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Abstract

In this paper we introduce a technique for perfect simulation from the station-
ary distribution of a standard model of industry dynamics. The method can be
adapted to other, possibly non-monotone, regenerative processes found in indus-
trial organization and other fields of economics. The algorithm we propose is a
version of coupling from the past. It is straightforward to implement and exploits
the regenerative property of the process in order to achieve rapid coupling.
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1 Introduction

The dynamics of entry and exit by firms play an essential role in economic theory as
well as in real life. Productive new entrants replace unproductive incumbents, rejuve-
nating overall economic activity. There is a large and growing literature on this eco-
nomic mechanism (see, e.g., Hopenhayn and Rogerson (1993), Cooley and Quadrini
∗We are grateful for financial support from ARC Discovery Award DP120100321 and the Japan Soci-

ety for the Promotion of Science. Email: tkamihig@rieb.kobe-u.ac.jp, john.stachurski@anu.edu.au.
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(2001) or Melitz (2003)), and much of this literature builds upon the model of entry and
exit studied by Hopenhayn (1992). The stationary distribution of entry-exit models of
the type studied by Hopenhayn represents a cross-sectional distribution of firms that
is both consistent with the definition of equilibrium at any point in time and also in-
variant over time. For typical parameter values the stationary distribution is uniquely
defined but has no analytical solution.1

Simulation is a useful option for computing the cross-sectional distribution for a given
exit policy, since it is not difficult to write down an ergodic Markov process such that its
stationary distribution coincides with the cross-sectional stationary distribution. This
permits approximate sampling from the stationary distribution simply by running the
process from an arbitrary initial value until it is judged to have “nearly” converged.
Simulating until the distribution of the state is approximately stationary is referred
to as “burn-in.” Unfortunately the length of burn-in required is often the subject of
guesswork and heuristics.2 Moreover, regardless of how much burn-in is performed,
the resulting sample is never exactly stationary, and the size of the error is once again
unknown.3

In this paper we show that these problems can be overcome. By using a variation of
coupling from the past (CFTP) technique originally due to Propp and Wilson (1996),
we show that it is possible to perform perfect sampling—that is, to sample exactly from
the stationary distribution of this class of models—for any specified exit threshold. In
particular, we develop an efficient algorithm that generates exact, IID draws from the
stationary distribution. For each random seed, the algorithm terminates as soon as an
exact draw has been generated, and it is guaranteed to terminate in finite time with
probability one. Hence there is no need for the heuristics used to judge burn-in time.
Moreover, by repeating the algorithm with independent seeds it becomes possible to
generate multiple independent draws from the stationary distribution.

Our work draws on a large literature on CFTP that mainly exists outside of economics,

1The difficulty of obtaining analytical solutions for this model is related to the existence of a positive
threshold for productivity at which firms choose to exit. The threshold introduces a nonlinearity that
essentially rules out analytical methods.

2While some methods for computing error bounds exist, they are rarely used for two reasons. First,
they are nontrivial to compute. Second, these bounds are often highly pessimistic, since any such bounds
must address the worst case scenario admitted by the model specification.

3A related issue is that, for a given method, the size of the error is likely to vary with the parameters,
since the parameters change the structure of the problem. If the burn-in is not varied accordingly, this is
likely to cause bias.
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where the technique is often used for models with large but discrete state spaces.4

More recently, researchers have developed techniques for implementing CFTP meth-
ods in continuous state settings. Murdoch and Green (1998) showed that CFTP can
in principle be used in continuous state settings when the underlying Markov process
satisfies Doeblin’s condition. This condition requires the existence of a nonnegative
lower bound function that (a) integrates to a positive value, (b) depends only on the
next state, and (c) is pointwise dominated by the transition density function (which
depends on both the current state and the next). Theoretical work along the same lines
can be found in Foss and Tweedie (1998) and Athreya and Stenflo (2003).

