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ABSTRACT. The stochastic dominance ordering over probability distributions is

one of the most familiar concepts in economic and financial analysis. One diffi-

culty with stochastic dominance is that many distributions are not ranked at all,

even when arbitrarily close to other distributions that are. Because of this, several

measures of ”partial” or ”near” stochastic dominance have been introduced into

the literature—albeit on a somewhat ad hoc basis. This paper argues that there is a

single measure of extent of stochastic dominance that can be regarded as the most

natural default measure from the perspective of economic analysis.
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1. INTRODUCTION

Stochastic dominance is a fundamental concept in economics, finance and opera-

tions research, which permits comparison of outcomes in environments involving
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uncertainty. The basic properties of first order stochastic dominance were initially

provided by Lehmann (1955), and introduced to economics by Quirk and Saposnik

(1962). As stated by Border (1992), “the concept has been independently discov-

ered too many times for an exhaustive listing.” (Here and below, stochastic domi-

nance always refers to first order stochastic dominance unless otherwise specified.)

For probability distributions µ and ν on some set S, stochastic domination of µ

by ν means that if X and Y are S-valued random elements with distributions µ

and ν respectively, then E h(X) ≤ E h(Y) for any increasing bounded function

h : S → R. In the one dimensional setting, stochastic domination is equivalent to

pointwise ordering of the cumulative distribution functions (cdfs). In particular,

cdf F is (weakly) stochastically dominated by cdf G if G(x) ≤ F(x) for all x ∈ R.

See, for example, section 6.D of Mas-Colell et al. (1995).

Stochastic dominance is one of the cornerstones of the theory of choice under un-

certainty. One immediate consequence of the definition of stochastic dominance is

that any von-Neumann–Morgenstern expected utility maximizer with monotone

preferences will weakly prefer stochastically dominant distributions. In addition,

extensions and alternatives to expected utility theory typically treat the notion of

stochastic dominance as fundamental, either as an axiom or as a test of the impli-

cations of axiomatic treatments (see, e.g., Machina (1982), Tversky and Kahneman

(1992), Halevy and Feltkamp (2005) or Safra and Segal (2008)).

The notion of stochastic dominance also plays a central role in the theory of fi-

nance. For example, stochastic dominance is closely related to existence of ar-

bitrage opportunities. In standard settings, existence of arbitrage opportunities

implies stochastic dominance and that the converse is true under relatively weak

conditions (Jarrow (1986)). In addition, stochastic dominance is fundamental to the

study of portfolio diversification, partly because many of the theorems of classical

mean-variance portfolio theory apply only to certain classes of utility functions

and return distributions (Hadar and Russell (1971)).
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In social welfare studies, stochastic dominance is again fundamental, as policies

or decision rules that shift outcomes up in terms of stochastic dominance can be

regarded as universally preferred under very weak assumptions on individual

choices. In fact Blackorby and Donaldson (1980) show that all social welfare func-

tions satisfying three basic axioms are equivalent in the sense that they induce the

same order on the set of distributions as first order stochastic dominance. Related

analysis can be found in Atkinson (1987) and Foster and Shorrocks (1988).

Stochastic dominance also serves as a standard ordering for considering paramet-

ric monotonicity in settings where distributions are compared. These distributions

can take the form of distributions over actions, beliefs, valuations, preferences, in-

formation or other related quantities (see, e.g., Maskin and Riley (2000), Brock and

Durlauf (2001), Rosenberg et al. (2007), or Ambrus et al. (2013)). The most com-

mon notion of monotonicity in stochastic dynamic models is defined in terms of

stochastic dominance (e.g., Stokey and Lucas (1989)). There is a large literature on

econometric tests for stochastic dominance. See, for example, Linton et al. (2005)

and Lee et al. (2009).

Further discussion of economic and financial applications can be found in stan-

dard textbooks such as Stokey and Lucas (1989) or Mas-Colell et al. (1995). More

detailed treatments can be found in Levy (2006) and Föllmer and Schied (2011).

One difficulty with stochastic dominance is that the measure is fragile, in the sense

that it typically fails to be invariant to small changes in the distributions under

consideration. For example, it is well known that two normal distribution are

ranked by stochastic dominance if and only if their variances are identical. As

a consequence, any arbitrarily small change in variance for either of two ranked

distributions will break the ranking. Given these facts, it is not surprising that nor-

mal distributions estimate from data are almost never ranked. Similar issues afflict

estimation with other kinds of distributions, a point we return to below.
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FIGURE 1.

To help illustrate ideas, consider the normal distributions µ, ν and ν′ shown in fig-

ure 1. Let �sd indicate stochastic dominance. Since ordering normal distributions

requires identical variance, the ranking µ �sd ν holds while µ �sd ν′ fails. Intu-

itively, µ �sd ν′ fails because ν′ has smaller variance, and hence holds less mass

in its tails. These thin tails mean that, for very large c, the probability that a draw

from µ exceeds c is larger than the probability that a draw from ν′ exceeds c. This

violates stochastic dominance. It should be noted, however, that the smallest such

c is larger than 10, and the amount of mass that either of these distributions puts

on any of these sets is numerically indistinguishable from zero, even with 64 bit

precision.

