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Abstract

We propose an algorithm, which we call “Fast Bellman Iteration”
(FBI), to compute the value function of an infinite-horizon dynamic
programming problem in discrete time. FBI is an extremely efficient
linear-time algorithm applicable to a class of multidimensional dy-
namic programming problems with concave return (or convex cost)
functions and linear constraints. In this algorithm, a sequence of
functions is generated starting from the zero function by repeatedly
applying a simple algebraic rule involving the Legendre-Fenchel trans-
form of the return function. The resulting sequence is guaranteed to
converge, and the Legendre-Fenchel transform of the limiting function
coincides with the value function.
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1 Introduction

It has been known since Bellman and Karush (1962a, 1962b, 1963a, 1963b)
that Legendre-Fenchel (LF) duality (Fenchel 1949) can be utilized to solve
finite-horizon dynamic programming (DP) problems in discrete time. Al-
though there have been subsequent applications of LF duality to DP (e.g,
Morin and Esogbue 1974, Klein 1990, Esogbue and Ahn 1990, Klein and
Morin 1991), to our knowledge there has been no serious attempt to exploit
LF duality to develop an algorithm to solve infinite-horizon DP problems.

In this paper we propose an algorithm, which we call “Fast Bellman
Iteration” (FBI), to compute the value function of an infinite-horizon DP
problem in discrete time. FBI is an extremely efficient linear-time algorithm
applicable to a class of multidimensional DP problems with concave return
functions (or convex cost functions) and linear constraints.

The FBI algorithm is an implementation of what we call the “dual Bell-
man operator,” which is a simple algebraic rule involving the LF transform
of the return function. A sequence of functions generated by repeated ap-
plication of the dual Bellman operator is guaranteed to converge, and the
LF transform of the limiting function coincides with the value function. In-
volving no optimization, the dual Bellman operator offers a dramatic com-
putational advantage over standard computational methods such as value
iteration and policy iteration (e.g., Puterman 2005). We prove that the con-
vergence properties of the iteration of the dual Bellman operator are identical
to those of value iteration when applied to a DP problem with a continuous,
bounded, concave return function and a linear constraint.

The rest of the paper is organized as follows. In Section 2 we review some
basic concepts from convex analysis and show some preliminary results. In
Section 3 we present the general DP framework used in our analysis. In
Section 4 we apply FL dulaity to a DP problem with a continuous, bounded,
concave return function and a linear constraint. In Section 5 we present
our numerical algorithm and compare its performance with that of modified
policy iteration. In Section 6 we offer some concluding comments.

2 Preliminaries I: Convex Analysis

In this section we review some basic concepts from convex analysis and state
some well-known results. We also establish some preliminary results.
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Let N ∈ N. For f : RN → R, we define f∗, f
∗ : RN → R by

f∗(p) = inf
x∈RN
{pᵀx− f(x)}, ∀p ∈ RN , (1)

f ∗(p) = sup
x∈RN

{pᵀx− f(x)}, ∀p ∈ RN , (2)

where p and x are N × 1 vectors, and pᵀ is the transpose of p. The func-
tions f∗ and f ∗ are called the concave conjugate and convex conjugate of f ,
respectively.

It follows from (1) and (2) that for any functions f, g : RN
+ → R, we have

f = −g ⇒ ∀p ∈ RN , f∗(p) = −g∗(−p) = −(−f)∗(−p). (3)

This allows us to translate any statement about g and g∗ to the corresponding
statement about −g and (−g)∗; this is useful since most results in convex
analysis deal with convex functions and convex conjugates. In what follows
we focus on concave functions and concave conjugates, and by “conjugate,”
we always mean “concave conjugate.” The biconjugate f∗∗ of f is defined by

f∗∗ = (f∗)∗. (4)

A concave function f : RN → R is called proper if f(x) < ∞ for all
x ∈ RN and f(x) > −∞ for at least one x ∈ RN . The effective domain of f
is defined as

dom f = {x ∈ RN : f(x) > −∞}. (5)

Let F be the set of proper, concave, upper semicontinuous functions from
RN to R. For f, g : RN → R ∪ {−∞}, the sup-convolution of f and g is
defined as

(f#g)(x) = sup
y∈RN

{f(y) + g(x− y)}. (6)

Some useful results are collected below:

Lemma 1 (Rockafellar and Wets 2009, Theorems 11.1, 11.23).