Although these results are fundamental, they can be difficult to apply. Murdoch and
Green (1998) admit that their basic method, which is in principle applicable to our
model, may have “a limited range of application for two reasons.” First, the function
associated with Doeblin’s condition “may be too small for practical use” to generate
exact draws in a reasonable length of time. Second, their method requires the user
to draw from scalar multiples of the lower bound transition density and a residual
kernel. It can be nontrivial or even impossible to explicitly calculate and draw from
these distributions. If approximations are required, this to some degree defeats the
purpose of CFTP.

For these reasons, CFTP methods tend to be popular only in specific settings, perhaps
the most notable of which is where the underlying Markov process is stochastically
monotone. For such processes, efficient and straightforward CFTP methods are avail-
able. Corcoran and Tweedie (2001) developed general results on CFTP particularly
suitable for monotone Markov processes. An application to economics can be found in
Nishimura and Stachurski (2010), where monotonicity makes the algorithm straight-
forward to implement and analyze.

Here we develop a CFTP algorithm that is designed to produce exact draws from the
stationary distribution of Hopenhayn’s entry-exit model, which is not monotone. We
do however exploit some monotonicity properties from Hopenhayn’s model in our
algorithm. We show that the algorithm terminates successfully in finite time with
probability one by using both the monotonicity of productivity for incumbents and
the regenerative property introduced by new entrants. Our algorithm is distinct from
Murdoch and Green’s method discussed above (Murdoch and Green (1998)), in that
it does not use Doeblin’s condition, and does not require explicit knowledge of the

4Applications range from statistical mechanics to page ranking and the design of peer-to-peer file
sharing systems. See, for example, Propp and Wilson (1996), Kijima and Matsui (2006), Huber (2003)
and Levin et al. (2009).
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transition density.5 As long as one can simulate the overall Markov process, one can
sample exactly from the stationary distribution using the algorithm.6

Aside from related models of industry dynamics, our techiques can also potentially be
applied to other non-monotone regenerative models, such as those found in various
intertemporal decision problems. One example is the problem of optimal replacement
of a part or machine, the performance of which degrades stochastically over time (see,
e.g., Rust (1987)).

2 Preliminaries

2.1 The Entry-Exit Model

In this section we briefly review a benchmark model of firm dynamics due to Hopen-
hayn (1992). The model is set in a competitive industry where entry and exit is en-
dogenously determined. In the model there is a large number of firms that produce
a homogeneous good. The firms face idiosyncratic productivity shocks that follow a
Markov process on S := [0, 1]. The conditional cumulative distribution function for
the shock process is denoted by F(φ′ | φ). Following Hopenhayn (1992), we impose the
following restrictions:

Assumption 2.1. F is decreasing in its second argument and, for any ε > 0 and any
φ ∈ S, there exists an integer n such that Fn(ε | φ) > 0.7

We let P denote the stochastic kernel on [0, 1] corresponding to F. That is, P(φ, A) :=∫
1A(φ

′)F(dφ′ | φ) for φ ∈ S and A ∈ B, where B represents the Borel sets on [0, 1]
and 1A is the indicator function of A. Incumbent firms exit the industry whenever
their current productivity falls below a reservation value xt. Letting Mt be the mass of
entrants at time t and ν be the Borel probability measure from which the productivity
of entrants is drawn, the sequence of firm distributions {µt} on S satisfies µt+1(A) =∫

P(φ, A)1{φ ≥ xt}µt(dφ) + Mt+1ν(A) for all A ∈ B. At the stationary equilibrium,
both x and M are constant, and a stationary distribution µ is a Borel probability8 mea-

5The assumptions used to show the probability one termination of the algorithm in fact imply Doe-
blin’s condition for some n-step transition, but our proof of this property does not use the latter.

6Of course in computer implementations exactness is modulo the errors associated with floating
point arithmetic and imperfect random number generators.

7Fn(· | φ) is the conditional distribution for productivity after n periods, given current productivity
φ.