These issues translate into various difficulties in applied settings. While stochastic

dominance is a popular tool in the theory of portfolio choice, in practice it often

fails to provide effective analysis. As phrased by Levy (1992), “the difficulty with

stochastic dominance rules is that, in general, [they result] in a large efficient set

of investments, i.e. in many cases this framework is unable to rank the two risky

options under consideration.” On the empirical side, Davidson and Duclos (2013)
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show that, as a consequence of the sensitivity of the ordering, it is in fact not possi-

ble to reject non-dominance in favor of dominance over the entire supports of two

distributions when these distributions are continuous. This ”necessitates a recast-

ing of the usual theoretical links between stochastic dominance relationships and

orderings in terms of poverty, social welfare, and expected utility. It also high-

lights better why a failure to reject the usual null hypothesis of unrestricted domi-

nance cannot be interpreted as an acceptance of unrestricted dominance, since un-

restricted dominance can never be inferred from continuous data” (Davidson and

Duclos, 2013, p. 87).

Because of the relative fragility of stochastic dominance, several notions of partial

stochastic dominance have been introduced into the literature. An early one is

”restricted” first order stochastic dominance up to some point c, which is defined

(Atkinson, 1987, p. 751) as holding for one-dimensional cumulative distributions

F and G whenever

(1) G(x) ≤ F(x) for all x ≤ c.

(Recall that, for cdfs F and G on the real line, stochastic domination of F by G can

equivalently be defined as G(x) ≤ F(x) at every x.) Restricted first order stochas-

tic dominance is a specialized measure intended for situations where interest is

focused on what happens below some threshold, such as a poverty line. It is not

suitable as a general measure of approximate stochastic dominance.2

Another measure of partial stochastic dominance is the notion of “almost stochas-

tic dominance” from the finance literature (see, e.g., Leshno and Levy (2002); Levy

(2009)). This measure also compares cdfs, and is described in detail below. Several

2One issue is that in general the appropriate choice of c might not be clear. A second issue is

illustrated by the following example. Let F = N(0, 0.1) and G = N(10, 1). The distribution G

”approximately” dominates F in the sense that the probability that a draw from F exceeds a draw

from G is essentially indistinguishable from zero. At the same time, condition (1) fails for any

c ∈ R.
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other measures are considered in Stoyanov et al. (2012), who analyze degrees of

violation of stochastic dominance using quasi-semidistances.

The aim of this paper is to make the case that there is a single measure of extent of

stochastic dominance, denoted below by σ, that can arguably be considered as the

default measure from the perspective of economic analysis (without claiming to be

the most suitable in every individual setting). For one dimensional distributions

with cdfs F and G, the measure can be expressed by the simple representation

(2) σ(F, G) = 1− sup
x
{G(x)− F(x)}.

This value measures the extent to which F is dominated by G. It is not difficult to

verify that 0 ≤ σ(F, G) ≤ 1 and σ(F, G) = 1 if and only if F is stochastic dominated

by G.

While the measure σ(F, G) seems almost naı̈ve, we show that it has a number of

different and useful representations, can be motivated from several entirely differ-

ent perspectives, possesses attractive continuity properties, and extends naturally

to multidimensional or more abstract settings. As an example of an alternative

representation presented in the paper, we show that σ(F, G) can also be expressed

as

σ(F, G) = max
X,Y

P{X ≤ Y}

where the supremum is over all pairs of random variables (X, Y) such that X ∼ F

and Y ∼ G. One way to think of this expression is as providing the “maximal

regret probability” for a decision maker with monotone preferences who chooses

F over G. Other interpretations and alternative expressions are discussed below.

Applying the measure σ to the distributions in figure 1, we calculate that σ(µ, ν) =

1 as expected (since µ is dominated by ν). Comparing µ and ν′, it can be shown

analytically that σ(µ, ν′) is strictly less than one. However, from the perspective of

64 bit floating point arithmetic, σ(µ, ν′) is indistinguishable from 1.
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The main part of our paper proceeds as follows. First we present several alter-

native measures of extent of stochastic dominance, all motivated from different

perspectives, and then show that all are equivalent to σ (sections 2 and 3). Next we

show that σ has desirable continuity and robustness properties (section 4). All of

these results are stated and proved in a general setting, for probability measures on

an arbitrary space with arbitrary closed partial order. Hence our analysis accom-

modates a variety of different state spaces and state space orderings, including

multivariate and vector-valued state spaces with standard partial orders, infinite

dimensional state spaces (e.g., sets of distributions) and so on. Section 5 discusses

two applications. Proofs are given in section 7.

2. A MEASURE OF STOCHASTIC DOMINANCE

We begin with some preliminaries and then define a measure of degree of stochas-

tic dominance.

2.1. Definitions. Let S be a Polish space with closed partial order� and Borel sets

B.3 As usual, we say that h : S → R is an increasing function if x � y implies

h(x) ≤ h(y). We say that h is bounded if there exists a K ∈ R with |h(x)| ≤ K

for all x ∈ S. We say that a set B ⊂ S is an increasing set if x ∈ B and x � y

implies y ∈ B. Equivalently, B is an increasing set if its indicator function 1B is an

increasing function. We write

• M for the finite measures4 on (S, B)

• P ⊂M for the probability measures

• isB for the increasing sets in B

• ibB for the increasing, bounded, Borel measurable functions from S to R.

3A Polish space is a completely metrizable topological space. A closed partial order on S is a

binary relation � on S× S that is reflexive, transitive and antisymmetric, and such that its graph

{(x, y) ∈ S× S : x � y} is closed in the product topology.
4A finite measure on (S, B) is a countably additive function µ : B → R+ satisfying µ(S) < ∞.
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Two natural partial orders on M are defined as follows: Given µ and ν in M , we

say that µ is stochastically dominated by ν and write µ �sd ν if

µ(S) = ν(S) and
∫

h dµ ≤
∫

h dν ∀ h ∈ ibB.

