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ABSTRACT. In both estimation and calibration studies, the notion of ergodicity

plays a fundamental role, permitting time series averages to be regarded as ap-

proximations to population means. As it turns out, many economic models rou-

tinely used for quantitative modeling do not satisfy the classical ergodicity con-

ditions. In this paper we develop a new set of ergodicity conditions orientated

towards economic dynamics. We also provide sufficient conditions suitable for a

variety of applications. It’s notable that the classical ergodicity results can be re-

covered as a special case of our main theorem.

JEL Classifications: C62, C63
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1. INTRODUCTION

One of the most fundamental ways to connect theory with data is to match sample

averages with population means. In static cross-sectional models this can usually

be justified by appealing to the law of large numbers for independent random

variables (with obvious exceptions—see, for example, Brock and Durlauf (2001) or

Nirei (2006)). In the case of dynamic models, convergence of sample averages may

or may not hold. The most general approach to this problem is via the concept
1This paper has benefited from helpful comments by Kevin Reffett and Tom Sargent, and from

financial support from the Japan Society for the Promotion of Science and Australian Research

Council Discovery Grant DP120100321.
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of ergodicity, which represents the notion that, in the limit, time series and cross-

sectional averages coincide. This typically requires some form of asymptotic path

independence, which in turn depends on the primitives that define the economic

system, the kinds of shocks that affect it, and how agents react to these shocks.

The concept of ergodicity forms a foundation stone at the very heart of quanti-

tative economics, supporting a vast multitude of calculations, computations and

theoretical results. Consistency of estimators is an obvious example (see, e.g.,

Hansen (1982)). Calibration is another. Many calibration studies would be es-

sentially meaningless without ergodicity. Ergodicity is likewise fundamental to

almost all forms of simulation-based time series estimation (e.g., Duffie and Sin-

gleton (1993)). Even Bayesian results that make no direct appeal to asymptotics

often require Markov chain Monte Carlo for actual computation, and this in turn

requires ergodicity (see, e.g., Geweke (2005)).

The majority of dynamic models used in quantitative economic modeling are re-

cursive. In this setting, a process {Xt} is typically defined to be ergodic if all

bounded invariant functions are constant (see section 3 of this paper, or section 2.2

of Ljungqvist and Sargent (2012)). For a Markov process {Xt} with stationary dis-

tribution π, ergodicity implies that, for any initial condition X0,

(1) lim
n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h(x)π(dx) whenever
∫
|h| dπ < ∞.

Here “=” is in the sense of almost sure equality, and h is required to be measurable.

Details and intuition are given below. For a standard reference see, e.g., Meyn and

Tweedie (2009), theorem 17.1.7.2

2Some versions of the ergodic theorem require that X0 is drawn from the stationary distribution

π, and that π is extremal in the set of stationary distributions of the model (see, e.g., Breiman

(1992)). In the Markovian version of ergodicity considered here, the initial condition is irrelevant.

This is helpful in applications, since it is not necessary to check whether a stationary distribution is

extremal or otherwise, and since it means that we can compute stationary outcomes by simulation,

starting the process from an arbitrary initial position and allowing for sufficient “burn in” (as in,

e.g., Markov chain Monte Carlo). For these reasons we focus our attention on the Markov version

of ergodicity. Similar ideas can be applied to other versions.
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This is a powerful result, implying probability one convergence over an extremely

wide class of functions h. In fact the result is in some senses too strong, because

it fails to hold for a significant number of common economic models. Naturally

these include models that are in no sense ergodic, such as Durlauf (1993). More

worrying is the fact that it often fails for workhorse models where ergodicity is

routinely assumed. For example, the convergence result in (1) cannot be estab-

lished under the stated assumptions for the capital and income processes in the

canonical stochastic optimal growth model of Brock and Mirman (1972). The same

is true for various extensions, including the multi-sector version in §10.3 of Stokey