8We focus only on normalized measures, since other cases are just scalar multiples.
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sure µ satisfying

µ(A) =
∫

P(φ, A)1{φ ≥ x}µ(dφ) + Mν(A) (A ∈ B). (1)

It follows from (1) and µ(S) = P(φ, S) = ν(S) = 1 that M = M(x, µ) := µ{φ ∈ S :
φ < x}. As a result, we can also write (1) as

µ(A) =
∫

Q(φ, A)µ(dφ) (2)

where
Q(φ, A) := P(φ, A)1{φ ≥ x}+ ν(A)1{φ < x}. (3)

Equation (2) states that µ is a stationary distribution for the stochastic kernel Q in the
usual sense of time invariance. As shown by Hopenhayn (1992), the kernel Q has only
one stationary distribution. For the purposes of this paper we will treat x as given. For
typical parameter values the stationary distribution has no analytical solution.

2.2 Simulation

It is not difficult to produce an ergodic Markov process suitable for simulation such
that its stationary distribution (i.e., time-invariant distribution) coincides with the cross-
sectional distribution µ in (2). In essence, we need a method for sampling from the
stochastic kernel Q. The first step is to simulate from the conditional distribution
P(φ, ·) = F(· | φ). In particular, we seek a random variable U and a function g such
that D(g(φ, U)) = F(· | φ) for all φ ∈ S. (Here D(X) indicates the distribution of ran-
dom variable X.) This can be achieved via the inverse transform method, where U is
uniform on [0, 1] and g(φ, u) = F−1(u | φ).9 Now consider the process {Φt} defined by

Φt+1 = g(Φt, Ut+1)1{Φt ≥ x}+ Zt+11{Φt < x} (4)

where {(Ut, Zt)} is IID with D(Zt) = ν and D(Ut) = Uniform[0, 1]. In what follows
we call (4) the simulation model.

Lemma 2.1. The simulation model is a Markov process with stochastic kernel Q.

Proof. Fix A ∈ B. Applying the law of iterated expectations to (4), we have

P{Φt+1 ∈ A} = E [Et1{Φt+1 ∈ A}]
= E [Et1{Φt+1 ∈ A}1{Φt ≥ x}+Et1{Φt+1 ∈ A}1{Φt < x}]
= E [P(Φt, A)1{Φt ≥ x}+ ν(A)1{Φt < x}].

9Here F−1(· | φ) is the generalized inverse of F(·|φ). That is, F−1(u | φ) := inf{z : F(z | φ) ≥ u}.
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Hence if µt := D(Φt) for all t, then µt+1(A) = EQ(Φt, A) =
∫

Q(φ, A)µt(dφ). In other
words, {Φt} is Markov with stochastic kernel Q.

Under some additional assumptions one can also show that the simulation model is
uniformly ergodic. Hence it can be used to estimate µ via ordinary forward simulation,
starting from an arbitrary initial condition. As discussed in the introduction, we adopt
a different approach, which permits exact sampling.

3 Perfect Simulation

Before turning to our algorithm it can be helpful to recall some features of CFTP in a
simpler setting. To this end we first review a version for finite state Markov chains and
then move on to industry dynamics.

3.1 Coupling From the Past

To begin, consider an irreducible aperiodic Markov chain {Xt} on finite state space S
with unique stationary distribution µ. Suppose that the dynamics of the model are
given by Xt+1 = h(Xt, Wt+1) where {Wt} is IID. If we start at any X0 and simulate
{Xt} by drawing W1, W2, . . . and successively applying the maps h(·, W1), h(·, W2), . . .,
then the distribution of Xt will converge to (but in general never reach) the stationary
distribution µ. A second immediate observation is that if {Xt} and {X′t} are two chains
simulated using the same sequence of shocks {Wt}, and if Xτ = X′τ for some τ, then
Xt = X′t for all t ≥ τ. We say that {Xt} and {X′t} couple at time τ.