In our setting, the condition
∫

h dµ ≤
∫

h dν for all h ∈ ibB can be replaced by

µ(I) ≤ ν(I) for all I ∈ isB, or even µ(I) ≤ ν(I) for all closed I ∈ isB (Kamae

et al., 1977, theorem 1). We say that µ is setwise dominated by ν and write µ ≤ ν if

µ(B) ≤ ν(B) ∀ B ∈ B.

For each µ, ν ∈P , we define

Φ(µ, ν) := {(µ′, ν′) ∈M ×M : µ′ ≤ µ, ν′ ≤ ν, µ′ �sd ν′}.

If µ and µ′ are measures with µ′ ≤ µ, then µ′ is sometimes called a component

of µ. In this terminology, we can think of Φ(µ, ν) as the set of “ordered compo-

nent pairs” corresponding to (µ, ν), where “ordered” means ordered by stochastic

dominance. Note that (µ′, ν′) ∈ Φ(µ, ν) implies that µ′(S) = ν′(S).

It is clear that if (µ′, ν′) is any ordered component pair, then the total mass µ′(S) =

ν′(S) must be no more than one; and that if µ is stochastically dominated by ν, then

the original pair (µ, ν) is itself an ordered component pair, with each element of the

pair having total mass that attains the maximum of unity. It is also intuitive that

if µ is “almost” dominated by ν, then we can choose relatively large components,

so that the mass of each element of the ordered component pair approaches one.

These ideas suggest regarding the mass of the largest ordered component pair as a

measure of the extent to which µ is dominated by ν. Thus, for each µ, ν in P , we

define σ(µ, ν) by

(3) σ(µ, ν) := sup{µ′(S) : (µ′, ν′) ∈ Φ(µ, ν)},

and regard it as a measure of degree of first order stochastic domination of µ by ν.

Its basic properties are as follows:

Proposition 2.1. For any µ, ν ∈P ,
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1. σ(µ, ν) is well defined and contained in [0, 1].

2. µ �sd ν if and only if σ(µ, ν) = 1 .

3. σ(µ, ν) = σ(ν, µ) = 1 if and only if µ = ν.

In particular, 0 ≤ σ(µ, ν) ≤ 1, with higher values representing ”greater” domina-

tion of µ by ν, and with σ(µ, ν) = 1 attained if and only if stochastic dominance is

complete.

Proposition 2.2. For any µ, ν ∈P , there exists a pair (µ′, ν′) ∈ Φ(µ, ν) such that

µ′(S) = ν′(S) = σ(µ, ν).

In other words, the sup in (3) can be replaced by max. Like most of our results, the

proofs of propositions 2.1 and 2.2 are deferred to section 7.

Two particularly important properties of σ are as follows. First, this measure of

extent of stochastic dominance turns out to be equivalent to several other natu-

ral measures of the same quantity, each of which can be motivated from consid-

erations related to choice under uncertainty. Second, σ exhibits “continuity” or

“robustness,” in the sense that, when µ is “almost” dominated by ν, the value of

σ(µ, ν) is almost 1. These topics are treated below, beginning with equivalences.

3. EQUIVALENCES

In this section we introduce several other measures of extent of stochastic domi-

nance, all of which have some claim to be natural measures of this concept. We

then show that each of these measures is equivalent to σ.

3.1. A Coupling Measure. For agents with monotone preferences, stochastic dom-

inance ranks distributions. Let us now also consider choosing between arbitrary

distributions that may or may not be ordered. We will consider a setting where

preferences are monotone but make no assumptions beyond that. For example, we

can consider a decision maker evaluating distributions on behalf of agents whose
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preferences are known only to be monotone (consider, for example, a fund man-

ager or a policy maker).

Given that the agents have monotone preferences, one way for the decision maker

to think about distribution µ being less desirable than distribution ν is to consider

the probability that choosing prospect µ turns out to be worse than ν ex post—

that is, the probability that a draw X from µ is dominated by a draw Y from ν.

This probability depends on the joint distribution of X and Y. In the current set-

ting we have no information on the joint distribution. Absent such information,

one approach is to make the best decision under the worst case scenario, which

is the joint distribution making X � Y most likely. This leads us to the value

supX,Y P{X � Y}, where the supremum is over all pairs (X, Y) with marginals µ

and ν. The larger this value, the more µ can be regarded as ”dominated” by ν.

To state this idea more formally, recall that, given (µ, ν) ∈ P ×P , a pair of S-

valued random variables (X, Y) defined on some probability space (Ω, F ,P) is

called a coupling of (µ, ν) if µ(B) = P{X ∈ B} and ν(B) = P{Y ∈ B} for all

B ∈ B. In other words, X and Y live on the same probability space and have

marginals µ and ν. The set of all couplings of (µ, ν) ∈ P ×P will be denoted by

C (µ, ν). Given this notation, the reasoning in the preceding paragraph suggests

(4) s(µ, ν) := sup
(X,Y)∈C (µ,ν)

P{X � Y}.

as a measure of the extent to which µ is stochastically dominated by ν.

To help understand this idea better, let’s consider the case where µ �sd ν. For such

a pair we can draw on a well known result due to Strassen (1965), which, in the

current setting, tells us that

(5) µ �sd ν ⇐⇒ ∃ (X, Y) ∈ C (µ, ν) s.t. P{X � Y} = 1.

