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ABSTRACT. Random dynamical systems encountered in economics have certain
distinctive characteristics that make them particularly well suited to analysis us-
ing the tools for studying Markov processes developed by Rabi N. Bhattacharya
and his coauthors over the last few decades. In this essay we discuss the sig-
nificance of these tools for both mathematicians and economists, provide some
historical perspective and review some recent related contributions.

1. INTRODUCTION

The foremost concern within the field of economics is allocation of scarce re-
sources among alternative and competing uses. Such resources must be allocated
not only contemporaneously but also across time. Allocating resources over time
necessarily involves uncertainty over possible future states of the world. These
facts have led economists to maintain a deep interest in the properties of random
dynamical systems.

The random processes of interest to economists have a special characteristic: Their
laws and properties are generated to a large extent by the decisions of economic

1This paper was written while the second author was visiting RIEB at Kobe University as a
Visiting Researcher. Our research has benefited from financial support from the Japan Society for
the Promotion of Science and Australian Research Council Discovery Grant DP120100321.
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1



2

agents—the choices of human beings. These choices are made according to a va-
riety of concerns, such as profit maximization by firms, utility maximization by
households and consumers and social welfare maximization by policy makers
(should they be so inclined).

Putting humans in models is inherently problematic. Nonetheless, a broad ap-
proximation to many kinds of human behavior can be obtained by assuming
that agents respond to incentives, which in the language of mathematics means
that they optimize (taking into account the constraints they face, their predic-
tions of future outcomes and perhaps their bounded knowledge and information
processing capabilities). As a result, economic models almost always contain
agents who optimize given their constraints, and the random dynamic systems
economists analyze are determined partly by their resulting policy functions. (A
“policy function” in this context usually means a map from current state to cur-
rent actions). In particular, the policy functions of the agents combine with other
elements of the system (equilibrium constraints, physical laws of motion, exoge-
nous shocks, etc.) to determine the evolution of the state variables.

Policy functions are often the solution to complex optimization problems, and are
typically nonlinear. (One example is threshold behavior caused by fixed costs or
indivisibilities, as seen in the lumpy investment behavior of firms or oscillations
in asset prices.) In many settings their exact properties are difficult to discern. If
the law of motion for a given system depends on a policy function that is formally
defined as the solution to a dynamic programming problem but has no analytical
solution, then pinning down the exact properties of the law of motion (continuity,
smoothness, etc.) becomes a difficult problem. Hence the approach to studying
economic dynamics sometimes differs from methods adopted for other kinds of
systems.

One particular problem associated with the issues described above is that many
models either fail to be irreducible or cannot be shown to be irreducible under
standard assumptions. For example, in the nonlinear models on continuous state
spaces routinely treated in economics, systematic approaches to irreducibility re-
quire a considerable amount of smoothness (see, e.g., chapter 4 of [33]). It can
be almost impossible to extract such fine grained information from our limited
knowledge of policy functions that are defined in a formal sense but cannot be
written down explicitly.
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Without irreducibility, many results from the classical theory of Markov processes
(see, e.g., [33, 24]) cannot be applied. Given this scenario, it is perhaps not surpris-
ing that Rabi Bhattacharya’s seminal work on Markov processes without the ir-
reducibility assumption and his subsequent research with his coauthors on these
and related topics [3, 4, 14, 10, 7, 6, 9, 8, 12, 11] have turned out to be ideally suited
to the study of random dynamical systems in economics.

In the rest of this essay we discuss the significance of Rabi Bhattacharya’s con-
tributions through the lens of economic applications. We begin by introducing
two canonical applications, extensions of which serve as workhorse models for
economic research. Next we turn to theory. We also fill in some of the historical
background of related work in economics, as well as subsequent developments.2

2. BASIC ECONOMIC MODELS

In this section we review two standard economic models that are routinely em-
ployed in economic applications (after adding in frictions or additional features
that the modelers wish to study). We strip the models down to their most es-
sential features for expositional convenience. While this eliminates some of the
complications mentioned in the introduction, references are included for those
who wish to dig deeper.

2.1. Optimal Growth. Foundational models in the field of growth theory ana-
lyze the dynamics of output, income, savings and consumption in a setting where
growth is driven through the accumulation of productive capital [15, 34]. These
models have been extended in many directions, in order to account for the role
of research and development, the impact of precautionary savings, dynamics of
labor through the business cycle and so forth. We present only a classical one-
sector optimal growth model, where a representative agent chooses a policy for
consuming and saving in order to solve

(1) max
{ct}∞

t=0

E

∞

∑
t=0

δtu(ct)

(2) s.t. ct + kt ≤ yt, yt = ξt f (kt−1), k0 given.