and Lucas (1989), the correlated shock version in Hopenhayn and Prescott (1992),

the distorted version in Greenwood and Huffman (1995), and the heterogeneous

agent extension analyzed in Krusell and Smith (1998).3

This same point has been made in other ways in the literature on economic dy-

namics. For example, for any aperiodic model, ergodicity is equivalent to total

variation convergence of the distribution of Xt to π from any initial condition,

where π is the stationary distribution in (1).4 Total variation convergence is it-

self very strict, and, as argued by Nancy Stokey and Robert Lucas, is often “more

than we expect or care about” (Stokey and Lucas, 1989, p. 352). This is precisely

why economists have developed alternative approaches to the study of stability

for Markovian economic models, rather than simply adopting the classical total

variation based approach. See, for example, Razin and Yahav (1979) and chap-

ter 12 of Stokey and Lucas (1989), as well as subsequent work by Hopenhayn and

Prescott (1992) and Bhattacharya and Majumdar (2001).5

3Strengthening the assumptions made by these authors can recover ergodicity in some cases

(cf., e.g., Nishimura and Stachurski (2005)). However, as discussed in detail below, this is in fact

not necessary. The key problem here is not that these models are in any sense pathological, or even

badly behaved. Rather the problem is that the classical ergodicity conditions are unnecessarily

strict.
4For a proof see, e.g., Meyn and Tweedie (2009), theorems 13.0.1 and 17.1.7.
5More recent contributions along the same lines can be found in Bhattacharya and Majumdar

(2007), Szeidl (2013), and Kamihigashi and Stachurski (2013). For an overview of the classical ap-

proach, see Meyn and Tweedie (2009), chapter 13.
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A more detailed discussion on the failure of classical ergodicity in standard eco-

nomic environments is given in section 3.2.

In addressing this problem, it is important to understand that the models in ques-

tion are not pathological, or even badly behaved in any sense that matters for quan-

titative economics. Instead, the problem is caused by the fact that ergodicity as

defined above requires the convergence in (1) to hold for every measurable function h

that is integrable with respect to π. This is an extremely taxing condition. The family

of measurable functions is vast, and contains elements so irregular that they are

closer to curiosities than objects likely to form the basis of moment conditions or

other empirical comparisons. Paraphrasing Stokey and Lucas (1989), convergence

for these functions is more than we expect or care about.

In summary, the problem we face is one of mismatch between the requirements of

economic modeling on one hand and the conditions of the classical ergodic theo-

rem on the other. The objective of this paper is to resolve this mismatch by develop-

ing a notion of ergodicity that parallels the classical one, but with more flexibility

vis-à-vis the class of functions for which (1) is required to hold. This opens the

possibility of excluding irrelevant functions that make the condition overly restric-

tive, while at the same time retaining those functions typically used as the basis of

empirical comparisons. We do this is by first focusing on monotone functions, and

from there extending to linear combinations of monotone functions, and then to

continuous functions under additional assumptions.

The conditions for the resulting ergodicity theorems are satisfied by a variety of

important economic models under standard assumptions. These include common

formulations of the standard neoclassical optimal growth model, infinite horizon

incomplete market models, stochastic endogenous growth models, many overlap-

ping generation models, models of industry dynamics, and so on. Further details

are given in section 4.1.

In addition to the general results discussed above, this paper provides additional

results related to (a) implications of the theory, and (b) sufficient conditions. As

an example of the former, we show that, under the ergodicity conditions of our

main theorem, the empirical distribution associated with any sample converges to
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the stationary distribution with probability one. Regarding the latter, we provide

sufficient conditions that include a large class of well known models, and can be

used to check the conditions of the theorem in new applications.

It is also notable from a theoretical perspective that our ergodicity results include

the classical ergodicity results as a special case. Although this statement might

seem surprising given the preceding discussion, it holds because we prove our

results in the context of an abstract partial order. As verified below, specializing

the partial order to equality recovers the classical results.

The remainder of our paper is structured as follows. Section 2 gives some pre-

liminary definitions and results. Section 3 presents our results on ergodicity and

discusses their implications. Section 4 provides sufficient conditions for the form

of ergodicity considered in the paper. Section 5 concludes. All proofs are deferred

to section 6.

