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Abstract

In this paper we introduce a technique for perfect simulation from the station-
ary distribution of a standard model of industry dynamics. The method can be
adapted to other, possibly non-monotone, regenerative processes found in indus-
trial organization and other fields of economics. The algorithm we propose is a
version of coupling from the past. It is straightforward to implement and exploits
the regenerative property of the process in order to achieve rapid coupling.
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1 Introduction

As is well-known, coupling from the past (CFTP) algorithms can generate perfect sam-
ples from otherwise intractable stationary distributions (see, e.g., Propp and Wilson
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(1996)). This makes them an attractive alternative to ordinary forward simulation,
where errors are typically difficult to assess. Parallelization is simple in most cases,
making it possible to rapidly generate large numbers of independent and identically
distributed draws. Because the resulting sample is IID and exact, it can be used to
obtain unbiased estimates and confidence intervals for moments and distributions of
interest.

The CFTP technique is often used for models with large but discrete state spaces,
where standard methods for computing stationary distributions are infeasible.1 More
recently, researchers have developed techniques for implementing CFTP methods in
continuous state settings. Murdoch and Green (1998) showed that CFTP can in prin-
ciple be used in continuous state settings when the underlying Markov process satis-
fies Doeblin’s condition. This condition requires the existence of a nonnegative lower
bound function that (a) integrates to a positive value, (b) depends only on the next
state, and (c) is pointwise dominated by the transition density function (which de-
pends on both the current state and the next). Theoretical work along the same lines
can be found in Foss and Tweedie (1998) and Athreya and Stenflo (2003).

Although these results are fundamental, they can be difficult to apply. Murdoch and
Green (1998) admit that their basic method, which is in principle applicable to our
model, may have “a limited range of application for two reasons.” First, the function
associated with Doeblin’s condition “may be too small for practical use” to generate
exact draws in a reasonable length of time. Second, their method requires the user
to draw from scalar multiples of the lower bound transition density and a residual
kernel. It can be nontrivial or even impossible to explicitly calculate and draw from
these distributions. If approximations are required, this to some degree defeats the
purpose of exact sampling.

For these reasons, CFTP methods tend to be popular only in specific settings, perhaps
the most notable of which is where the underlying Markov process is stochastically
monotone. For such processes, efficient and straightforward CFTP methods are avail-
able. Corcoran and Tweedie (2001) developed general results on CFTP particularly
suitable for monotone Markov processes. An application to economics can be found in
Nishimura and Stachurski (2010), where monotonicity makes the algorithm straight-
forward to implement and analyze.

In this paper we study regenerative processes associated with industry dynamics that
1Applications range from statistical mechanics to page ranking and the design of peer-to-peer file

sharing systems. See, for example, Propp and Wilson (1996), Kijima and Matsui (2006), Huber (2003)
and Levin et al. (2009).
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take the form
Φt+1 = g(Φt, Ut+1)1{Φt ≥ x}+ Zt+11{Φt < x}. (1)

Here Φt is the state variable taking values in a closed interval, x is a point in the interior
of that interval, g is a given function, 1{·} is an indicator function and {Ut} and {Zt}
are IID processes. The function g is monotone increasing in its first argument, and such
that the state is driven below x with positive probability in finite steps. When Φt < x
the process regenerates, being drawn from the distribution of Zt+1. If this distribu-
tion is stochastically dominated by that of g(x, Ut+1), then the process is stochastically
monotone in the usual sense (see, e.g., Corcoran and Tweedie (2001)). As we discuss
below, this is not the case in many models of interest. The purpose of this paper is to
develop a CFTP algorithm that is designed to produce exact draws from the stationary
distribution even in the non-monotone case.

Regenerative models of the form (1) appear in many models of industry dynamics—
typical examples include Hopenhayn (1992), Melitz (2003) and Cooley and Quadrini
(2001). Regeneration plays an essential role in the theory of industrial organization,
where Schumpeter’s notion of “creative destruction” summarizes the idea that new
and more productive firms replace older ones, rejuvenating overall economic activity
(Schumpeter (1942)). In this context, the model in (1) has the following interpretation:
A large number of firms produce in a given industry. While incumbent, their pro-
ductivity evolves according to Φt+1 = g(Φt, Ut+1), but when their productivity drops
below a threshold level x they exit, and are replaced by a new firm with productivity
drawn according to the distribution of Zt. The value x is obtained by the solution to
a dynamic programming problem, taking in to account revenue, costs and so on (al-
though in this paper we take it as given). The stationary distribution of the model can
be regarded as representing the time-invariant cross-sectional distribution of produc-
tivity in the industry.