2We focus on discrete time systems since they are more commonly observed in models of eco-
nomic dynamics. Analysis of continuous time systems can be found, for example, in [13, 2].
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Here u : (0, ∞) → R is a utility function, δ is a subjective discount factor taking
values in (0, 1), f is a production function, ct is consumption, kt is capital (which
equals savings in our simple model), yt is output and all variables are nonnega-
tive. The stochastic sequence {ξt} is taken to be IID with distribution φ having
support on some subset of (0, ∞). As is standard in the literature, we take u to be
bounded, increasing and strictly concave, with u′(0) = ∞. The function f is also
assumed to be strictly increasing and strictly concave with f ′(0) = ∞, f (0) = 0
and f ′(∞) = 0.

Under these conditions it is well known that a unique optimal savings policy
σ exists. Optimality means that if we let income evolve according to yt+1 =

f (σ(yt))ξt+1 and consume according to ct = yt − σ(yt), then the resulting con-
sumption process maximizes (1) under the stated constraints [15, 27, 36]. In gen-
eral no analytical expression exists for the optimal policy σ.

The slope conditions on u and f at zero are used partly to ensure stability and
partly to generate interior choices. Regarding the first point, if f ′(0) < ∞, then
it is possible that output converges to zero with probability one. We return to
this point below. Regarding interiority, the slope conditions at zero are enough to
imply that 0 < σ(y) < y for all y > 0, and, as a consequence, that σ satisfies the
Euler equation

(3) u′ ◦ c(y) = δ
∫

u′ ◦ c[ f (σ(y))z] f ′(σ(y))zφ(dz) (y > 0)

where c(y) := y − σ(y). For a proof, see, for example, [42, prop. 12.1.24]. This
equation is very useful for inferring properties of σ and the optimal income dy-
namics.

To study the dynamics of the optimal process, we take yt as the state variable,
and consider the process yt+1 = f (σ(yt))ξt+1. A natural state space is (0, ∞) or
some subinterval. Key questions are the existence and uniqueness of stationary
distributions for the state variable, convergence of marginal distributions to the
stationary distribution under some suitable topology, and ergodicity and central
limit theorems for the time series. Answering these questions is of fundamental
importance when comparing predictions with data.

2.2. Stability Arguments. In the simple version of the model we have presented,
irreducibility can be established after assuming enough smoothness on φ, the
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distribution of the shock process. This is because the shock ξt+1 appears outside
the policy function in the law of motion yt+1 = f (σ(yt))ξt+1. However, this
property is easily lost if we alter the timing or include additional complications
such as correlated productivity shocks or elastic labor supply (see, e.g., [25, 17]).
Although we omit such complications here, their existence implies that general
stability results need to be built on top of more robust features of the dynamics.

Two such features are continuity and monotonicity. For example, consumers typ-
ically save more when income goes up. In the context of our optimal growth
model, it is certainly true that the optimal savings function y 7→ σ(y) is con-
tinuous and increasing, and, since f preserves these properties, the associated
Markov process yt+1 = f (σ(yt))ξt+1 is both stochastically monotone and Feller
[43, 15, 34].

These properties were exploited in the first proof of stability for the model dis-
cussed above, due to Brock and Mirman [15]. They showed that the model has
a unique and stable stationary distribution whenever the shocks have compact
support [a, b] with 0 < a < b. The same properties were also exploited in subse-
quent related work by Mirman and Zilcha [34] and Razin and Yahav [40]. A sum-
mary of the approach that combines monotonicity and continuity can be found
in [43].3

However, continuity is not a robust feature that can be relied upon for stability
proofs in more general cases. For example, if we drop the concavity assump-
tion on f , the optimal policy can contain jumps [21, 25, 36]. Seminal work by
Rabi Bhattacharya and his co-authors showed that for existence, uniqueness and
stability in models such as this one sector stochastic optimal growth model, con-
tinuity of the optimal policy is unnecessary: it is sufficient to require the optimal
policy to be monotone and to satisfy an appropriate mixing condition, as we dis-
cuss in Section 3.