2. PRELIMINARIES

In this paper, as in Hansen and Sargent (2010), an economic model is a probabil-

ity distribution on a sequence space. Our main interest is in identifying suitable

conditions under which these distributions pick out time series with sample av-

erages that converge to stationary expectations, in a sense to be made precise. In

what follows, the sequence space is S∞ = S× S× · · · , where S is called the state

space. Elements of S summarize the state of the economy at any point in time,

while elements of S∞ are called time series. A typical probability distribution on

S∞ is denoted by PQ
x . In this first section, we describe how this distribution is con-

structed from objects Q and x, where Q is a primitive representing the first order

transition probabilities induced by preferences, technology and other economic

considerations, and x is an initial condition.6

6Our assumptions and results are always stated in terms of first order models. This costs no

generality, since greater lag lengths can be reformulated into the first order framework by suitable

redefinition of state variables.
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2.1. Model Primitives. To begin, let (S, B) be a measurable space, and let - be

a partial order on S (i.e., reflexive, transitive and antisymmetric). Let P be the

probability measures on (S, B). Let S∞ := S× S× · · · , and let B∞ be the product

σ-algebra. A function h : S→ R is called increasing if x - x′ implies h(x) ≤ h(x′),

and decreasing if−h is increasing. A subset of S is called increasing if its indicator

function is increasing, and decreasing if its indicator is decreasing.

To ensure that B and - are sufficiently compatible, we assume that (S,-) is a

normally ordered Polish space and that B is its Borel sets.7 We also assume that-

is closed, in the sense that its graph

(2) G := {(x, x′) ∈ S× S : x - x′}

is closed in the product space S× S with its product topology.

Throughout the paper, we consider models that are time-homogeneous and Mar-

kovian. The dynamics of any such model can be summarized by a stochastic ker-

nel Q, which is a function Q : S×B → [0, 1] such that

1. Q(x, ·) ∈P for each x ∈ S, and

2. Q(·, B) is measurable for each B ∈ B.

In the applications treated below, Q(x, B) represents the probability that the state

of the economy transitions from point x ∈ S to B ∈ B over one unit of time. As is

common in the literature, for any suitably integrable h : S → R, we let Qh be the

function defined by

(3) (Qh)(x) :=
∫

h(y)Q(x, dy) (x ∈ S).

Intuitively, if h gives some measurement of the state, then Qh(x) is its expected

value next period, given that the current state is x.

A stochastic kernel Q is called increasing if Qh is increasing whenever h : S →
R is measurable, bounded and increasing (see, e.g., Stokey and Lucas (1989) or

7In particular, S is a separable and completely metrizable topological space, with the property

that, given any disjoint pair of closed sets I, D ⊂ S such that I is increasing and D is decreasing,

there exists an increasing continuous bounded h : S → R such that h(x) = 0 for all x ∈ D and

h(x) = 1 for all x ∈ I. See, e.g., Whitt (1980).
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Hopenhayn and Prescott (1992)). This condition is typically satisfied in models

where, holding all shocks fixed, increases in the current state shift up the future

state. Many such models were cited in the introduction, and other examples are

given below.

2.2. Markov Processes. In this section we recall some well known definitions and

results related to Markov processes. Let Q be a stochastic kernel on S. A discrete

time S-valued stochastic process {Xt} on probability space (Ω, F ,P) is called Q-

Markov if

(4) P[Xt+1 ∈ B |X0, . . . , Xt] = Q(Xt, B) P-almost surely

for all t ≥ 0 and B ∈ B. For example, let {Xt} be generated by the vector-valued

stochastic difference equation

(5) Xt+1 = F(Xt, ηt+1), {ηt}
IID∼ φ, X0 given.

Here F : S× Z → S is Borel measurable, S and Z are Borel subsets of Rn, and φ is

a Borel probability measure on Z. If we define

(6) QF(x, A) := φ{z ∈ Z : F(x, z) ∈ A},

then QF is a stochastic kernel on (S, B) and {Xt} is QF-Markov.