It follows that the measure s(µ, ν) defined in (4) attains its maximum (i.e., equals

one) when µ is stochastically dominated by ν. In fact, as we will see, the two

statements are equivalent, in the sense that if µ is not stochastically dominated by
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ν, then s(µ, ν) will be strictly less than one. Moreover, as will also be shown below,

when µ is “almost” dominated by ν, the value will be close to one.

Before going further, it is worth noting that we can replace sup in (4) with max

because, somewhat surprisingly, the maximum always exists:

Proposition 3.1. For all (µ, ν) ∈P ×P , there exists a pair (X, Y) ∈ C (µ, ν) such that

(6) P{X � Y} = sup
(X′,Y′)∈C (µ,ν)

P{X′ � Y′}.

While it might at first seem that s defined in (4) is a new and entirely different

measure of degree of stochastic dominance, we show below that it coincides with

σ.

3.2. Deviation Measures. There is another class of functions on P ×P that have

a strong claim to providing a measure of extent of stochastic dominance. To con-

struct them, let µ and ν be any two probability measures, and observe that, by

definition, µ �sd ν if and only if

(7) sup
h∈ibB

{∫
h dµ−

∫
h dν

}
≤ 0.

From a social welfare or choice-under-uncertainty perspective, this inequality states

that every agent with monotone preferences will achieve at least the same expected

utility under ν as under µ.

Note that zero can always be achieved in (7) by choosing h = 0 or h = 1. Moreover,

if µ is not completely dominated by ν, then a strictly positive value can be obtained

by the supremum. This value gives some indication of the extent to which µ fails

to be dominated by ν. Hence we can consider

(8) θ(µ, ν) := sup
h∈H

{∫
h dµ−

∫
h dν

}
where H := {h ∈ ibB : 0 ≤ h ≤ 1}

as an inverse measure of the degree to which µ is dominated by ν, taking smaller

values when domination by ν is greater, and zero when domination is complete. A
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measure similar in spirit to θ is mentioned in Stoyanov et al. (2012), with the only

difference being the class of functions over which the supremum is taken.

In the definition of θ, the restriction of ibB to functions with range in [0, 1] is a

convenient normalization. In fact we can go a step further and restrict to indicator

functions, which leads to the alternative measure

θI(µ, ν) := sup
B∈isB

{µ(B)− ν(B)} .

3.3. Equivalence. It turns out that all of the preceding measures are equivalent in

the sense made precise by the following theorem:

Theorem 3.1. For any (µ, ν) ∈P ×P we have

σ(µ, ν) = s(µ, ν) = 1− θ(µ, ν) = 1− θI(µ, ν).

As with other results, the proof of theorem 3.1 can be found in section 7.

For some calculations it can be convenient to consider the variation

(9) θO
I (µ, ν) := sup

B∈iO
{µ(B)− ν(B)} where iO := {all open B ∈ isB}.

Evidently θO
I ≤ θI . In fact, as the proof of theorem 3.1 shows, we have θO

I = θI on

all of P ×P , and hence θO
I (µ, ν) = 1− σ(µ, ν) is also valid. Moreover, it is trivial

to confirm that

sup
B∈iO

{µ(B)− ν(B)} = sup
D∈dC

{ν(D)− µ(D)} ,

where dC is the closed decreasing sets in B. This is useful, particularly in the one-

dimensional case, where dC is the set of all intervals (−∞, x] over x ∈ R. In this

setting it implies that for cdfs F and G on R, we have σ(F, G) = 1− supx{G(x)−
F(x)}. This is the expression for σ given in the introduction.

Remark 3.1. One benefit of the last expression is that the measure σ is straightfor-

ward to compute in one dimension. Aside from numerical optimization, if G and F
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are both absolutely continuous, then the first order condition for maxx∈R{G(x)−
F(x)} is just f (x) = g(x), where f and g are the densities of F and G respectively.

Remark 3.2. For other calculations, alternative expressions for σ can be easier to

work with. To illustrate, let S be a general space—not necessarily one dimensional—

and suppose that µ is degenerate, putting all mass on x̄ ∈ S. Let ν be arbitrary. If

we wish to compute σ(µ, ν), it is enough to observe that if (X, Y) is any coupling

of (µ, ν), then, since X puts all mass on x̄, we must have P{X � Y} = P{x̄ � Y}.
We conclude that σ(µ, ν) = ν(Ix̄) where Ix̄ := {x ∈ S : x̄ � x}.

4. CONTINUITY

Since we wish to use σ(µ, ν) as a measure of the extent to which µ is dominated by

ν, one desirable characteristic is that σ(µ, ν) is “almost” 1 whenever µ is “almost”

dominated by ν. This turns out to be valid in many cases, although some care is

required when defining ”almost.” To state a precise result, let’s write µn
u→ µ to

mean that ‖µn − µ‖ → 0 as n→ ∞, where ‖ · ‖ is the total variation norm

‖µn − µ‖ := sup
B∈B

|µn(B)− µ(B)|.

Now, given sequences of probability measures {µn} and {νn}, the following result

holds:

Proposition 4.1. If µn
u→ µ and νn

u→ ν, then σ(µn, νn)→ σ(µ, ν).

Put differently, σ : P ×P → [0, 1] is continuous in the product topology induced

by the total vairation norm. In fact the proof of proposition 4.1 gives the bound

|σ(µn, νn)− σ(µ, ν)| ≤ ‖µn − µ‖+ ‖νn − ν‖.