(a) For any f ∈ F , we have f∗ ∈ F and f∗∗ = f .

(b) For any f, g ∈ F , we have (f#g)∗ = f∗ + g∗.
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(c) Let N ′ ∈ N and u : RN ′ → R. Let L be an N × N ′ matrix. Define
(Lu) : RN → R by

(Lu)(x) = sup
c∈RN′

{u(c) : Lc = x}, ∀x ∈ RN . (7)

Then

(Lu)∗(p) = u∗(L
ᵀp), ∀p ∈ RN . (8)

The following results are proved in the Appendix.

Lemma 2. Let A be an invertible N × N matrix. Let β ∈ R++ and S =
A−1/β. Let f, v : RN → R be such that f(x) = βv(Ax) for all x ∈ RN . Then

f∗(p) = βv∗(S
ᵀp). (9)

Lemma 3. Let f, g ∈ F be such that dom f = dom g = RN
+ . Suppose that

both f and g are bounded on RN
+ . Then dom f ∗ = dom g∗ = RN

+ , and

sup
x∈RN

+

|f(x)− g(x)| = sup
p∈RN

+

|f∗(p)− g∗(p)|. (10)

3 Preliminaries II: Dynamic Programming

In this section we present the general framework for dynamic programming
used in our analysis, and show a standard result based on the contraction
mapping theorem. Our exposition here is based on Stokey and Lucas (1989)
and Kamihigashi (2014a, 2014b).

Let N ∈ N and X ⊂ RN . Consider the following problem:

sup
{xt+1}∞t=0

∞∑
t=0

βtr(xt, xt+1) (11)

s.t. x0 ∈ X given, (12)

∀t ∈ Z+, xt+1 ∈ Γ(xt). (13)

In this section we maintain the following assumption.
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Assumption 1. (i) β ∈ (0, 1). (ii) Γ : X → 2X is a nonempty, compact-
valued, continuous correspondence. (iii) X and gph Γ are convex sets, where
gph Γ is the graph of Γ:

gph Γ = {(x, y) ∈ RN × RN : y ∈ Γ(x)}. (14)

(iv) r : gph Γ→ R is continuous, bounded, and concave.

Let v̂ : X → R be the value function of the problem (11)–(13); i.e., for
x0 ∈ X we define

v̂(x0) = sup
{xt+1}∞t=0

∞∑
t=0

βtr(xt, xt+1) s.t. (13). (15)

It is well-known that v̂ satisfies the optimality equation (see Kamihigashi
2008, 2014b):

v̂(x) = sup
y∈Γ(x)

{r(x, y) + βv̂(y)}, ∀x ∈ X. (16)

Thus v̂ is a fixed point of the Bellman operator B defined by

(Bv)(x) = sup
y∈Γ(x)

{r(x, y) + βv(y)}, ∀x ∈ X. (17)

Let C (X) be the space of continuous, bounded, concave functions from
X to R equipped with the sup norm ‖ · ‖. The following result is proved in
the Appendix.