Now consider an IID sequence of shocks {Wt}0
t=−∞ indexed on {. . . ,−2,−1, 0}, and

let {Xt}0
t=−∞ be the process generated from these shocks, starting in the infinite past

and terminating at t = 0. Intuitively, since the burn-in is infinite, the distribution of X0

will be exactly µ. On the other hand, because the chain {Xt}0
t=−∞ is infinite and hence

cannot be simulated, it appears that X0 is not observable. In fact this is not the case.
To understand how X0 can be observed, suppose that we fix T ∈ N, take the finite
subset of shocks W−T+1, W−T+2, . . . , W0 and then, for each point x in the state space S,
construct one version of the process {Xt(x)}0

t=−T that starts at this point x at time −T
and runs up until time zero. All of these processes {Xt(x)}0

t=−T are updated using the
same shocks W−T+1, WT+2, . . . , W0. We will call them tracking processes. Because there
are only finitely many tracking processes and each is of finite length, it is possible to
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Figure 1: Coalescence of the tracking processes

simulate them. Moreover, following the tracking processes can allow us to pin down
the value of X0.

To understand the idea, consider first the two different visualizations of the tracking
processes shown in the top panel of figures 1 and 2 respectively. Here the state space
is {1, . . . , 10}, and the two figures show different realizations from the same model.
Notice that in the simulations, some of the processes couple and then run together up
until time zero. In figure 1, all of the tracking processes have coupled by time zero,
and only one final value is observed. If this is the case we will say that the tracking
processes coalesce. In figure 2 multiple paths are still present at time zero, and the
processes fail to coalesce.

Now consider again the process {Xt}0
t=−∞ generated from the entire sequence of shocks

{Wt}0
t=−∞. Since this process must pass through one point x in the state space at −T,

and since it receives the same shocks W−T+1, W−T+2, . . . , W0 as the tracking processes
from that time forwards, over the period −T,−T + 1, . . . , 0 it must follow the same
path as the tracking process {Xt(x)}0

t=−T that started at x. Of course we do not know
which of the tracking processes it is following. However, if the tracking processes coa-
lesce, then there is only one final observation. This observation must be a realization of
the time zero value X0 of the process {Xt}0

t=−∞ that started in the infinite past, and is
therefore a draw from the stationary distribution µ. Such an outcome is illustrated in
the bottom panel of figure 1. For comparison, an unsuccessful outcome is illustrated
in the bottom panel of figure 2. Here there are three final values, and we do not know
which is the time zero value of the process {Xt}0

t=−∞. In this case we can take one step
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Figure 2: The tracking processes failing to coalesce

further back in time, drawing the additional shock W−T while preserving the existing
shocks W−T+1, W−T+2, . . . , W0, recalculate the tracking processes, test for coalescence,
and so on. This procedure will eventually terminate with an exact draw from µ.10

3.2 CFTP with the Simulation Model

While the technique presented in the previous section works when there are a finite
number of states, it is clearly not possible to directly implement the same idea when
the state space is infinite. However, variations on the idea can potentially be found
by exploiting the structure of a given model. In particular, for the simulation model
defined in (4), we now show how the monotonicity of g and the renewal component
can be combined to pin down the final value X0 (which is Φ0 in this case).

To begin, let {(Ut, Zt)}t∈Z be an infinite sequence of IID shocks indexed on Z and with
each pair (Ut, Zt) having the product distribution Uniform[0, 1]× ν. To simplify nota-
tion we will let gt := g(·, Ut), so that, for example, gt · · · g1 φ := gt ◦ gt−1 ◦ · · · ◦ g1(φ)

is exogenous productivity at t, given time zero productivity φ ∈ S. To further simplify
notation, let

ht(φ) := g(φ, Ut)1{φ ≥ x}+ Zt1{φ < x},

so that (4) becomes Φt+1 = ht+1 Φt := ht+1(Φt).

10Using finiteness of the state space, aperiodicity and irreducibility, it can be shown that termination
occurs in finite time with probability one.
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Now fix T ≥ 1. For each φ ∈ S, there is a corresponding “tracking process” that starts
at time −T with value φ, and then updates with maps h−T+1, h−T+2, . . . , h0, obtaining
the value h0 · · · h−T+1 φ at time zero. We say that the tracking processes coalesce if, for
some T ∈ N, the set of final values

h0 · · · h−T+1(S) := {h0 · · · h−T+1 φ : φ ∈ S} (5)

is a singleton. What we will now show is that under mild conditions coalescence oc-
curs with probability one, and, moreover, that it is not necessary to keep track of the
full continuum of tracking processes in order to find the value of the singleton. In par-
ticular, we show that, conditional on a certain event described below, the set of final
values h0 · · · h−T+1(S) has only finitely many possibilities. Hence coalescence occurs
whenever these finite possibilities take the same value. All of these finite possibilities
are computable. To begin describing them, let T > 1 be given, let