Specializing this bound to the case where µ �sd ν and νn = ν, we get σ(µn, ν) ≥
1 − ‖µn − µ‖. This quantifies the idea that σ(µn, ν) is almost 1 when µn almost

equal to a distribution dominated by ν.
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The total variation convergence used in proposition 4.1 can be checked relatively

easily when the probability measures in question have densities, since pointwise

convergence of densities implies total variation convergence by Scheffé’s lemma

(Williams, 1991, p. 55). Also, in view of Pinsker’s inequality, proposition 4.1 re-

mains valid when comparison is made based on measures of relative entropy.

For example, if µ �sd ν and either the Kullback-Leibler divergence or the Jensen-

Shannon distance from µn to µ and νn to ν goes to zero, then σ(µn, νn) → σ(µ, ν).

See Devroye and Lugosi (2001).

By comparison, consider the concept of “almost stochastic dominance” mentioned

in the introduction. Let S be a bounded interval of R and let F and G be cdfs

on S. Let ε ≥ 0. Leshno and Levy (2002) define F to be ε-almost stochastically

dominated by G if

(10)
∫
{F<G}

(G(x)− F(x))dx ≤ ε
∫
|G(x)− F(x)|dx.

Here {F < G} := {x ∈ S : F(x) < G(x)}. We can convert this to a measure of

extent of stochastic dominance by considering the smallest ε such that (10) is valid.

That is,

a(F, G) = inf
{

ε ≥ 0 :
∫
{F<G}

(G(x)− F(x))dx ≤ ε
∫
|G(x)− F(x)|dx

}
.

Smaller values of a(F, G) are associated with a greater degree of dominance of G

over F. Moreover a(F, G) = 0 if and only if F �sd G.

Unfortunately, the measure a fails to have the form of continuity discussed in

proposition 4.1. For example, let F = G = Gn = N(0, 1), the standard normal

distribution, and let Fn = N(1/n, 1). Here Gn
u→ G is trivial and Fn

u→ F is valid

because the densities converge pointwise everywhere onR (which is sufficient for

total variation convergence as discussed above). At the same since Fn(x) < Gn(x)

for all x ∈ R and n ∈ N, we have a(Fn, Gn) = 1 for all n. This compares to

a(F, G) = 0 (because F = G).
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Note that the claim in proposition 4.1 may fail if we replace total variation conver-

gence with weak convergence. (Recall that µn → µ weakly if
∫

gdµn →
∫

gdµ for

all continuous bounded g : S → R. Symbolically we write µn
w→ µ.) The reason

the proposition is not generally valid in this case is that weak convergence is a

topological notion, while the stochastic dominance measure σ is defined only by

the ordering on S.

Note however that total variation convergence can be weakened while still main-

taining the conclusions of proposition 4.1. For example, in the one-dimensional

setting, it is sufficient that convergence takes place in the Kolmogorov metric. That

is, if F, G, Fn and Gn are cdfs on Rwith

lim
n→∞

sup
x
|Fn(x)− F(x)| = lim

n→∞
sup

x
|Gn(x)− G(x)| = 0,

then σ(Fn, Gn) → σ(F, G). A sufficient condition for convergence of cdfs {Hn} to

H in the Kolmogorov metric is that Hn → H weakly and H is continuous (see, e.g.,

Dudley (2002), p. 389). This is obviously the case when H has a density. This leads

to the following corollary:

Corollary 4.1. Let Fn, Gn, F and G be cdfs on R. The following statements are true:

1. If Fn
w→ F and F is continuous, then σ(Fn, G)→ σ(F, G).

2. If Gn
w→ G and G is continuous, then σ(F, Gn)→ σ(F, G).

3. If Fn
w→ F, Gn

w→ G and both F and G are continuous, then σ(Fn, Gn)→ σ(F, G).

In other words, weak convergence is enough when the limiting distributions are

sufficiently regular.

5. APPLICATIONS

The concepts discussed in this paper can be applied to any setting where distribu-

tions are compared, from industrial organization (e.g., distributions of firm size or

productivity) to labor economics (wage distributions), development and growth
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(wealth distributions), macroeconomics (parameter uncertainty represented via

distributions), network analysis (degree distributions), social welfare (income dis-

tributions) and so on. Here we consider a two problems, one related to wealth

distribution and the other to portfolio choice. Our discussion illustrates the point

that some properties only hold ”in the limit.” The measure σ allows us to make

this idea precise in the context of stochastic dominance.

5.1. Wealth Distributions. Let W0 be an initial wealth or asset distribution across

some set of agents, and suppose that individual wealth grows according to some

specified dynamics. Interesting examples can be found in Piketty (1997), Benhabib

et al. (2011) and many other places. Since the main points change little, here we

simply suppose that wealth grows geometrically and deterministically via Wt+1 =

aWt for some a ≥ 1. As a result, Wt = atW0, or, with lower case representing logs,

wt = t ln a + w0.

Now consider an alternative economy with wealth distribution w′0 = ln W ′0 and

growth rate a′ > a. Despite this higher growth rate, one cannot in general claim

that w′t = t ln a′ + w′0 will stochastically dominate wt for any finite t. An obvious

counterexample is as follows: Suppose that W0 and W ′0 are lognormal, so that wt

and w′t are normal. If w0 and w′0 do not have identical variance, then the same will

be true of wt and w′t, and hence they will fail to be ordered for any finite t.