Theorem 1. Under Assumption 1, the following statements hold:

(a) The Bellman operator B is a contraction on C (X) with modulus β;
i.e., B maps C (X) into itself, and for any v, w ∈ C (X) we have

‖Bv −Bw‖ ≤ β‖v − w‖. (18)

(b) B has a unique fixed point ṽ in C (X). Furthermore, for any v ∈ C (X),

∀i ∈ N, ‖Biv − ṽ‖ ≤ βi‖v − ṽ‖. (19)

(c) We have ṽ = v̂.
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4 The Dual Bellman Operator

In this section we introduce the “dual Bellman operator,” which traces the
iterates of the Bellman operator in a dual space for a special case of (11)–(13).
In particular we consider the following problem:

max
{ct,xt+1}∞t=0

∞∑
t=0

βtu(ct) (20)

s.t. x0 ∈ RN
+ given, (21)

∀t ∈ Z+, xt+1 = Axt −Dct, (22)

ct ∈ RN ′

+ , xt+1 ∈ RN
+ , (23)

where A is an N × N matrix, D is an N × N ′ matrix with N ′ ∈ N, and
ct is a N ′ × 1 vector. Throughout this section we maintain the following
assumption.

Assumption 2. (i) β ∈ (0, 1). (ii) u : RN ′
+ → R is continuous, bounded, and

concave. (iii) A is a nonnegative monotone matrix (i.e., Ax ∈ RN
+ ⇒ x ∈ RN

+

for any x ∈ RN). (iv) D is a nonzero nonnegative matrix.

It is well-known (e.g., Berman and Plemmons 1994, p. 137) that a square
matrix is monotone if and only if it is invertible and its inverse is nonnegative;
furthermore, a nonnegative square matrix is monotone if and only if it has
exactly one nonzero element in each row and in each column (Kestelman
1973). Thus the latter property is equivalent to part (iii) above.

Under Assumption 2, the optimization problem (20)–(23) is a special case
of (11)–(13) with

X = RN
+ , (24)

Γ(x) = {y ∈ RN
+ : ∃c ∈ RN ′

+ , y = Ax−Dc}, ∀x ∈ X, (25)

r(x, y) = max
c∈RN′

+

{u(c) : y = Ax−Dc}, ∀(x, y) ∈ gph Γ. (26)

It is easy to see that Assumption 1 holds under Assumption 2 and (24)–(26).
Before proceeding, we introduce a standard convention for extending a

function defined on a subset of Rn to the entire Rn. Given any function
g : D → R with D ⊂ Rn, we extend g to Rn by setting

g(x) = −∞, ∀x ∈ Rn \D. (27)
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Note that in general, for any extended real-valued function f defined on a
subset of Rn, we have

sup
x∈Rn

f(x) = sup
x∈dom f

f(x), (28)

where the function f on the left-hand side is the version of f extended ac-
cording to (27).

Letting L = A−1D, we can express (22) as

Lct = xt − A−1xt+1. (29)

In view of this and (26), we have

r(x, y) = max
c∈RN′

+

{u(c) : Lc = x− A−1y}, ∀(x, y) ∈ gph Γ. (30)

By Assumption 2 and (24)–(27), the Bellman operator B defined by (17)
can be written as

(Bv)(x) = sup
z∈RN

{(Lu)(x− z) + βv(Az)}, ∀x ∈ X, (31)

where Lu is defined by (7) and (30) with z = A−1y. The constraint y ∈ Γ(x)
in (17) is implicitly imposed in (31) by the effective domains of u and v,
which require, respectively, that there exist c ∈ RN ′

+ with Lc = x − z and
that y = Az ∈ X. Following the convention (27), we set

(Bv)(x) = −∞, ∀x ∈ RN \X. (32)

For any f : RN → R with dom f = RN
+ , we write f ∈ C (X) if f is

continuous, bounded, and concave on X. Since u is bounded, (Bv)(x) is well-
defined for any x ∈ RN and v : X → R. In particular, for any v ∈ C (X),
we have Bv ∈ C (X) by Theorem 1. The following result shows that the
Bellman operator B becomes a simple algebraic rule in the “dual” space of
conjugates.