ΣT := {k ∈ N : 1 ≤ k < T and g−T+k · · · g−T+2 · g−T+1 1 < x},

and let σT := min ΣT. Intuitively, σT is the number of periods that an incumbent firm
survives, given that it starts at time −T with maximal productivity 1 and faces the
shock sequence {Ut}t∈Z. Clearly σT is only defined when ΣT is nonempty. However,
the probability that ΣT is nonempty converges to one as T → ∞ by assumption 2.1.
Moreover, it is remarkable that if ΣT is nonempty, then the set h0 · · · h−T+1(S), which
contains the final values of the tracking processes started at −T, can have only finitely
many values:

Lemma 3.1. If ΣT is nonempty, then h0 · · · h−T+1(S) ⊂ ΛT, where the latter is the finite set
given by

ΛT := {h0 · · · h−T+k+1 Z−T+k : k = 1, . . . , σT + 1}. (6)

The proof of lemma 3.1 is given in section 4. The intuition for the result can be obtained
by considering figure 3. In the figure, T = 10. Tracking processes are plotted for 50
different initial values of φ ∈ S. (Ideally, tracking processes would be plotted from
every φ ∈ S, but this is clearly impossible.) For this particular realization of shocks,
the set ΣT is nonempty because the process starting from 1 at time −10 falls below x
at t = −2 (and hence σT = 10− 2 = 8). As is clear from the figure, the fact that the
process starting from 1 at time −10 falls below x at t = −2 implies that all tracking
processes fall below x at least once between−10 and−2 (recall that the productivity of
incumbents is monotone). Moreover, if any collection of tracking processes fall below
x at some point in time t, they subsequently couple, taking the common value Zt+1 at
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Figure 3: Tracking processes with T = 10 and σT = 8

t + 1 and being equal from then on. As a result, by t = −1, there are at most σT + 1 = 9
distinct tracking processes. Their time zero values are included in the set ΛT defined
in lemma 3.1. In particular, ΛT is the time zero values of the processes that start below
x at dates −10,−9, . . . ,−2.

To see the importance of lemma 3.1, let {Φt}t∈Z be a stationary, doubly-indexed pro-
cess on the same probability space as {(Ut, Zt)}t∈Z that obeys Φt+1 = ht+1 Φt for all
t ∈ Z. The common marginal distribution of Φt is µ. Since Φ−T lies somewhere in
S, we know that Φ0 = h0 · · · h−T+1 Φ−T ∈ h0 · · · h−T+1 (S). Moreover, if the set ΣT is
nonempty, then lemma 3.1 yields the inclusion h0 · · · h−T+1 (S) ⊂ ΛT, and Φ0 lies in
the finite observable set ΛT. In particular, if ΛT is a singleton, then the value of Φ0 is
revealed as the value of that singleton.

Figures 4 and 5 show simulations with successful and unsuccessful coalescence re-
spectively. In each figure, the top panel shows only the tracking processes. (As with
figure 3, the full continuum of tracking processes cannot be plotted, so we show only
50.) The bottom panel shows the tracking processes and the path of {Φt}. In reality,
the path of {Φt} is not observed. However, in figure 4, there is only one final, coa-
lesced value, and Φ0 must take this value. Hence Φ0 is observed. On the other hand,
in figure 5, Φ0 is equal to one of two final values, and we have no way of identifying
which one it is.

Now let us consider how to use our results to sample from µ by generating observa-
tions of Φ0. In order to avoid conditioning on coalescence by a certain point in time,
we wish to reveal the value of Φ0 for every random seed. This can be done by fixing
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the seed, which determines the values of the shock processes, and then taking T larger
and larger until coalescence occurs. Algorithm 1 gives details.