As is well-known (see, e.g., Stokey and Lucas (1989), p. 222), if {Xt} is Q-Markov

with X0 ∼ µ, then the joint distribution induced by {Xt} on the sequence space

(S∞, B∞) is uniquely defined by the expression

(7) P
Q
µ (B0 × · · · × Bn × S× S× · · · ) =∫

B0

µ(dx0)
∫

B1

Q(x0, dx1) · · ·
∫

Bn−1

Q(xn−2, dxn−1)
∫

Bn
Q(xn−1, dxn)

for any finite collection {Bi}n
i=0 with Bi ∈ B.8 If µ = δx then we simply write PQ

x .

8As is conventional, the integrals in (7) are computed from right to left, with the integrand writ-

ten to the right of the integrating measure.
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Without any loss of generality, we will take (S∞, B∞,PQ
x ) as our probability space

unless otherwise stated, and {Xt} is just the identity map. This is a convenient

way of creating a standard Q-Markov process, with joint distribution PQ
x .9

3. ERGODICITY

In this section we state the classical ergodicity results for discrete time Markov

processes and present an extention based on monotonicity. We then explore the

implications of our ergodicity results in terms of their implications for convergence

of sample averages generated by dynamic models.

3.1. Classical Ergodicity. To state the classical ergodicity results, recall the follow-

ing definitions: Given stochastic kernel Q on S, a distribution π ∈ P is called

stationary for Q if ∫
Q(x, B)π(dx) = π(B)

for all B ∈ B. As in many other studies (e.g., Brock and Mirman (1972), Stokey

and Lucas (1989), Duffie et al. (1994), etc.), a stationary probability is understood

here as representing an equilibrium distribution for a stochastic economic model,

the dynamics for which are given by Q. A bounded measurable function h : S→ R

is called invariant if

(8)
∫

h(y)Q(x, dy) = h(x)

for all x ∈ S; that is, if h is a fixed point of (3). We define Q to be ergodic if the only

bounded invariant functions are the constant functions. (Note that definitions of

ergodicity vary slightly, ranging over several equivalent and near-equivalent con-

ditions. Our presentation and terminology largely follows Ljungqvist and Sargent

(2012)—see definition 2.2.3 of that reference.) The standard ergodicity result for

general state discrete time Markov processes can now be stated:

Theorem 3.1. For any stochastic kernel Q with stationary distribution π, the following

are equivalent:

9If (E, E ,P) is any probabilty space and X is defined by X(ω) = ω, then X is an E-valued

random element with distribution P.
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(i) Q is ergodic.

(ii) For every x ∈ S and π-integrable function h,

P
Q
x

{
lim

n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h dπ

}
= 1.

Here “π-integrable” simply means that h : S→ R is measurable, and
∫
|h| dµ < ∞.

The proof of theorem 3.1 can be found in proposition 17.1.4 and theorem 17.1.7 of

Meyn and Tweedie (2009), although we prove a more general result below.

Regarding the intuition behind theorem 3.1, let us call A ∈ B invariant if its indi-

cator function 1A is invariant in the sense of (8). This can be restated as Q(x, A) =

1A(x) for all x ∈ S, or, equivalently, Q(x, A) = 1 for all x ∈ A and Q(x, Ac) = 1

for all x ∈ Ac. In other words, both A and its complement are absorbing. If such a

set exists, long run average outcomes will depend on whether the initial condition

x lies in A or Ac. To recover the general convergence in (ii) of theorem 3.1, such

a scenario must be ruled out. In particular, we must rule out nontrivial invariant

sets (i.e., invariant sets that are neither the empty set not the whole space). The

definition of ergodicity does just this, since it forces the indicator of any invariant

set to be constant. The only sets with constant indicators are ∅ and S. In other

words, the only invariant sets are trivial.