2.3. Overlapping Generations. Another foundational class of models in eco-
nomic theory are the models of production and growth with overlapping gen-
erations. Here we discuss a simple example loosely based on Galor and Ryder
[23] and Wang [45]. The framework is as follows. Agents live for two periods,

3Subsequently the stability analysis was extended to the case of unbounded shocks by [41, 37,
28, 47].
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working in the first and living off savings in the second. Savings in the first pe-
riod forms capital stock, which in the following period will be combined with the
labor of a new generation of young agents for production under the technology
yt = F(kt, `t)εt. Here yt is income, kt is capital and `t is the number of young
agents, all of whom supply inelastically one unit of labor. For convenience we as-
sume that population is constant (`t = ` = 1), and set f (k) = F(k, 1). Following
Galor and Ryder [23, p. 362] we assume that f : R+ → R+ has the usual proper-
ties f (0) = 0, f ′ > 0, f ′′ < 0, f ′(0) = ∞, f ′(∞) = 0, as well as the extended Inada
condition

(4) lim
k↓0

[−k f ′′(k)] > 1.

The shocks {εt} are IID on R+ according to density φ.

As Galor and Ryder point out [23, Lemma 1, p. 365], restrictions on the utility
function are necessary to obtain unique self-fulfilling expectations. Here we as-
sume that young agents maximize utility

(5) U(ct, c′t+1) = ln ct + βE(ln c′t+1), β ∈ (0, 1),

subject to the budget constraint

st = wt − ct, c′t+1 = stRt+1,

where s is savings from wage income, c (respectively, c′) is consumption while
young (respectively, old), w is the wage rate and R is the gross rate of return on
savings. Competitive markets imply that firms pay inputs their marginal factor
product. Thus, the gross interest rate and wage rate are

(6) Rt(kt, εt) = f ′(kt)εt, wt(kt, εt) = [ f (kt)− kt f ′(kt)]εt.

At time t, households choose st to maximize

(7) ln(wt(kt, εt)− st) + βE ln[stRt+1(kt+1, εt+1)],

using their knowledge of the distribution φ of εt to evaluate the expectations
operator, as well as their current belief that next period capital stock will be kt+1.
In self-fulfilling expectations equilibrium their beliefs are realized, with

(8) kt+1 = st =
β

1 + β
h(kt)εt,
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where h(k) = [ f (k)− k f ′(k)]. The role of condition (4) is to ensure that h′(0) > 1,
implying that capital will not collapse to zero as long as the distribution of the
shock is sufficiently favorable.

The first aim of dynamic analysis is to establish existence of a unique and sta-
ble stationary distribution for capital {kt} under reasonable assumptions on the
shock process {εt}. The most notable property of h is monotonicity, as follows
directly from concavity of the production function f . This makes the system
amenable to analysis using the methods of Bhattacharya and Lee [3] described
below.

2.4. Other Applications. We have mentioned only two simple applications. For
more applications amenable to analysis using related stability conditions, see, for
example, the infinite horizon incomplete market models typified by [26], stochas-
tic endogenous growth models such as that found in [20], a wide variety of OLG
models, such as those as found in [1], [39], [38] and [35], and industry models
such as [16] and [19].

3. STABILITY CONDITIONS

In this section we discuss sufficient conditions for stability, starting with the
monotonicity and “splitting” conditions introduced by Bhattacharya and Lee [3].4

3.1. Splitting. The framework adopted by Bhattacharya and Lee [3] consists of
a sequence of IID random maps {γt}t≥1 on some probability space (Ω, F ,P),
each map γt sending a subset S ofRn into itself, and an S-valued process {Xt}t≥0

generated by

Xt = γtXt−1 = γt ◦ · · · ◦ γ1(x)

where x ∈ S is the initial condition. The key assumption of their stability analysis
is the existence of a c ∈ S and m ∈ N such that

(S1) P{γm ◦ · · · ◦ γ1(x) ≥ c, ∀x ∈ S} > 0; and
(S2) P{γm ◦ · · · ◦ γ1(x) ≤ c, ∀x ∈ S} > 0.

4The work of Bhattacharya and Lee builds to some degree on earlier work by Dubins and
Freedman [22] and Yahav [46].
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The order ≤ here is the usual pointwise order for vectors in Rn.

Conditions (S1) and (S2) are often referred to collectively as a “splitting condi-
tion”. They have a natural interpretation of mixing in an order-theoretic sense.
Under this splitting condition and the assumption that all maps γt are increasing,
it was shown that the Markov process {Xt} has a unique invariant distribution
and is globally asymptotically stable; see [3, 5, 18]. Stability is with respect to
a metric that is weaker than total variation convergence but equivalent to the
Kolmogorov metric in one dimension (and implies weak convergence in higher
dimensions under mild restrictions).

These simple and intuitive conditions can easily be applied to the optimal growth
model described in Subsection 2.1 whenever the shock is bounded. No continuity
is required, so variations that induce jumps in the policy function can also be
treated. Monotonicity is known to hold, as already discussed.