Algorithm 1: Generates an exact draw from µ

fix T to be an integer greater than 1;
draw (U0, Z0), . . . , (U−T+1, Z−T+1) independently from their distributions;
repeat

compute the set ΣT ;
if ΣT is nonempty then

compute the set ΛT ;
if ΛT is a singleton then

set X to be the value of that singleton ;
break ;

end
end
draw (U−T, Z−T) and append to list (U0, Z0), . . . , (U−T+1, Z−T+1) ;
set T = T + 1 ;

end
return X ;

We still need to show that (a) the distribution of X is µ, and (b) that the algorithm will
terminate with probability one. We now show that these claims are true under the
following condition, which is satisfied by many standard distributions.

Assumption 3.1. If G ⊂ S is a nonempty open set, then ν(G) > 0.

Let T∗ := min{T ∈ N : ΣT is nonempty and ΛT is a singleton }. In other words, T∗ is
the length of the simulation run required for algorithm 1 to terminate. Evidently T∗ is
a random variable.

Proposition 3.1. If assumption 3.1 holds, then

1. There exists a γ ∈ (0, 1) such that P{T∗ > t} ≤ γt.

2. The random variable X returned by algorithm 1 has distribution µ.

Two comments are in order. First, item 1 tells us in particular that P{T∗ < ∞} = 1. In
other words, the algorithm terminates in finite time with probability one. Thus propo-
sition 3.1 not only gives probability one occurrence but also provides a geometric rate.
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Figure 6: Stationary density

Second, in view of item 2, algorithm 1 gives us a way to generate an exact sample from
µ. If we then repeat the process with independent shocks we will generate multiple
independent draws. The proof of proposition 3.1 is given in section 4.11

The web page https://github.com/jstac/hh sampling contains a simple implemen-
tation of algorithm 1. We tested the code by following Hopenhayn and Rogerson (1993)
in taking the distribution ν for new entrants to be uniform, and the process for in-
cumbents to be Φt+1 = gt+1Φt = a + ρΦt + εt+1 where {εt} is IID with distribution
N(0, σ2). To bound the process we added reflecting barriers at 0 and 1. The parameters
were set to a = 0.36, ρ = 0.4 and σ = 0.1, while x was set to 0.49, so that approximately
40% of incumbents exit within 5 years (Hopenhayn, 1992, p. 1127). For these parame-
ters, running the program on a standard workstation without parallelization produces
about 36,000 independent draws from µ per second.12

Figure 6 shows the density computed from 36,000 observations combined with a stan-
dard nonparametric kernel density estimator (using a Gaussian kernel). Figure 7 shows
a 95% confidence set for the cumulative distribution function corresponding to µ, based
on the same observations and calculated using the Kolmogorov distribution of the sup
norm deviation between true and empirical cdfs. The Kolmogorov result is applicable
here because the draws are exact and IID. The true distribution function lies entirely
between the two bands with 95% probability.

11A final point of intuition before the proofs is that on first reading it might appear that X is a draw
from the distribution ν of new entrants, rather than the stationary distribution µ, since coalescence to a
single value always occurs after a re-entry event. However, this is not the case because the algorithm
still runs on from this event until we reach time zero, at which point the final value is recorded. See
figure 4.

12Our workstation has a 2.67GHz Intel CPU and 4 gigabytes of RAM.
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4 Proofs

In the following proofs T is fixed, and we write σ for σT to simplify notation.

Proof of lemma 3.1. Let ΣT be nonempty. As a first step, we show that if φ ≥ x, then
there exists a j ∈ {1, . . . , σ} such that h−T+j · · · h−T+1 φ < x. To see that this is so, fix
φ ≥ x and suppose that the statement fails. In other words, h−T+j · · · h−T+1 φ ≥ x for
j ∈ {1, . . . , σ}. We know that if y ≥ x, then hi y = gi y. It follows that h−T+σ · · · h−T+1 φ =

g−T+σ · · · g−T+1 φ. But then

x ≤ h−T+σ · · · h−T+1 φ = g−T+σ · · · g−T+1 φ ≤ g−T+σ · · · g−T+1 1 < x,

where the second inequality is due to monotonicity of gi, and then third is by the
definition of σ. Contradiction.