Lemma 4. Let S = A−1/β. For any v ∈ C (X) we have

(Bv)∗(p) = u∗(L
ᵀp) + βv∗(S

ᵀp), ∀p ∈ RN . (33)
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Proof. Let f(z) = βv(Az) for all z ∈ RN . Let g = Lu. We claim that

Bv = f#g. (34)

It follows from (31) that (Bv)(x) = (f#g)(x) for all x ∈ X. It remains
to show that (Bv)(x) = (f#g)(x) for all x ∈ RN \ X or, equivalently,
(f#g)(x) > −∞ ⇒ x ∈ X. Let x ∈ RN with (f#g)(x) > −∞. Then
there exists z ∈ RN with g(x− z) +f(z) = (Lu)(x− z) +βv(Az) > −∞; i.e.,

x− z ∈ dom(Lu), Az ∈ dom v. (35)

Since A−1 and D are nonnegative by Assumption 2, L is nonnegative; thus
dom(Lu) ⊂ RN

+ . Hence x − z ≥ 0 and Az ≥ 0 by (35). Since the latter
inequality implies that z ≥ 0 by monotonicity of A, it follows that x ≥ z ≥ 0;
i.e, x ∈ X. We have verified (34).

By Lemma 1 we have (Bv)∗ = (f#g)∗ = f∗ + g∗. Thus for any p ∈ RN
+ ,

(Bv)∗(p) = f∗(p) + g∗(p) = βv∗(S
ᵀp) + u∗(L

ᵀp), (36)

where the second equality uses Lemmas 2 and 1. Now (33) follows.

We call the mapping from v∗ to (Bv)∗ defined by (33) the dual Bellman
operator B∗; more precisely, for any f : RN → R, we define B∗f by

(B∗f)(p) = u∗(L
ᵀp) + βf(Sᵀp), ∀p ∈ RN . (37)

Using the dual Bellman operator B∗, (33) can be written simply as

(Bv)∗ = B∗v∗, ∀v ∈ C (X). (38)

According to the convention (27), the domain of a function f defined on
RN

+ can always be taken to be the entire RN . Although this results in no
ambiguity when we evaluate supx f(x) (recall (28)), it causes ambiguity when
we evaluate ‖f‖. For this reason we specify the definition of ‖ · ‖ as follows:

‖f‖ = sup
x∈RN

+

‖f(x)‖. (39)

We use this definition of ‖ · ‖ for the rest of the paper. The following result
establishes the basic properties of the dual Bellman operator B∗.

Theorem 2. For any v ∈ C (X), the following statements hold:
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(a) For any i ∈ N we have

(Biv)∗ = Bi
∗v∗, (40)

Biv = (Bi
∗v∗)∗, (41)

Bi
∗v∗ ∈ C (X), (42)

where Bi
∗ = (B∗)

i.

(b) The sequence {Bi
∗v∗}i∈N converges uniformly to v̂∗ (the conjugate of the

value function v̂). In particular, for any i ∈ N we have

‖Bi
∗v∗ − v̂∗‖ = ‖Biv − v̂‖ ≤ βi‖v − v̂‖ = βi‖v∗ − v̂∗‖. (43)

(c) We have v̂ = (v̂∗)∗.

Proof. (a) We first note that (40) implies (42) by Lemma 1 and Theorem
1(a). We show by induction (40) holds for all i ∈ N.

Note that for i = 1, (40) hods by (38). Suppose that (40) holds for
i = n− 1 ∈ N:

(Bn−1v)∗ = Bn−1
∗ v∗. (44)

Let us consider the case i = n. We have Bn−1v ∈ C (X) by Theorem 1. Thus
using (38) and (44), we obtain

(Bnv)∗ = (BBn−1v)∗ = B∗(B
n−1v)∗ = B∗B

n−1
∗ v∗ = Bn

∗ v∗. (45)

Hence (40) holds for i = n. Now by induction, (40) holds for all i ∈ N.
To see (41), let i ∈ N. Since Biv ∈ C (X) by Theorem 1, we have Biv =

(Biv)∗∗ by Lemma 1. Recalling (4), we have Biv = ((Biv)∗)∗ = (Bi
∗v∗)∗,

where the second equality uses (40). We have verified (41).
(b) By Lemma 3 and (39), for any i ∈ N we have

‖Biv − v̂‖ = ‖(Biv)∗ − v̂∗‖ = ‖Bi
∗v∗ − v̂∗‖, (46)

where the second equality uses (40). Thus the first equality in (43) follows;
the second equality follows similiarly. By Theorem 1 the inequality in (43)
holds. As a consequence, {Bi

∗v∗}i∈N converges uniformly to v̂∗.
(c) Since v̂ ∈ C (X) by Theorem 1, we have v̂ = v̂∗∗ = (v̂∗)∗ by Lemma 1.