3.2. Failure of Classical Ergodicity. The conclusions of theorem 3.1 are very strong,

since they imply almost sure convergence of sample means for every π-integrable

function. As discussed in the introduction, this condition fails for a range of eco-

nomic models that serve as popular instruments of quantitative economic model-

ing. To help illustrate this fact, we noted that for any aperiodic model, ergodicity

in the sense of theorem 3.1 is equivalent to total variation convergence of the dis-

tribution of Xt to the stationary distribution π from any initial condition. To give

one very simple example of how total variation convergence can fail, consider a

stochastic model with dynamics kt+1 = g(kt, zt+1), where kt is a vector of endoge-

nous state variables, g is a policy function that depends on model primitives, and

zt+1 is an exogenous state that follows a discrete state Markov chain. Following

the contributions of Mehra and Prescott (1985), Huggett (1993), Krusell and Smith
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(1998) and many other authors, such models are routinely employed to study the

evolution of economic aggregates. Note that if k0 is a fixed constant, then, given

that the shocks are discrete, the distribution of the state vector (kt, zt) puts all its

mass on finitely many points. On the other hand, the limiting distribution π can

be absolutely continuous with respect to Lebesgue measure,10 in which case the

two distributions are mutually singular, and the total variation distance takes its

maximal value for all t.11

In this example, failure of total variation convergence is partly due to the fact that

the exogenous state follows a discrete Markov chain. However, even if this is not

the case, problems can easily arise. For example, the ergodicity condition (1) is

stricter than so called ψ-irreducibility, and establishing irreducibility of continuous

state Markov models can be difficult or impossible, depending on the nature of the

underlying primitives and the resulting policy functions (see, e.g., Zhang (2007)).

Returning to the logic stated above, ergodicity plus aperiodicity implies total vari-

ation convergence. The models we have just discussed are aperiodic, and total

variation convergence fails. The implication is that classical ergodicity does not

hold. It is possible to give many other examples of workhorse economic models

where the same lines of argument are valid. These models simply fail to be ergodic

under the standard theory.

3.3. Monotone Ergodicity. We now introduce an alternative notion of ergodicity

well suited to economic dynamics. By way of analogy with the standard definition,

we will call a stochastic kernel Q monotone ergodic if the only increasing bounded

10See, for example, Mitra et al. (2003).
11To gain some intuition, recall that the central limit theorem is stated using ordinary conver-

gence in distribution rather than total variation convergence (TVC). This is because TVC often fails.

For example, the binomial approximation to the normal distribution (the de Moivre-Laplace the-

orem) is not valid under TVC, because the limiting normal distribution is continuous, while the

binomial distribution is discrete. Total variation distance between mutually singular distributions

is always maximal, even when the distributions are arbitrarily close in some sense that respects the

topology on the state space. Thus, the issue is not that the approximation is poor, but rather that

the notion of total variation convergence is too strong. For further discussion see p. 292 of Dudley

(2002).
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invariant functions are the constant functions. With this definition in hand, we can

generalize theorem 3.1 by providing an order theoretic version, the proof of which

is given in section 6.

Theorem 3.2. For any increasing stochastic kernel Q with stationary distribution π, the

following conditions are equivalent:

(i) Q is monotone ergodic.

(ii) For every x ∈ S and increasing π-integrable function h,

P
Q
x

{
lim

n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h dπ

}
= 1.

To see that theorem 3.2 is a generalization of theorem 3.1, it suffices to set the partial

order - to be equality (i.e., x - y iff x = y). In this case, it’s easily verified that

every function from S to R is increasing, and, as a consequence, every stochastic

kernel on S is increasing. In such a setting, the results of theorem 3.2 reduce to

those of theorem 3.1.

For other partial orders, such as the standard pointwise partial order on Rn, the

family of increasing functions is a strict subset of the family of all functions. When

such a partial order is chosen, convergence of sample means over increasing π-

integrable functions is less restrictive than convergence over all π-integrable func-

tions. Below we discuss how this difference is important in economic applications.

We also show that the convergence in (ii) of theorem 3.2 can be extended to a much

larger class of functions.

As a final comment before continuing, we note that some authors define ergodicity

in terms of either sets or random variables that are invariant with respect to a shift

operator defined on the underlying probability space. For completeness, in the

proofs we provided order theoretic versions of these concepts too, and show their

equivalence to monotone ergodicity.