The assumption that g is increasing in its first argument is based on the idea that if firm
A has higher productivity than firm B today, then firm A is expected to have higher
productivity than firm B tomorrow provided that both firms survive. On the other
hand, if firm B does not survive and the productivity of firm A is close to the threshold
level x, then a new entrant replacing firm B is likely to be more productive than firm
A. This characteristic of entry and exit makes the entire process non-monotone.

Other applications for the regenerative model (1) can be found in various intertemporal
decision problems. For example, consider the problem of optimal replacement of a part
or machine, the performance of which degrades stochastically over time. Typically, the
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solution to the planning problem involves replacement when some measure of perfor-
mance falls below a certain threshold (e.g., Rust (1987)). A similar idea is rebooting or
restarting operating systems, as discussed by Cotroneo et al. (2014). The performance
of these systems can also degrade over time as a result of memory leaks, software con-
flicts and so on. An essential feature of these models is again non-monotonicity: the
very purpose of replacement and rebooting is to break monotonicity and rejuvenate
performance.

While we do not assume that the entire process (1) is monotone, we do assume that g is
increasing in its first argument, as discussed above, and we heavily exploit this prop-
erty in our algorithm. We show that the algorithm terminates successfully in finite time
with probability one by using both the monotonicity of productivity for incumbents
and the regenerative property introduced by new entrants. Our algorithm is distinct
from Murdoch and Green’s method discussed above (Murdoch and Green (1998)), in
that it does not use Doeblin’s condition, and does not require explicit knowledge of the
transition density.2 As long as one can simulate the overall Markov process, one can
sample exactly from the stationary distribution using the algorithm.3

2 Preliminaries

In this section we briefly review a benchmark model of firm dynamics due to Hopen-
hayn (1992). The model is set in a competitive industry where entry and exit is en-
dogenously determined. In the model there is a large number of firms that produce
a homogeneous good. The firms face idiosyncratic productivity shocks that follow a
Markov process on S := [0, 1]. The conditional cumulative distribution function for
the shock process is denoted by F(φ′ | φ). Following Hopenhayn (1992), we impose the
following restrictions:

Assumption 2.1. F is decreasing in its second argument and, for any ε > 0 and any
φ ∈ S, there exists an integer n such that Fn(ε | φ) > 0.4

2The assumptions used to show the probability one termination of the algorithm in fact imply Doe-
blin’s condition for some n-step transition, but our proof of this property does not use the latter.

3As usual, exactness is modulo the errors associated with floating point arithmetic, which cannot be
avoided.

4Fn(· | φ) is the conditional distribution for productivity after n periods, given current productivity
φ.
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We let P denote the corresponding stochastic kernel. That is, P(φ, A) :=
∫

A F(dφ′ | φ)
for φ ∈ S and A ∈ B, where B represents the Borel sets on [0, 1]. Incumbent firms
exit the industry whenever their current productivity falls below a reservation value
xt. Letting Mt be the mass of entrants at time t and ν be the Borel probability measure
from which the productivity of entrants is drawn, the sequence of firm distributions
{µt} on S satisfies µt+1(A) =

∫
P(φ, A)1{φ ≥ xt}µt(dφ) + Mt+1ν(A) for all A ∈ B.

At the stationary equilibrium, both x and M are constant, and a stationary distribution
µ is a Borel probability5 measure µ satisfying

µ(A) =
∫

P(φ, A)1{φ ≥ x}µ(dφ) + Mν(A) (A ∈ B). (2)

It follows from (2) and µ(S) = P(φ, S) = ν(S) = 1 that M = M(x, µ) := µ{φ ∈ S :
φ < x}. As a result, we can also write (2) as

µ(A) =
∫

Q(φ, A)µ(dφ) (3)

where
Q(φ, A) := P(φ, A)1{φ ≥ x}+ ν(A)1{φ < x}. (4)

Equation (3) states that µ is a stationary distribution for the stochastic kernel Q in the
usual sense of time invariance. As shown by Hopenhayn (1992), the kernel Q has only
one stationary distribution. For the purposes of this paper we will treat x as given. For
typical parameter values the stationary distribution has no analytical solution.