This completes the proof of Theorem 2.
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Figure 1: Bellman operator B and dual Bellman operator B∗

v Bv B2v Biv v̂

v∗ B∗v∗ B2
∗v∗ Bi

∗v∗ v̂∗

∗

B

∗

B

∗

B···B

∗

i↑∞

∗

B∗ B∗ B∗···B∗ i↑∞

Figure 1 summarizes the results of Theorem 2. The vertical bidirec-
tional arrows between Bv and B∗v∗, B

2v and B2
∗v∗, etc, indicate that any

intermediate result obtained by the Bellman operator B can be recovered
through conjugacy from the corresponding result obtained by the dual Bell-
man operator B∗, and vice versa. This is formally expressed by statement
(a) of Theorem 2. Statement (b) shows that both iterates {Biv} and {Bi

∗v∗}
converge exactly the same way. In fact, as shown by Lemma 3, conjugacy
preserves the sup norm between any pair of functions in F whose effective
domains are RN

+ . The rightmost vertical arrow in Figure 1 indicates that the
value function v̂ can be obtained as the conjugate of the limit of {Bi

∗v∗}, as
shown in statement (c) of Theorem 2.

5 Fast Bellman Iteration

We exploit the relations expressed in Figure 1 to construct a numerical algo-
rithm. The upper horizontal arrows in Figure 1 illustrate the standard value
iteration algorithm, which approximates the value function v̂ by successively
computing Bv,B2v,B3v, · · · until convergence. The same result can be ob-
tained by successively computing B∗v∗, B

2
∗v∗, B

3
∗v∗, · · · until convergence and

by computing the conjugate of the last iterate. Theorem 2(b) suggests that
this alternative method can achieve convergence in the same number of steps
as value iteration, but it is considerably faster since each step is a simple
algebraic rule without optimization; recall (37).

Algorithm 1, which we call “Fast Bellman Iteration,” implements this
procedure with a finite number of grid points, using nearest-grid-point in-
terpolation to approximate points not on the grid. To be precise, we take n
grid points p1, . . . , pn in RN

+ as given, and index them by j ∈ J ≡ {1, . . . , n}.
Recall from (42) that it suffices to consider the behavior of Bi

∗v∗ on X = RN
+ .

We also take as given a function ρ : RN
+ → {p1, . . . , pn} that maps each point
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Algorithm 1: Fast Bellman Iteration

let n grid points in RN
+ be given by p1, . . . , pn ∈ RN

+

initialize a, b, w : J → R (i.e., ∀j ∈ J, a(j), b(j), w(j) ∈ R)
initialize g : J → J (i.e., ∀j ∈ J, g(j) ∈ J)
compute u∗ on Lᵀp1, . . . , L

ᵀpn
for j ← 1, . . . , n do

b(j)← 0
w(j)← u∗(L

ᵀpj)
g(j)← λ(Sᵀpj)

fix ε > 0
d← 2ε
while d > ε do

a← b
for j ← 1, . . . , n do

b(j)← w(j) + βa(g(j))

d← maxj∈J{|a(j)− b(j)|}
compute b∗
return b∗

p ∈ RN
+ to a nearest grid point. We define λ : RN

+ → J by ρ(p) = pλ(p); i.e.,
λ(p) is the index of the grid point corresponding to p.