3.4. Further Implications. In this section our aim is to investigate the practical

implications of monotone ergodicity. As a first step, we show that under monotone

ergodicity, the almost sure convergence in the strong law of large numbers holds
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for a larger set of functions than just the increasing functions. To state the result, for

fixed stochastic kernel Q with stationary distribution π we let L denote the linear

span of the set of increasing π-integrable functions.12 By taking finite unions of

probability one sets and using linearity of sums and integrals, it is straightforward

to show that, under monotone ergodicity, the strong law of large numbers extends

to any such function:13

Corollary 3.1. Let Q be an increasing stochastic kernel with stationary distribution π.

Then Q is monotone ergodic if and only if

(9) for all µ ∈P and all h ∈ L , P
Q
µ

{
lim

n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h dπ

}
= 1.

Provided that the tails of π are not too heavy, the class L will contain many of the

functions commonly used to compare models to data. Examples are given below.

Moreover, since we now consider PQ
µ rather than PQ

x , the convergence applies to

random X0 with any distribution.

Example 3.1. Many calibration exercises involve comparison of moments. Con-

sider, for example, a scalar model with S = R, and let k be the number of finite

moments possessed by the stationary distribution π. All k moment functions lie in

L , as does any polynomial up to order k.14

Example 3.2. If S is a closed interval inR, then L contains all functions of bounded

variation (see, e.g., Shiryaev (1996), p. 207).

12In other words, L is the set of all h : S → R such that h = α1h1 + · · ·+ αkhk for some scalars

{αi}k
i=1 and increasing measurable {hi}k

i=1 with
∫
|hi|d π < ∞. Equivalently, L is all h such that

h = f − g for increasing π-integrable f and g.
13As far as we know, the closest result to corollary 3.1 is theorem 3.1 of Bhattacharya and Lee

(1988). This result gives sufficient conditions for the convergence in (9), and hence is a special case

of our result. On the other hand, the authors also provide a version of the central limit theorem,

which in turn implies that convergence occurs at a parametric rate. Clearly this is not possible in

our setting, since our conditions are both necessary and sufficient.
14To give the idea, observe that h(x) = x2 can be written as −h1(x) + h2(x), where h1(x) :=

−x2
1{x < 0} and h2(x) := x2

1{x ≥ 0}. Both h1 and h2 are increasing functions. Thus, if π has

finite second moment, then x2 ∈ L , and n−1 ∑n
t=1 X2

t →
∫

x2π(dx) with probability one for all

initial conditions.
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In some settings—particularly multivariate settings—continuity is more conve-

nient to work with than monotonicity. It turns out that if S is compact and satisfies

an additional mild restriction, then the convergence in corollary 3.1 extends to all

continuous functions too. Moreover, if S is not compact, then the same is true for

any continuous bounded function. In fact we prove a considerably stronger result,

related to convergence of the empirical distribution πn, which is, as usual, defined

by ∫
h dπn :=

1
n

n

∑
t=1

h(Xt) for measurable h : S→ R.

The empirical distribution is a natural candidate for estimating π, and forms a

standard tool for econometric analysis and calibration. We wish to know when

πn
d→ π with probability one, where d→ represents the usual probabilist’s notion

of weak convergence (i.e.,
∫

h dπn →
∫

h dπ for all continuous bounded h).15

With an additional restriction on S, we show that the desired convergence is ob-

tained. The restriction strengthens our separability assumption for S, and is satis-

fied for many common state spaces (e.g., when S = Rm, or more generally, when

S is a cone in Rm with the usual partial order):

Assumption 3.1. There exists a countable subset A of S such that, given any x ∈ S

and neighborhood U of x, there are a, a′ ∈ A such that a, a′ ∈ U and a - x - a′.

Theorem 3.3. If assumption 3.1 is satisfied, and, in addition, Q is increasing and mono-

tone ergodic with stationary distribution π, then, for any x ∈ S,

P
Q
x

{
lim

n→∞

∫
h dπn =

∫
h dπ, ∀ continuous bounded h : S→ R

}
= 1.