Conditions (S1) and (S2) can also be used to prove stability for the overlapping
generations model described in Subsection 2.3. In particular, provided that the
shock distribution is chosen to be supported on a bounded subset of (0, ∞), the
state space S for kt can be taken to be a bounded closed interval [Ka, Kb] ⊂ (0, ∞).
The splitting condition (S1) can then be checked by showing that, starting from
k0 = Ka, sufficiently positive shocks can drive the state km above some point
c ∈ [Ka, Kb] with positive probability. In view of monotonicity, the same shocks
will drive the state above c in m periods from any initial condition. A proof along
these lines gives (S1), and (S2) can be checked in a similar way.

Further results pertaining to the splitting conditions (S1) and (S2) were obtained
by Rabi Bhattacharya and coauthors in a sequence of studies subsequent to the
original paper by Bhattacharya and Lee [3]. These relate to processes that are
monotone but not necessarily increasing, to the connections between splitting
and classical minorization conditions, and to the implications of splitting for er-
godicity and central limit theorems [4, 6, 7, 10, 12]. For example, theorem 3.1 of
Bhattacharya, Majumdar and Hashimzade [12] tells us that when the overlap-
ping generations model satisfies the splitting conditions as described above, the
equilibrium capital stock process {kt} satisfies

√
n

{
1
n

n

∑
t=1

g(kt)−
∫

g(x)µ(dx)

}
d→ N(0, σ2)
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for some σ ≥ 0 where d→ means convergence in distribution. Here µ is the sta-
tionary distribution of the process (8) and g : [Ka, Kb] → R is any function of
bounded variation (and therefore representable as the difference between two
monotone increasing functions).

3.2. Monotone Mixing. The existence of many economic models lacking irre-
ducibility but possessing a certain monotone structure led to considerable interest
in understanding the stability properties of non-irreducible random dynamical
systems arising from economic models.

One well known example in the economic literature is due to Hopenhayn and
Prescott [25]. They studied monotone processes that exist on a compact metric
space with a closed partial order. The space S is assumed to contain a least ele-
ment a and greatest element b.5 Monotonicity means that the stochastic kernel

P(x, B) := P{Xt+1 ∈ B |Xt = x}

has the property that x 7→ P(x, B) is increasing for every measurable increasing
set B in S. They require a “monotone mixing condition,” which states that there
exists a c ∈ S and m ∈ N such that Pm(a, [c, b]) > 0 and Pm(b, [a, c]) > 0. This
condition, combined with monotonicity, implies the splitting conditions (S1) and
(S2) discussed above. Thus, although the proofs are rather different, the work
of Hopenhayn and Prescott can be thought of as extending at least some of the
results of Bhattacharya and Lee to abstract compact metric spaces.

3.3. Order Mixing. Recently there has been a surge of interest in developing re-
sults analogous to Bhattacharya and Lee [3] but with weaker mixing assumptions
(paired, of course, with weaker conclusions in terms of uniformity and rates of
convergence). To see why this might be useful, consider, for example, the sto-
chastic optimal growth model yt+1 = f (σ(yt))ξt+1 and suppose now that the
productivity shock ξ is lognormal, say, or has any other unbounded distribution.
In such a setting, the splitting conditions (S1) and (S2) are too strict. To see this,
recall that the map y 7→ f (σ(y)) is continuous and zero at y = 0. Hence if we fix
any c > 0 and any m ∈ N, the probability that ym ≥ c conditional on y0 can be
made arbitrarily small by taking y0 ↓ 0.

5That is, a ≤ x ≤ b for all x ∈ S.
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Weaker mixing conditions maintaining an order theoretic flavor were introduced
by Bhattacharya and Waymire in [14], who studied local splitting conditions in
conjunction with a recurrence condition ensuring drift back to the set where split-
ting occurs. An alternative but related approach was suggested by Szeidl in [44].

An even weaker mixing condition was considered in [29], called order mixing.
Loosely speaking, a Markov process on a partially ordered set (S,�) is defined
to be order mixing if, given any two independent sequences {Xt}t≥0 and {X′t}t≥0

generated by the model, we have

(9) P{∃t ≥ 0 s.t. Xt � X′t} = 1.

The initial conditions X0 and X′0 are permitted to be distinct, but both processes
are updated according to the same transition law.6 While order mixing is not
strong enough to imply existence of a stationary distribution, it does imply unique-
ness and convergence, where convergence means that if {Xt} and {X′t} are two
copies of the process with different initial conditions then

(10) |E h(Xt)−E h(X′t)| → 0 as t→ ∞

for any bounded measurable increasing function h.