Algorithm 1 requires us to compute the conjugate of the return function
u at the beginning as well as the conjugate of the final iterate at the end.
To compute these conjugates, we employ the linear-time algorithm (linear in
the number of grid points) presented in Lucet (1997), which computes the
conjugate of a concave function on a box grid. Since the rate of convergence
for {Bi

∗v∗} is determined by β (as shown in Theorem 2(b)) and the number
of algebraic operations required for each grid point in each iteration of the
“while” loop in Algorithm 1 is independent of the number of grid points, it
follows that FBI is a linear-time algorithm.

5.1 Numerical Comparison

To illustrate the efficiency of FBI, we compare the performance of FBI with
that of modified policy iteration (MPI), which is a standard method to accel-
erate value iteration (Puterman 2005, Ch. 6.5). In what follows, we assume
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the following in (20)–(23):

u(c1, c2) = −(c1 − 10)2 − (c2 − 10)2, β = 0.9, D =

[
1 0
0 1

]
. (47)

Although u above is not bounded, it is bounded on any bounded region that
contains Lᵀp1, . . . , L

ᵀpn; thus we can treat u as a bounded function for our
purposes. Concerning the matrix A, we consider two cases:

(a) A =

[
1 0
0 1

]
, (b) A =

[
0 1.1
1 0

]
. (48)

The grid points for MPI are evenly spread over [0, 20] × [0, 20]. The grid
points for FBI in the dual space are chosen accordingly.

We implement both FBI and MPI in Python, using the Scipy 0.13.3 pack-
age on a 2.40 GHz i7-3630QM Intel CPU. For MPI, we utilize C++ to find
a policy that achieves the maximum of the right-hand side of the Bellman
equation (31) by brute-force grid search. We use brute-force grid search be-
cause a discretized version of a concave function need not be concave (see
Murota 2003); we utilize C++ because brute-force grid search is unaccept-
ably slow in Python. The resulting policy is used to update the approximate
value function 100 times, and the resulting approximate value function is
used to find a new policy.

Table 1 shows the number of iterations and total CPU time for FBI
and MPI to converge to a tolerance of 10−5. For each grid size, the final
approximate value functions from FBI and MPI are compared by computing,
at each grid point, the absolute difference divided by the largest absolute
value of the MPI value function; we report the maximum and average values
of this difference over all grid points.

Panels (a) and (b) in Figure 2 plot the time to convergence of FBI and
MPI against the number of grid points using the data in Table 1. Panels (a’)
and (b’) show the performance of FBI for an extended range of grid point
sizes. These plots indicate that FBI is a linear-time algorithm, as discussed
above. In terms of CPU time, FBI clearly has a dramatic advantage.
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6 Concluding Comments

In this paper we proposed an algorithm called “Fast Bellman Iteration” (FBI)
to compute the value function of an infinite-horizon dynamic programming
problem in discrete time. FBI is a linear-time algorithm that offers a dramatic
computational advantage for a class of problems with concave return (or
convex cost) functions and linear constraints.

The algorithm we presented is based on the theoretical results shown for
continuous state problems, but in practice, numerical errors are introduced
through discretization and computation of conjugates. Although precise error
estimates are yet to be established, our numerical experiments suggest that
the difference between the approximate value functions computed using FBI
and MPI, respectively, is rather insignificant.

In practice, one can combine FBI with other numerical methods to achieve
a desired combination of speed and accuracy. For example, to obtain essen-
tially the same MPI value function while economizing on time, one can apply
FBI until convergence first and then switch to MPI. As in this algorithm, FBI
can be used to quickly compute a good approximation of the value function.

In concluding the paper we should mention that the theoretical results
shown in Section 4 can be extended to problems with more general and
nonlinear constraints using a general formula for the conjugate of a composite
function (Hiriart-Urruty 2006). New algorithms based on such an extension
are left for future research.