It is straightforward to produce an ergodic Markov process suitable for simulation such
that its stationary distribution coincides with the distribution µ in (3). In essence, we
need a method for sampling from the stochastic kernel Q. The first step is to simulate
from the conditional distribution P(φ, ·) = F(· | φ). In particular, we seek a random
variable U and a function g such that D(g(φ, U)) = F(· | φ) for all φ ∈ S. (Here D(X)

indicates the distribution of random variable X.) This can be achieved via the inverse
transform method, where U is uniform on [0, 1] and g(φ, u) = F−1(u | φ).6 Now con-
sider the process {Φt} defined by

Φt+1 = g(Φt, Ut+1)1{Φt ≥ x}+ Zt+11{Φt < x} (5)

where {(Ut, Zt)} is IID with D(Zt) = ν and D(Ut) = Uniform[0, 1]. Comparing (4)
and (5), it can be seen that {Φt} is a Markov process with stochastic kernel Q.

5We focus only on normalized measures, since other cases are just scalar multiples.
6Here F−1(· | φ) is the generalized inverse of F(·|φ). That is, F−1(u | φ) := inf{z : F(z | φ) ≥ u}.
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3 Exact Sampling

Let {(Ut, Zt)}t∈Z be an infinite sequence of IID shocks indexed on Z and with each pair
(Ut, Zt) having the product distribution Uniform[0, 1]× ν. To simplify notation we will
let gt := g(·, Ut), so that, for example, gt · · · g1 φ := gt ◦ gt−1 ◦ · · · ◦ g1(φ) is exogenous
productivity at t, given time zero productivity φ ∈ S. To further simplify notation, let

ht(φ) := g(φ, Ut)1{φ ≥ x}+ Zt1{φ < x},

so that (5) becomes Φt+1 = ht+1 Φt := ht+1(Φt).

Now fix T ≥ 1. For each φ ∈ S, there is a corresponding “tracking process” that starts
at time −T with value φ, and then updates with maps h−T+1, h−T+2, . . . , h0, obtaining
the value h0 · · · h−T+1 φ at time zero. We say that the tracking processes coalesce if, for
some T ∈ N, the set of final values

h0 · · · h−T+1(S) := {h0 · · · h−T+1 φ : φ ∈ S} (6)

is a singleton. What we will now show is that under mild conditions coalescence oc-
curs with probability one, and, moreover, that it is not necessary to keep track of the
full continuum of tracking processes in order to find the value of the singleton. In par-
ticular, we show that, conditional on a certain event described below, the set of final
values h0 · · · h−T+1(S) has only finitely many possibilities. Hence coalescence occurs
whenever these finite possibilities take the same value. All of these finite possibilities
are computable. To begin describing them, let T > 1 be given, let

ΣT := {k ∈ N : 1 ≤ k < T and g−T+k · · · g−T+2 · g−T+1 1 < x},

and let σT := min ΣT. Intuitively, σT is the number of periods that an incumbent firm
survives, given that it starts at time −T with maximal productivity 1 and faces the
shock sequence {Ut}t∈Z. Clearly σT is only defined when ΣT is nonempty. However,
the probability that ΣT is nonempty converges to one as T → ∞ by assumption 2.1.
Moreover, it is remarkable that if ΣT is nonempty, then the set h0 · · · h−T+1(S), which
contains the final values of the tracking processes started at −T, can have only finitely
many values:

Lemma 3.1. If ΣT is nonempty, then h0 · · · h−T+1(S) ⊂ ΛT, where

ΛT := {h0 · · · h−T+k+1 Z−T+k : k = 1, . . . , σT + 1}. (7)
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Figure 1: Tracking processes with T = 10 and σT = 8

The proof of lemma 3.1 is given in section 4. The intuition for the result can be obtained
by considering figure 1. In the figure, T = 10. Tracking processes are plotted for 50
different initial values of φ ∈ S. (Ideally, tracking processes would be plotted from
every φ ∈ S, but this is clearly impossible.) For this particular realization of shocks,
the set ΣT is nonempty because the process starting from 1 at time −10 falls below x
at t = −2 (and hence σT = 10− 2 = 8). As is clear from the figure, the fact that the
process starting from 1 at time −10 falls below x at t = −2 implies that all tracking
processes fall below x at least once between−10 and−2 (recall that the productivity of
incumbents is monotone). Moreover, if any collection of tracking processes fall below
x at some point in time t, they subsequently couple, taking the common value Zt+1 at
t + 1 and being equal from then on. As a result, by t = −1, there are at most σT + 1 = 9
distinct tracking processes. Their time zero values are included in the set ΛT defined
in lemma 3.1. In particular, ΛT is the time zero values of the processes that start below
x at dates −10,−9, . . . ,−2.

