1− F22)− F12F21

,

(A.10)

where Fij = ∂Fi/∂µj. Because (A.2) and 1 < σ < σX , the following relationship holds:

µi − µ1Fi1 − µ2Fi2 = µi

(
1− σ − 1

σX − 1
(1− µi)

)
> 0, i = 1, 2.

Because we have

µ1µ2 [(1− F11)(1− F22)− F12F21] = (µ1 − µ1F11 − µ2F12)(µ2 − µ1F21 − µ2F22)

+ µ1F21(µ1 − µ1F11 − µ2F12)

+ µ2F12(µ2 − µ1F21 − µ2F22),

(A.9) implies ∂H/∂W < 0, which means W ∗ must be unique.

Appendix B. Proof of Proposition 2

Appendix B.1. Effect of change of λ

When we write λ1 = λ and λ2 = 1− λ, then W ∗ is defined implicitly as a function of L

and λ by

W ∗(L, λ) ≡ H (L, λ, 1− λ,W ∗(L, λ)) . (B.1)

Thus we have

∂W ∗

∂λ
=

1

1− (∂H/∂W )

[(
∂G
∂λ1

− ∂G
∂λ2

)
+

(
∂M1

∂λ1

− ∂M1

∂λ2

)
∂G
∂µ1

+

(
∂M2

∂λ1

− ∂M2

∂λ2

)
∂G
∂µ2

]

=
W ∗

1− (∂H/∂W )

µ2λ1(µ1 − µ1F11 − µ2F12) + µ1λ2(µ2 − µ1F21 − µ2F22)

µ1µ2λ1λ2 [(1− F11)(1− F22)− F12F21]

µ1

G
∂G
∂µ1

> 0,

(B.2)
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where we use

∂Mi

∂λi

=
µi

λi

Fii(1− Fjj) + F12F21

(1− F11)(1− F22)− F12F21

, i, j = 1, 2, i ̸= j,

∂Mi

∂λj

=
µj

λj

Fij

(1− F11)(1− F22)− F12F21

, i, j = 1, 2, i ̸= j.

(B.3)

(B.2) means that W ∗ (= w∗
1/w

∗
2), monotonically increases with respect to population share

of region 1. Because (A.8) leads to

ω∗
1

ω∗
2

(L, λ) =

(
w∗

1

w∗
2

(L, λ)

) 2σX−1

σX−1

=

(
P ∗
1

P ∗
2

(L, λ)

) 1−2σX
σX

, (B.4)

an increase in population share of region 1 also raises the equilibrium real wage ratio, ω∗
1/ω

∗
2,

but reduces the ratio of the equilibrium price index, P ∗
1 /P

∗
2 . In addition, from (A.8) and

(B.4), w∗
1/w

∗
2, ω

∗
1/ω

∗
2 and P ∗

1 /P
∗
2 are equal to one when both regions have the same popula-

tion, that is λ1 = λ2 = 1/2.

Appendix B.2. Effect of change of L

From (B.1), we have

L

W ∗
∂W ∗

∂L
=

1

1− (∂H/∂W )

L

W ∗

(
∂G
∂µ1

∂M1

∂L
+

∂G
∂µ2

∂M2

∂L

)
=

1

1− (∂H/∂W )

(
L

µ1

∂M1

∂L
− L

µ2

∂M2

∂L

)
µ1

G
∂G
∂µ1

=
1

1− (∂H/∂W )

σ − 1

σX − 1

µ2 − µ1

(1− F11)(1− F22)− F12F21

µ1

G
∂G
∂µ1

,

(B.5)

where we use

L

µ1

∂M1

∂L
=

F12(µ1F21 + µ2F22) + (1− F22)(µ1F11 + µ2F12)

µ1 [(1− F11)(1− F22)− F12F21]
,

L

µ2

∂M2

∂L
=

F21(µ1F11 + µ2F12) + (1− F11)(µ1F21 + µ2F22)

µ2 [(1− F11)(1− F22)− F12F21]
.

(B.6)

Because µ(ω∗
i , 1) ⋛ µ(ω∗

j , 1) as ω
∗
i ⋛ ω∗

j , (B.4) and (B.5) imply that Proposition 2 is true.

Appendix C. Derivation of (16)

At (λ1, λ2) ∈ {(1/2, 1/2), (1, 0), (0, 1)}, the second condition of (15) is satisfied. If

(λ1, λ2) = (1/2, 1/2), then w∗
1 = w∗

2, µ
∗
1 = µ∗

2 and n∗
1 = n∗

2. Thus, n̄
∗∗ = 1 is equivalent to

(1− β)b1−σ

β
(

a
ρX

)1−σ [
1+ϕ
2

L∗∗

fσX
(1− b)

] σ−1
σX−1

+ (1− β)b1−σ

= b,
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which implies L∗∗ = 2D/(1 + ϕ). On the other hand, if (λ1, λ2) ∈ {(1, 0), (0, 1)}, then

n̄∗∗ = 1 is equivalent to

(1− β)b1−σ

β
(

a
ρX

)1−σ [
L∗∗

fσX
(1− b)

] σ−1
σX−1

+ (1− β)b1−σ

= b,

which implies L∗∗ = D.