On the other hand, it seems intiutive that w′t will ”almost” stochastically dominate

wt when t is large enough. We can formalize this using σ. In particular, we can

show that σ(Ft, F′t ) → 1 as t → ∞, where Ft and F′t are the distributions of wt

and w′t respectively. To do this, observe that, by (4) and theorem 3.1, the statement

σ(Ft, F′t ) ≥ P{wt ≤ w′t} is always valid. Hence

σ(Ft, F′t ) ≥ P{t ln a + w0 ≤ t ln a′ + w′0} = P{w0 − w′0 ≤ t(ln a′ − ln a)}.

Letting G be the cdf of w0 − w′0 and κ := ln a′ − ln a, we can express this as

σ(Ft, F′t ) ≥ G(tκ) for all t. Since G is a cdf and κ > 0, we have shown that

σ(Ft, F′t )→ 1 as claimed.
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5.2. A Portfolio Problem. Next we turn to the portfolio problem. To begin, con-

sider a set of securities indexed by j ∈ N. Let xj = g + εj be the payoff of the j-th

security. Here g is a common factor with distribution function G, and {εj}j∈N is a

sequence of uncorrelated shocks with zero mean and finite variance σ2. A portfolio

is a sequence θ = {θ1, θ2 . . .} such that ∑∞
j=1 θj = 1. Each portfolio is identified with

a payoff ∑∞
j=1 θjxj. A variance minimizing finite diversified portfolio is a portfolio

that puts weight 1/n on n securities. More formally, it is a portfolio {θj} of the

form θj = n−1
1{j ∈ In} where In is a finite set containing n elements of N. Since

it changes nothing substantial, we always take In := {1, . . . , n}. Let θ∗n denote this

portfolio. The payoff of θ∗n is g + 1
n ∑n

j=1 εj.

The diversified portfolio θ∗n uses the law of large numbers to reduce idiosyncratic

risk. Each increase in n decreases the variance of the payoff. In the limit only factor

risk remains. However, the limit of the sequence of diversified portfolios is not

trivial to describe, since the share θj = 1/n converges to zero, while the constraint

∑j θj = 1 must be respected. Werner (1997) places the limiting portfolio on a firm

theoretical foundation by representing it as a density charge (i.e., a purely finitely

additive measure) on the power set of N. Here we investigate limiting behavior

from a different angle, at least as it pertains to stochastic dominance.

Suppose we are interested in comparing the diversified portfolio against some al-

ternative portfolio (e.g., a portfolio containing only a risk free asset). For the sake

of generality we will consider an arbitrary alternative, with payoff distribution F.

Let Gn be the distribution function for the payoff g + 1
n ∑n

j=1 εj of θ∗n. Regarding Gn

and F we have the following result:

Proposition 5.1. If G is continuous, then σ(F, Gn)→ σ(F, G).

The proof is a simple consequence of the results in section 4. A useful implication

of proposition 5.1 is that if the distribution G of the factor g stochastically domi-

nates F, then σ(F, Gn) → 1. In other words, the payoff of the diversified portfolio

Gn ”stochastically dominates F in the limit,” as continued diversification reduces
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idiosyncratic risk towards zero. This is true even if F fails to be dominated by Gn

for all n, as would be the case if the shocks εj have sufficiently large support.5

6. CONCLUSION

This paper shows that there is a single measure of extent of stochastic dominance

that can arguably be treated as the default measure of this property from the per-

spective of economic analysis. The main results of the paper demonstrate that this

measure has a number of different and informative representations that are in fact

equivalent. As a consequence, the measure can be motivated from several very

different perspectives. In addition, the measure is shown to possess important

continuity properties, and extends naturally to multidimensional or more abstract

settings. Two applications are given.

As a caveat we reiterate that, as with many problems, the existence of a default

measure does not preclude the optimality of other measures in certain specific set-

tings. On the other hand, it does provide a common frame of reference for theoret-

ical work. Moreover, since the measure can be estimated, the preceding analysis

also opens up new avenues for econometric investigation of stochastic dominance.

Finally, the question of whether analogous measures and results exist for the case

of higher order stochastic dominance (second order, third order, etc.) is left to fu-

ture research.

5To see why continuity of G matters, suppose that F and G are both degenerate distributions

concentrated on some risk free rate R. Let εj be standard normal, so that Gn = N(R, 1/n). Then

σ(F, G) = 1 but σ(F, Gn) = 1/2 for all n (see remark 3.2 on how to obtain the last equality). The

intuitive reason for failure of ”stochastic dominance in the limit” here is as follows: Suppose we

have an agent with preferences defined by von Neumann-Morgenstern utility function u(x) =

1{R ≤ x}. This agent cares only about equaling or beating the risk free rate. Despite monotone

increasing preferences, the expected payoff of Gn for this agent is always half of that of F, regardless

of how large n is.
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7. PROOFS

7.1. Preliminaries. Throughout the proofs we let O and C be the open and closed

subsets of S respectively. In addition, let dC be the decreasing sets in C , and let iO

be the increasing sets in O . As in (8), let H := {h ∈ ibB : 0 ≤ h ≤ 1}. For our

partial order � on S, letG be the graph. That is

G := {(x, y) ∈ S× S : x � y}.

Let S× S be the Cartesian product of S with itself, and let B⊗B be the product σ-

algebra. Let πi be the i-th coordinate projection, so that π1(x, y) = x and π2(x, y) =

y for any (x, y) ∈ S× S. As usual, given Q ⊂ S× S, we let π1(G) be all x ∈ S such

that (x, y) ∈ Q, and similarly for π2. A probability measure λ on (S× S, B ⊗B)

is said to have marginals µ and ν if

µ(B) = λ(B× S) and ν(B) = λ(S× B) ∀ B ∈ B.