To complete the proof, pick any φ ∈ S. Our claim is that h0 · · · h−T+1 φ ∈ ΛT. Suppose
first that φ < x. In this case we have h0 · · · h−T+1 φ = h0 · · · h−T+2 Z−T+1, which is an
element of ΛT. Next, suppose that φ ≥ x. In light of the preceding argument, there
exists a j ∈ {0, . . . , σ} with h−T+j · · · h−T+1 φ < x, and hence

h−T+j+1 · h−T+j · · · h−T+1 φ = Z−T+j+1,

from which we obtain

h0 · · · h−T+1 φ = h0 · · · h−T+j+2 · h−T+j+1 · h−T+j · · · h−T+1 φ

= h0 · · · h−T+j+2 Z−T+j+1.
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Since j ∈ {0, . . . , σ}, the right-hand side is an element of ΛT. This completes the proof.

Proof of proposition 3.1. We start with the first claim, which is existence of a γ ∈ (0, 1)
such that P{T∗ > t} ≤ γt.

Let n be an integer such that Fn(x | 1) > 0, existence of which is due to assumption 2.1.
Fixing j ∈ N, let

Ej := {g−(j−1)n−1 · · · g−jn 1 < x} ∩ {Z−(j−1)n−1 < x, . . . , Z−jn < x}.

The events {g−(j−1)n−1 · · · g−jn 1 < x} and {Z−(j−1)n−1 < x, . . . , Z−jn < x} are inde-
pendent because the first event depends only on U−(j−1)n−1, . . . , U−jn and the second
depends only on Z−(j−1)n−1, . . . , Z−jn. As a result,

δ := P(Ej) = Fn(x | 1)ν([0, x))n.

The constant δ is strictly positive as a result of assumption 3.1. We claim that if the
event Ej occurs, then Σjn+1 is nonempty and Λjn+1 is a singleton. To simplify notation,
we treat only the case of j = 1.

So suppose that E1 occurs. Clearly Σn+1 contains n, and hence is nonempty. To see that
Λn+1 is a singleton, observe that since σ = σn+1 is the smallest element of Σn+1, we
must have σ ≤ n. As a consequence,

Λn+1 = {h0 · · · h−n+k Z−n−1+k : k = 1, . . . , σ + 1}
⊂ {h0 · · · h−n+k Z−n−1+k : k = 1, . . . , n + 1}.

We claim that on the set E1 we have

h0 · · · h−n+k Z−n+k−1 = Z0 for any k ∈ {1, . . . , n + 1}. (7)

To prove that (7) holds, observe that on E1 the values Z−1, . . . , Z−n are all less than x.
As a result, we have

h0 Z−1 = Z0

h0 h−1 Z−2 = h0 Z−1 = Z0

h0 h−1 h−2 Z−3 = h0 h−1 Z−2 = h0 Z−1 = Z0

and so on. Together, these equalities give (7). As a consequence, we conclude that Σn+1

is nonempty and Λn+1 is a singleton whenever E1 occurs, and, more generally, Σnj+1
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is nonempty and Λnj+1 is a singleton whenever Ej occurs. The events E1, E2, . . . are
independent and have positive probability δ. Using the definition of T∗, we then have

P{T∗ > nj} = P{T∗ ≥ nj + 1} ≤ P∪j
i=1 Ec

i = (1− δ)j

for all k ∈ N. Setting γ := (1− δ)1/n gives the first result stated in proposition 3.1

The second claim in proposition 3.1 is that the value X returned by algorithm 1 has
distribution µ. It is clear from the algorithm that X is the value contained in ΛT when
the latter is a singleton. In the discussion preceding the proposition it was show that
when ΛT is a singleton the value of the singleton is Φ0. Hence X = Φ0. Moreover,
{Φt} is by assumption a strictly stationary process, and hence the distribution of Φ0 is
exactly µ.
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