To see the importance of lemma 3.1, let {Φt}t∈Z be a stationary, doubly-indexed pro-
cess on the same probability space as {(Ut, Zt)}t∈Z that obeys Φt+1 = ht+1 Φt for all
t ∈ Z. The common marginal distribution of Φt is µ. Since Φ−T lies somewhere in
S, we know that Φ0 = h0 · · · h−T+1 Φ−T ∈ h0 · · · h−T+1 (S). Moreover, if the set ΣT is
nonempty, then lemma 3.1 yields the inclusion h0 · · · h−T+1 (S) ⊂ ΛT, and Φ0 lies in
the finite observable set ΛT. In particular, if ΛT is a singleton, then the value of Φ0 is
revealed as the value of that singleton.

Figures 2 and 3 show simulations with successful and unsuccessful coalescence re-
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Figure 2: Successful coalescence from T = 50
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Figure 3: Failure of coalescence
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spectively. In each figure, the top panel shows only the tracking processes. (As with
figure 1, the full continuum of tracking processes cannot be plotted, so we show only
50.) The bottom panel shows the tracking processes and the path of {Φt}. In reality,
the path of {Φt} is not observed. However, in figure 2, there is only one final, coa-
lesced value, and Φ0 must take this value. Hence Φ0 is observed. On the other hand,
in figure 3, Φ0 is equal to one of two final values, and we have no way of identifying
which one it is.

Now let us consider how to use our results to sample from µ by generating observa-
tions of Φ0. In order to avoid conditioning on coalescence by a certain point in time,
we wish to reveal the value of Φ0 for every random seed. This can be done by fixing
the seed, which determines the values of the shock processes, and then taking T larger
and larger until coalescence occurs. Algorithm 1 gives details. The algorithm termi-
nates with an exact draw from µ. Replication with independent shocks will generate
independent draws.

Algorithm 1: Generates an exact draw from µ

fix T to be an integer greater than 1;
draw (U0, Z0), . . . , (U−T+1, Z−T+1) independently from their distributions;
repeat

compute the set ΣT ;
if ΣT is nonempty then

compute the set ΛT ;
if ΛT is a singleton then

set Φ0 to be the value of that singleton ;
break ;

end
end
draw (U−T, Z−T) and append to list (U0, Z0), . . . , (U−T+1, Z−T+1) ;
set T = T + 1 ;

end
return Φ0 ;

At this stage we do not know that the algorithm will terminate with probability one.
This issue is central to the correctness of the algorithm because, as discussed above,
the way we avoid conditioning is by revealing the value of Φ0 for every random seed.
We now show that probability one termination in finite time holds under the following

9



0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4: Stationary density

condition, which is satisfied by many standard distributions.

Assumption 3.1. If G ⊂ S is a nonempty open set, then ν(G) > 0.

Proposition 3.1. Let T∗ := min{T ∈ N : ΣT is nonempty and ΛT is a singleton }. If as-
sumption 3.1 holds, then there exists a γ ∈ (0, 1) such that P{T∗ > t} ≤ γt. In particular,
P{T∗ < ∞} = 1.

Note that proposition 3.1 not only gives probability one occurrence, but also provides
the geometric rate P{T∗ > t} = O(γt). The proof of proposition 3.1 is given in sec-
tion 4.

The web page https://github.com/jstac/hh sampling contains a simple implemen-
tation of algorithm 1. We tested the code by following Hopenhayn and Rogerson (1993)
in taking the distribution ν for new entrants to be uniform, and the process for in-
cumbents to be Φt+1 = gt+1Φt = a + ρΦt + εt+1 where {εt} is IID with distribution
N(0, σ2). To bound the process we added reflecting barriers at 0 and 1. The parameters
were set to a = 0.36, ρ = 0.4 and σ = 0.1, while x was set to 0.49, so that approximately
40% of incumbents exit within 5 years (Hopenhayn, 1992, p. 1127). For these parame-
ters, running the program on a standard workstation without parallelization produces
about 36,000 independent draws from µ per second.7

Figure 4 shows the density computed from 36,000 observations combined with a stan-
dard nonparametric kernel density estimator (using a Gaussian kernel). Figure 5 shows
a 95% confidence set for the cumulative distribution function corresponding to µ, based
on the same observations and calculated using the Kolmogorov distribution of the sup

7Our workstation has a 2.67GHz Intel CPU and 4 gigabytes of RAM.
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Figure 5: 95% confidence set for the stationary distribution

norm deviation between true and empirical cdfs. The Kolmogorov result is applicable
here because the draws are exact and IID. The true distribution function lies entirely
between the two bands with 95% probability.