Equivalently, µ = λ ◦ π−1
1 and ν = λ ◦ π−1

2 . We will apply the following deep

theorem due to Strassen (1965), slightly specialized to the current setting:

Theorem 7.1 (Strassen’s theorem). Let µ, ν ∈ P . For any ε ≥ 0 and any closed set

K ⊂ S× S, there exists a probability measure λ on (S× S, B⊗B) with marginals µ and

ν such that λ(K) ≥ 1− ε if and only if

ν(F) ≤ µ(π1(K ∩ (S× F))) + ε, ∀ F ∈ C .
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By applying Strassen’s theorem and some other more elementary results, we will

now show that the following chain of inequalities holds:

sup
h∈H

{∫
h dµ−

∫
h dν

}
≤ 1− σ(µ, ν)(11)

≤ 1− sup
(X,Y)∈C (µ,ν)

P{X � Y}(12)

≤ sup
I∈iO
{µ(I)− ν(I)}(13)

≤ sup
h∈H

{∫
h dµ−

∫
h dν

}
.(14)

Fix µ, ν ∈ P . Regarding inequality (11), fix h ∈ H. Let (µ′, ν′) be an element of

Φ(µ, ν) with µ′(S) = ν′(S) = σ(µ, ν), the existence of which follows from propos-

tion 2.2. Let µr := µ− µ′ and νr := ν− ν′. We have∫
hdµ−

∫
hdν =

∫
hdµr +

∫
hdµ′ −

∫
hdνr −

∫
hdν′

=
∫

hdµr −
∫

hdνr +

{∫
hdµ′ −

∫
hdν′

}
≤
∫

hdµr −
∫

hdνr

≤
∫

hdµr ≤ µr(S) = 1− σ(µ, ν).

Next we prove inequality (12). To prove this inequality it is enough to show that if

(X, Y) is a coupling of (µ, ν), then P{X � Y} ≤ σ(X, Y). To see that this is so, let

(X, Y) be a coupling of (µ, ν), and define

µ′(B) := P{X ∈ B, X � Y} and ν′(B) := P{Y ∈ B, X � Y}.

Clearly µ′ ≤ µ, ν′ ≤ ν and µ′(S) = P{X � Y} = ν′(S). Moreover, for any

increasing set I ∈ B we have

µ′(I) = P{X ∈ I, X � Y} ≤ P{Y ∈ I, X � Y} = ν′(I).

Hence (µ′, ν′) ∈ Φ(µ, ν) and we obtain P{X � Y} = µ′(S) ≤ σ(µ, ν).
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We now turn to inequality (13). For any F ⊂ S, let Fd be the smallest decreasing

set containing F. In other words, Fd is all x ∈ S such that x � y for some y ∈ F.

Note that if F is closed then, since � is a closed partial order, so is the set Fd (i.e.,

F ∈ C =⇒ Fd ∈ dC ). Let

ε := sup
D∈dC

{ν(D)− µ(D)}.

Evidently

ε ≥ sup
F∈C

{ν(Fd)− µ(Fd)} ≥ sup
F∈C

{ν(F)− µ(Fd)}.

Noting that Fd can be expressed as π1(G∩ (S× F)), it follows that, for any F ∈ C ,

ν(F) ≤ µ(π1(G∩ (S× F))) + ε.

Since � is a closed partial order, the set G is closed, and Strassen’s theorem (the-

orem 7.1) applies. From this theorem we obtain a probability measure λ on the

product space S× S such that (a) λ(G) ≥ 1− ε and (b) λ has marginals µ and ν.

Because complements of increasing sets are decreasing and vice versa, we have

(15) sup
I∈iO
{µ(I)− ν(I)} = sup

D∈dC

{ν(D)− µ(D)} = ε ≥ 1− λ(G).

Now consider the probability space (Ω, F ,P) = (S× S, B⊗B, λ), and let X = π1

and Y = π2. We then have

λ(G) = λ{(x, y) ∈ S× S : x � y} = P{X � Y}.

Combining this equality with (15), we have shown the existence of a (X, Y) ∈
C (µ, ν) with

sup
I∈iO
{µ(I)− ν(I)} ≥ 1−P{X � Y}.

Inequality (13) now follows.

Since inequality (14) is trivial we have now established the chain (11)–(14). It fol-

lows that all the terms in the chain are equal.
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7.2. Remaining Proofs. We now turn to the remaining proofs from the paper. We

prove propostion 2.2 first, since it is independent of other claims and will be used

below.

Proof of propostion 2.2. Let {µ̃i}i∈N and {ν̃i}i∈N be sequences in M such that

µ̃i(S) ↑ σ(µ, ν), ∀i ∈ N, (µ̃i, ν̃i) ∈ Φ(µ, ν).(16)

Since µ̃i ≤ µ and ν̃i ≤ ν for all i ∈ N, each of these sequences has a weakly

convergent subsequence by Prohorov’s theorem (Dudley, 2002, theorem 11.5.4).