In particular, πn
d→ π with probability one.

15The statement
∫

h dπn →
∫

h dπ for all continuous bounded h with probability one is a much

stronger than
∫

h dπn →
∫

h dπ with probability one for all continuous bounded h. The reason is

that, even when the latter holds, the probability one set on which convergence obtains depends on

h, and the set of continuous bounded functions on S is uncountable.
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4. SUFFICIENT CONDITIONS

So far we have focused on the implications of monotone ergodicity. Our next step

is to show that monotone ergodicity is satisfied by many useful economic models.

4.1. Order Mixing and Monotone Ergodicity. We begin with a relatively general

sufficent condition and then move to more specific ones. As a first step, we fol-

low Kamihigashi and Stachurski (2012) in defining a stochastic kernel Q on S to

be order mixing if, given any pair of independent Q-Markov processes {Xt} and

{X′t}, the event {Xt - X′t} occurs with probability one. For example, if Xt and

X′t represent the wealth of two households, whose inhabitants face labor income

following idiosyncratic shock processes, then order mixing requires that, over an

infinite horizon, the first household will always be poorer than the second at some

point in time, regardless of their initial wealth ranking.

We now state our first sufficient condition, for fixed stochastic kernel Q on S.

Theorem 4.1. If Q is order mixing, then Q is monotone ergodic.

This result is significant because many well-known models can be shown to be or-

der mixing. For example, Razin and Yahav (1979), Stokey and Lucas (1989) and

Hopenhayn and Prescott (1992) analyzed the dynamics of monotone economies

satisfying a so-called “monotone mixing condition.” These conditions imply or-

der mixing, and hence, by theorem 4.1, every such economy is monotone ergodic.

Similarly statements are true for the classes of models studied in Bhattacharya and

Majumdar (2001) and Szeidl (2013).

Based on these results, it can be shown that monotone ergodicity is satisfied by

common formulations of the standard neoclassical optimal growth model, as stud-

ied by Brock and Mirman (1972), Mirman and Zilcha (1975) and Hopenhayn and

Prescott (1992), as well as by the infinite horizon incomplete market models typi-

fied by Huggett (1993), stochastic endogenous growth models such as that found

in De Hek (1999), and a wide variety of OLG models, such as those as found in

Aghion and Bolton (1997), Piketty (1997), Owen and Weil (1998) and Morand and

Reffett (2007). Many models of industry and employment dynamics also fall into
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this category. Representative examples include Cabrales and Hopenhayn (1997),

Cooley and Quadrini (2001) and Samaniego (2008). An exhaustive list is too large

to give here.

4.2. Verifying Order Mixing: New Conditions. As discussed above, there are ex-

isting conditions in the literature that imply order mixing, and these suffice for

many economic problems. However, for classes of economic models that possess

certain monotonicity and continuity conditions, it is possible to develop another

approach that is particularly straightforward and intuitive. To do so we need some

additional definitions. As a start, given a, b ∈ S, we let [a, b] denote the order in-

terval {x ∈ S : a - x - b}. A subset K of S is called order bounded if there exists

a, b ∈ S with K ⊂ [a, b].

Assumption 4.1. S is a Borel subset of Rn endowed with its usual partial order,

and such that subsets of S are compact if and only if they are closed and order

bounded.16

Consider now the generic model presented in (5). Without loss of generality, we

suppose that the shock distribution φ is supported on all of the shock space Z.17

We also assume the following:

Assumption 4.2. F is continuous, and F(x, z) is increasing in x for each z ∈ Z. The

corresponding kernel QF is bounded in probability.18

Observe that each finite path of shock realizations {zt}k
t=1 ⊂ Z and initial condition

X0 = x ∈ S determines a path {xt}k
t=0 for the state variable up until time t via