Appendix D. Proof of Proposition 4

Since by (12), we have Lt+1 ⋛ Lt as n̄
∗(Lt, λt) ⋛ 1. Note that limL→0 n̄

∗(L, λ) = 1/b and

limL→∞ n̄∗(L, λ) = 0. In addition, because of µ∗
i (L, λ) ≡ Mi(L, λ, 1 − λ,W ∗(L, λ), 1) the

differential of n̄∗(L, λ) with respect to L becomes

∂n̄∗(L, λ)

∂L
= −1

b

[(
λ
∂M1

∂L
+ (1− λ)

∂M2

∂L

)
+

(
λ
∂M1

∂W
+ (1− λ)

∂M2

∂W

)
∂W ∗

∂L

]
< 0,

where we use (A.2), (A.10), (B.5), (B.6) and

∂µ∗
1

∂L
=

∂M1

∂L
+

∂M1

∂W

∂W ∗

∂L
, i = 1, 2.

Thus, if 0 < b < 1 holds, there exist L uniquely such that n̄∗(L, λ) = 1. Then, we can

express such L as a function of λ as L = L(λ).

Taking the differential of L with respect to λ, we obtain

dL(λ)
dλ

= −µ∗
1 − µ∗

2 + λ (∂µ∗
1/∂λ) + (1− λ) (∂µ∗

2/∂λ)

λ (∂µ∗
1/∂L) + (1− λ) (∂µ∗

2/∂L)
.

Using
∂µ∗

i

∂λ
=

(
∂Mi

∂λ1

− ∂Mi

∂λ2

)
+

∂Mi

∂W

∂W ∗

∂λ
, i = 1, 2,

we have

Θ ≡ µ∗
1 − µ∗

2 + λ
∂µ∗

1

∂λ
+ (1− λ)

∂µ∗
2

∂λ

= µ∗
1 − µ∗

2 +

(
λ1

∂M1

∂W
+ λ2

∂M2

∂W

)
∂W ∗

∂λ
+

(
λ1

∂M1

∂λ1

+ λ2
∂M2

∂λ1

)
−
(
λ1

∂M1

∂λ2

+ λ2
∂M2

∂λ2

)
.

From (A.2), (A.10), (B.2) and (B.3), we obtain limλ→1Θ > 0 and limλ→1/2Θ = 0, which

means that L has the following local properties: limλ→1 L
′
(λ) < 0 and limλ→1/2 L

′
(λ) = 0.
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Since by (14), if λt > 0 holds, we have λt+1 ⋛ λt as Λ(Lt, λt) ⋛ 0, where Λ is given by

Λ(L, λ) ≡ (1− λ)(µ∗
2 − µ∗

1)

λ(1− µ∗
1) + (1− λ)(1− µ∗

2)
+ ν

(
ω∗
1/ω

∗
2

λ (ω∗
1/ω

∗
2) + 1− λ

− 1

)
.

Substituting L = L(λ) in Λ(L, λ) and taking the differential of Λ (L(λ), λ) with respect to

λ, we have

dΛ (L(λ), λ)
dλ

= −
[
µ∗
2 − µ∗

1

b
+ ν

ω∗
1/ω

∗
2 − 1

λ (ω∗
1/ω

∗
2) + 1− λ

]
+

1− λ

b

[(
∂µ∗

2

∂λ
− ∂µ∗

1

∂λ

)
+

(
∂µ∗

2

∂L
− ∂µ∗

1

∂L

)
dL(λ)
dλ

]
+ ν

1− λ

[λ (ω∗
1/ω

∗
2) + 1− λ]2

[
∂ (ω∗

1/ω
∗
2)

∂λ
+

∂ (ω∗
1/ω

∗
2)

∂L

dL(λ)
dλ

−
(
ω∗
1

ω∗
2

− 1

)2
]
.

Then, converging λ to 1/2, the following relationship is obtained:

lim
λ→1/2

dΛ (L(λ), λ)
dλ

⋛ 0 ⇐⇒ ν ⋛ νb ≡ (σ − 1)(1− b). (D.1)

Similarly, converging λ to one, we have:

lim
λ→1

dΛ (L(λ), λ)
dλ

⋛ 0 ⇐⇒ S (Φ(ϕ), ν) ⋛ 0,

where Φ ≡ ϕ
σ−1
σX

2σX−1

σX−1 and S(Φ, ν) is defined by

S(Φ, ν) ≡ (1− b)− bν − (1− b)(1 + ν)Φ + ν
[
bΦ

1
σ−1 + (1− b)Φ

σ
σ−1

]
.

We can readily see that, for any ϕ ∈ (0, 1),

S (Φ(ϕ), ν) ⋛ 0 ⇐⇒ ν ⋚ νs ≡
1− b

b+ (1− b)Φ

1− Φ

1− Φ
1

σ−1

is satisfied, which means that the following relationship is true for any ϕ ∈ (0, 1) and ν ≧ 0:

lim
λ→1

dΛ (L(λ), λ)
dλ

⋛ 0 ⇐⇒ ν ⋚ νs. (D.2)

On the other hand, for any ν < (1− b)/b, we can describe the shape of S(Φ, ν) as Figure

A2. Thus, for any ϕ ∈ (0, 1) and ν ≧ 0, we have

(σ − 1)(1− b) < ν < (1− b)/b =⇒
(
lim
λ→1

dΛ (L(λ), λ)
dλ

⋛ 0 ⇔ ϕ ⋚ ϕs

)
, (D.3)

where ϕs ∈ (0, 1) is given by S (Φ(ϕs), ν) = 0. We conclude that Proposition 4 is true by

(D.1), (D.2) and (D.3).

Finally, we show the relationship between νs and ϕs. Because of ∂S/∂ν < 0, we have

ϕ
′
s(ν) < 0 which means that ν

′
s(ϕ) < 0. Thus, by limϕ→0 νs = (1 − b)/b and limϕ→1 νs =

(σ − 1)(1− b), the relationship between νs and ϕs can be described as Figure 5.
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Figure A2: The Shape of S
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