A Appendix

A.1 Proof of Lemma 2

Let p ∈ RN . Note that

f∗(p) = inf
x∈RN
{pᵀx− βv(Ax)}. (49)

Letting y = Ax and noticing that x = A−1y, we have

f∗(p) = inf
y∈RN
{pᵀ(A−1y)− βv(y)} (50)

= β inf
y∈RN
{(pᵀA−1/β)y − v(y)} (51)

= β inf
y∈RN
{(A−1/β)ᵀp)ᵀy − v(y)}. (52)
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Figure 2: Time to convergence in seconds vs. number of grid points. Panels
(a) & (a’) assume (47) & (48)(a), while panels (b) & (b’) assume (47) &
(48)(b).

(a) (b)

(a’) (b’)

Now (9) follows.

A.2 Proof of Lemma 3

First we establish two lemmas.

Lemma 5. Define ζ ∈ F by

ζ(x) =

{
0 if x ∈ RN

+ ,

−∞ otherwise.
(53)

Then ζ∗ = ζ.

Proof. For any p ∈ RN we have

ζ∗(p) = inf
x∈RN
{pᵀx− ζ(x)} = inf

x∈RN
+

{pᵀx− ζ(x)} = inf
x∈RN

+

pᵀx. (54)
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Thus ζ∗(p) = 0 if p ∈ RN
+ , and ζ∗(p) = −∞ if p ∈ R \ RN

+ ; i.e., ζ∗ = ζ.

Lemma 6. Let f ∈ F be such that dom f = RN
+ and f is bounded on dom f .

Then dom f∗ = RN
+ and f∗ is bounded on RN

+ .

Proof. Since f is bounded on dom f , there exist φ, φ ∈ R such that φ ≤ f ≤ φ

on dom f = RN
+ . Let p ∈ RN . We have

f∗(p) = inf
x∈RN
{pᵀx− f(x)} = inf

x∈RN
+

{pᵀx− f(x)}. (55)

Hence

inf
x∈RN

+

pᵀx− φ ≤ f∗(p) ≤ inf
x∈RN

+

pᵀx− φ. (56)

Recalling (54) and Lemma 5, we see that ζ−φ ≤ f∗ ≤ ζ−φ. Thus dom f∗ =

dom ζ = RN
+ , and −φ ≤ f∗ ≤ −φ on RN

+ .

To complete the proof of Lemma 3, let f, g ∈ F be as in the statement of
the lemma. By Lemma 6 we have dom f ∗ = dom g∗ = RN

+ . Let D = RN
+ . It

follows from Hiriart-Urruty (1986, p. 484) that

sup
x∈D
{f(x)− g(x)} = sup

p∈D
{g∗(p)− f∗(p)}, (57)

inf
x∈D
{f(x)− g(x)} = inf

p∈D
{g∗(p)− f∗(p)}. (58)

We have

sup
x∈D
|f(x)− g(x)| = max{sup

x∈D
{f(x)− g(x)},− inf

x∈D
{f(x)− g(x)}} (59)

= max{sup
p∈D
{g∗(p)− f∗(p)},− inf

p∈D
{g∗(p)− f∗(p)}} (60)

= sup
p∈D
|g∗(p)− f∗(p)|, (61)

where the second equality uses (57) and (58). Now (10) follows.

A.3 Proof of Theorem 1

Let C(X) be the space of continuous bounded functions fromX to R equipped
with the sup norm ‖·‖. Then statement (a) holds with C(X) replacing C (X)
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by Stokey and Lucas (1989, Theorem 4.6). Thus if v ∈ C (X) ⊂ C(X), then
Bv ∈ C(X); furthermore, Bv is concave by a standard argument (e.g., Stokey
and Lucas, 1989, p. 81). Thus B maps C (X) into itself. Hence statement
(a) holds. It is easy to see that C (X) equipped with the sup norm ‖ · ‖ is a
complete metric space; thus statement (b) follows by the contraction map-
ping theorem (Stokey and Lucas, 1989, p. 50). Finally, statement (c) holds
by Stokey and Lucas (1989, Theorem 4.3).
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