4 Proofs

In the following proofs T is fixed, and we write σ for σT to simplify notation.

Proof of lemma 3.1. Let ΣT be nonempty. As a first step, we show that if φ ≥ x, then
there exists a j ∈ {1, . . . , σ} such that h−T+j · · · h−T+1 φ < x. To see that this is so, fix
φ ≥ x and suppose that the statement fails. In other words, h−T+j · · · h−T+1 φ ≥ x for
j ∈ {1, . . . , σ}. We know that if y ≥ x, then hi y = gi y. It follows that h−T+σ · · · h−T+1 φ =

g−T+σ · · · g−T+1 φ. But then

x ≤ h−T+σ · · · h−T+1 φ = g−T+σ · · · g−T+1 φ ≤ g−T+σ · · · g−T+1 1 < x,

where the second inequality is due to monotonicity of gi, and then third is by the
definition of σ. Contradiction.

To complete the proof, pick any φ ∈ S. Our claim is that h0 · · · h−T+1 φ ∈ ΛT. Suppose
first that φ < x. In this case we have h0 · · · h−T+1 φ = h0 · · · h−T+2 Z−T+1, which is an
element of ΛT. Next, suppose that φ ≥ x. In light of the preceding argument, there
exists a j ∈ {0, . . . , σ} with h−T+j · · · h−T+1 φ < x, and hence

h−T+j+1 · h−T+j · · · h−T+1 φ = Z−T+j+1,
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from which we obtain

h0 · · · h−T+1 φ = h0 · · · h−T+j+2 · h−T+j+1 · h−T+j · · · h−T+1 φ

= h0 · · · h−T+j+2 Z−T+j+1.

Since j ∈ {0, . . . , σ}, the right-hand side is an element of ΛT. This completes the proof.

Proof of proposition 3.1. Let n be an integer such that Fn(x | 1) > 0, existence of which is
due to assumption 2.1. Fixing j ∈ N, let

Ej := {g−(j−1)n−1 · · · g−jn 1 < x} ∩ {Z−(j−1)n−1 < x, . . . , Z−jn < x}.

The events {g−(j−1)n−1 · · · g−jn 1 < x} and {Z−(j−1)n−1 < x, . . . , Z−jn < x} are inde-
pendent because the first event depends only on U−(j−1)n−1, . . . , U−jn and the second
depends only on Z−(j−1)n−1, . . . , Z−jn. As a result,

δ := P(Ej) = Fn(x | 1)ν([0, x))n.

The constant δ is strictly positive as a result of assumption 3.1. We claim that if the
event Ej occurs, then Σjn+1 is nonempty and Λjn+1 is a singleton. To simplify notation,
we treat only the case of j = 1.

So suppose that E1 occurs. Clearly Σn+1 contains n, and hence is nonempty. To see that
Λn+1 is a singleton, observe that since σ = σn+1 is the smallest element of Σn+1, we
must have σ ≤ n. As a consequence,

Λn+1 = {h0 · · · h−n+k Z−n−1+k : k = 1, . . . , σ + 1}
⊂ {h0 · · · h−n+k Z−n−1+k : k = 1, . . . , n + 1}.

We claim that on the set E1 we have

h0 · · · h−n+k Z−n+k−1 = Z0 for any k ∈ {1, . . . , n + 1}. (8)

To prove that (8) holds, observe that on E1 the values Z−1, . . . , Z−n are all less than x.
As a result, we have

h0 Z−1 = Z0

h0 h−1 Z−2 = h0 Z−1 = Z0

h0 h−1 h−2 Z−3 = h0 h−1 Z−2 = h0 Z−1 = Z0
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and so on. Together, these equalities give (8). As a consequence, we conclude that Σn+1

is nonempty and Λn+1 is a singleton whenever E1 occurs, and, more generally, Σnj+1

is nonempty and Λnj+1 is a singleton whenever Ej occurs. The events E1, E2, . . . are
independent and have positive probability δ. Using the definition of T∗, we then have

P{T∗ > nj} = P{T∗ ≥ nj + 1} ≤ P∪j
i=1 Ec

i = (1− δ)j

for all k ∈ N. Setting γ := (1− δ)1/n gives the result stated in the proposition.
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