Order mixing is implied by the splitting conditions (S1) and (S2). These condi-
tions tell us that Xt � X′t occurs once ever m periods with positive probability.
Hence Xt � X′t eventually with probability one by the Borel-Cantelli lemma. To
see that order mixing is strictly weaker than (S1) and (S2), consider two processes
generated by the same Markov model, in this case AR(1) processes on R defined
by Xt+1 = ρXt + ξt+1 with X0 = x and X′t+1 = ρX′t + ξ ′t+1 with X′0 = x′. Here
{ξt} and {ξ ′t} are IID, standard normal, and independent of each other. While
(S1) and (S2) fail, it is easy to see that P{X1 ≤ X′1} is strictly positive, regardless
of (x, x′). Hence the process is order mixing.

3.4. Order Reversing. A still weaker mixing condition was introduced in [31].
This condition combined with a techinical condition implies order mixing.

To be more precise, a Markov process {Xt} on a partially ordered set (S,�) is
called order reversing if, for any given x and x′ in S with x ≥ x′, and any indepen-
dent copies {Xt} and {X′t} of the process starting at x and x′ respectively, there

6Note that P{∃t ≥ 0 s.t. X′t � Xt} = 1 must also hold by interchanging the two processes.
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exists a t ∈ NwithP{Xt ≤ X′t} > 0. In other words, there exists a point in time at
which the initial ordering is reversed with positive probability. Evidently, order
reversing is considerably easier to check than order mixing in applications.

A Markov process {Xt} is called bounded in probability if, for any initial condition
x ∈ S and any ε > 0, there exists a compact set C ⊂ S such that P{Xt ∈ C} ≥
1− ε for all t; see, e.g., [33] or [31] for a more precise definition. If the state space
itself is compact, then any stochastic process is bounded in probability. Hence
this condition allows for non-compact state spaces since a Markov process on a
non-compact space can be bounded in probability.

Boundedness in probability is itself not trivial to show for models like the op-
timal growth model discussed above, but it can be established under reason-
able assumptions by exploiting the Euler equation (3). For example, if we take
w1 := (u′ ◦ c)1/2, where c is the consumption policy as in (3), then some manipu-
lations of the Euler equation lead us to

∫
w1[ f (σ(y))z]φ(dz) ≤

[∫ 1
δ f ′(σ(y))z

φ(dz)
]1/2

w1(y).

This is a kind of drift condition, which can be used to check boundedness in
probability. In this case it tells us that when income is small, the value of w1 tends
to decline (recall our assumption that f ′(0) = ∞). Since w1 is large near zero, this
means that the state moves away from zero—which is one half of boundedness
in probability in this context. See [27, 36] for further discussion of these issues.

It has been shown [31, lemma 6.5] that for monotone processes that are bounded
in probability, order reversing implies order mixing. One advantage of this ap-
proach is that, at least for monotone processes, once we have boundedness in
probability and order reversing, existence of a stationary distribution requires
only mild additions to the assumptions. For example, if, in addition, the stochas-
tic kernel of the process has either a deficient or an excessive distribution (where
the marginal distribution of the state is shifted up or down in the stochastic dom-
inance ordering over one unit of time), then a stationary distribution exists, is
unique and is globally stable in a topology stronger than the weak topology [31,
theorem 3.1]. The essence of this fixed point argument was explored in [30] in an
abstract setting.
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One can introduce still simpler mixing conditions that imply order reversing.
For example, in [31] a Markov process {Xt} is called upward reaching if, given any
initial condition x and any other point c in S, there exists a t ∈ N such thatP{Xt ≥
c} > 0. The process is called downward reaching if given any initial condition x
and any other point c in S, there exists a t ∈ N such that P{Xt ≤ c} > 0. It can be
shown [31, proposition 3.2] that if a monotone process is bounded in probability
and either upward or downward reaching, then it is order reversing. Related
ideas are presented in [32].

4. CONCLUSION

The tools for studying possibly non-irreducible Markov processes introduced
and refined over the past few decades by Rabi Bhattacharya and his coauthors
have significantly raised the ability of economists to elicit sharp predictions from
their models and compare them with data. Much interesting work remains to be
done. For example, it seems likely that a more unified approach to the various
order-theoretic mixing conditions discussed above can be obtained. Further, the
relationship between the weaker mixing conditions and properties like laws of
large numbers and central limit theorems are only starting to be investigated. On
the applied side, economists are continuously generating interesting random dy-
namical systems and seeking the input of experts to determine their asymptotic
properties.
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