By taking further subsequences, we can assume that µ̃i → µ̃ and ν̃i → ν̃ weakly for

some µ̃, ν̃ ∈ M . Since µ̃i ≤ µ and ν̃i ≤ ν for all i ∈ N, it follows from Hernández-

Lerma and Lasserre (2003), theorem 1.5.5, that for all B ∈ B, µ̃i(B) → µ̃(B) and

ν̃i(B) → ν̂(B). Hence, for any B ∈ B, we have µ̃(B) ≤ µ(B) and ν̃(B) ≤ ν(B)

since µ̃i(B) ≤ µ(B) and ν̃i(B) ≤ ν(B) for all i ∈ N. Thus µ̃ ≤ µ and ν̃ ≤ ν. Since

µ̃i(S) = ν̃i(S) for all i ∈ N, we also have µ̃(S) = ν̃(S). Moreover, σ(µ, ν) = µ̃(S),

since µ̃i(S) ↑ σ(µ, ν). For any increasing I ∈ B, the fact that µ̃i(I) ≤ ν̃i(I) for all

i ∈ N gives us µ̃(I) ≤ ν̃(I). Thus µ̃ �sd ν̃. We have shown that the pair (µ̃, ν̃)

satisfies the claim in proposition 2.2. �

Now we can return to the proof of proposition 2.1.

Proof of proposition 2.1. The first claim is trivial. Regarding the second, it is clear

that if µ �sd ν, then (µ, ν) ∈ Φ(µ, ν), and hence σ(µ, ν) = 1. To see the converse,

suppose that σ(µ, ν) = 1. Then, in view of proposition 2.2, there exists an ordered

component pair (µ′, ν′) ∈ Φ(µ, ν) with µ′(S) = ν′(S) = 1. Since µ′ ≤ µ and

µ′(S) = 1, it must be that µ′ = µ. (Otherwise, there exists a B ∈ B with µ′(B) <

µ(B), from which we obtain µ′(Bc) > µ(Bc). This contradicts µ′ ≤ µ.) For the

same reason we have, ν′ = ν. Because µ′ �sd ν′, we have shown that µ �sd ν.

Finally, for the third claim, suppose first that µ = ν. In that case we have µ �sd ν

and hence σ(µ, ν) = 1. Similarly, ν �sd µ, and hence σ(ν, µ) = 1. Conversely,
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suppose that σ(µ, ν) = σ(ν, µ) = 1. In that case both µ �sd ν and ν �sd µ. Since�sd

is a partial order (Kamae and Krengel (1978)) it is antisymmetric. Hence µ = ν. �

Proof of theorem 3.1. The theorem follows directly from inequalities (11)–(14). �

Proof of proposition 3.1. Let µ and ν be given. It view of theorem 3.1, it suffices to

construct a coupling (X, Y) ∈ C (µ, ν) such thatP{X � Y} = σ(µ, ν). In construct-

ing the coupling, we can and do assume that σ := σ(µ, ν) > 0.6

To begin, observe that, by proposition 2.2, there exists a pair (µ′, ν′) ∈ Φ(µ, ν) with

µ′(S) = ν′(S) = σ. Let

µr :=
µ− µ′

1− σ
and νr :=

ν− ν′

1− σ
.

It is easy to check that both µr and νr are probability measures, as are µ′/σ and

ν′/σ. Moreover, µ and ν can be expressed as the convex combinations

µ = (1− σ)µr + σ
µ′

σ
and ν = (1− σ)νr + σ

ν′

σ
.

Thus, to draw from µ, one can draw from µr with probability (1− σ) and µ′/σ

with probability σ. A similar statement holds for ν. We construct a coupling (X, Y)

as follows. Let U, X′, Y′, Xr and Yr be random variables on a common probability

space such that

(a) X′ D
= µ′/σ, Y′ D

= ν′/σ, Xr D
= µr and Yr D

= νr

(b) U is uniform on [0, 1]

(c) U is independent of (X′, Y′, Xr, Yr) and

(d) P{X′ � Y′} = 1.

The only nontrivial existence problem here is (d), but such a pair can be con-

structed via Strassen’s theorem since µ′/σ �sd ν′/σ. Now let

X := 1{U ≤ σ}X′ + 1{U > σ}Xr and Y := 1{U ≤ σ}Y′ + 1{U > σ}Yr.

6If not, then for any (X, Y) ∈ C (µ, ν) we have 0 ≤ P{X � Y} ≤ σ(µ, ν) = 0.
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Evidently (X, Y) is a coupling of (µ, ν). Moreover, for this pair, we have

P{X � Y} ≥ P{X � Y, U ≤ σ} = P{X′ � Y′, U ≤ σ}.

In view of independence the right hand side is equal to P{X′ � Y′}P{U ≤ σ}.
But this is just σ = σ(µ, ν), so P{X � Y} ≥ σ(µ, ν). Theorem 3.1 tells us that the

reverse is also true, so P{X � Y} = σ(µ, ν) as claimed. �

Proof of proposition 4.1. Let {µn}, {νn}, µ and ν be as in the statement of the propo-

sition. Applying theorem 3.1, we have

|σ(µn, νn)− σ(µ, ν)| = |1− σ(µn, νn)− (1− σ(µ, ν))|

=

∣∣∣∣∣ sup
I∈isB

{µn(I)− νn(I)} − sup
I∈isB

{µ(I)− ν(I)}
∣∣∣∣∣

≤ sup
I∈isB

|µn(I)− νn(I)− {µ(I)− ν(I)}|

≤ sup
B∈B
|µn(B)− µ(B)|+ sup

B∈B
|νn(B)− ν(B)| .

Since µn
u→ µ and νn

u→ ν, we now have σ(µn, νn)→ σ(µ, ν). �

Proof of proposition 5.1. Under our assumptions on {εj}, the weak law of large num-

bers gives g + 1
n ∑n

j=1 εj → g in probability as n → ∞. Hence Gn
w→ G. It follows

from corollary 4.1 that σ(F, Gn)→ σ(F, G). �
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