16For example,Rn,Rn
+ andRn

++ have this property, while S = R \ {0} does not.
17That is, φ(Z) = 1, and φ(G) > 0 whenever G ⊂ Z is nonempty and open. Clearly Z can

always be re-defined so that this assumption is valid.
18A stochastic kernel Q is called bounded in probability if, for all x ∈ S it is the case that, given

any ε > 0, there exists a compact set K ⊂ S with suptP
Q
x {Xt /∈ K} ≤ ε. One way to ensure that this

condition holds is to take the state space to be compact. A more general technique involves drift

conditions, as found in Meyn and Tweedie (2009). The drift approach has been applied to a variety

models in economics, finance and time series analysis.
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xt+1 = F(xt, zt+1). Let Fk(x, z1, . . . , zk) denote the value of xk determined in this

way.19 Given vectors x and y in S, we write x < y if xi < yi for all i.

Proposition 4.1. If assumptions 4.1 and 4.2 are satsfied, then QF is increasing and at

least one stationary distribution exists. If, in addition, one of the following three conditions

holds

(i) for any x, c ∈ S, there exists {z1, . . . , zk} ⊂ Z such that Fk(x, z1, . . . , zk) < c

(ii) for any x, c ∈ S, there exists {z1, . . . , zk} ⊂ Z such that Fk(x, z1, . . . , zk) > c

(iii) for any x, x′ ∈ S, there exists {z1, . . . , zk} ⊂ Z and {z′1, . . . , z′k} ⊂ Z such that

Fk(x, z1, . . . , zk) < Fk(x′, z′1, . . . , z′k)

then QF is order mixing, and hence monotone ergodic.

Conditions (i)–(iii) are mixing conditions, and are related to the notions of up-

ward reaching, downward reaching and order reversing processes introduced in

Kamihigashi and Stachurski (2013). Unlike the latter, conditions (i)–(iii) exploit

continuity to provide statements that are easier to check in applications.

To see how proposition 4.1 can be useful, compare condition (iii) to the notion

of order mixing, which requires that separate time series driven by their own set

of idiosyncratic shocks become ordered eventually with probability one (see, the

discussion at the top of section 4.1). Condition (iii) simply states that such an oc-

currence is possible. This kind of condition is typically much easier to verify.

5. CONCLUSION

Many economic models routinely used for quantitative analysis fail to satisfy the

classical ergodicity conditions. In this paper we develop an alternative set of er-

godicity conditions orientated towards economic dynamics and explore their im-

plications. Sufficient conditions for checking the conditions are provided. We also

show that the classical ergodicity results are a special case of our theory.

19Formally, F1 := F and Ft+1(x, z1, . . . , zt+1) := F(Ft(x, z1, . . . , zt), zt+1) for all t ∈ N.
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6. PROOFS

6.1. Preliminaries. For the proofs we adopt some additional notation. Let

• bS denote the set of bounded measurable functions from (S, B) to R

• ibS denote the set of increasing functions in bS.

• cbS denote the set of continuous functions in bS.

• icbS := ibS ∩ cbS.

We sometimes use inner product notation to represent integration, so that

〈µ, h〉 :=
∫

h(x)µ(dx)

for all h : S→ R and measures µ on (S, B) such that the integral is defined.

6.2. Proofs from section 3. As alluded to in section 3, some authors define ergod-

icity in terms of shift-invariant events, and hence, for the sake of completeness,

we prove a slightly more general form of theorem 3.2, encompassing monotone

equivalents of these ideas.

To begin, let the shift operator θ : S∞ → S∞ be defined as usual by θ(x0, x1, . . .) =

(x1, x2, . . .). Let θt denote the t-th composition of θ with itself, and let θ0 be the

identity. Let X be the first coordinate projection, sending (x0, x1, . . . , xt, . . .) into

x0. If P is any probability measure on the sequence space (S∞, B∞), then the S-

valued stochastic process {Xt} on (S∞, B∞,P) defined by Xt := X ◦ θt has joint

distribution P. Specializing to P = P
Q
µ yields the canonical Q-Markov process.

Here and below, {Xt} is understood as being defined in this way and (S∞, B∞,PQ
µ )

is the probability space, unless otherwise stated. A random variable is always

a B∞ measurable map from S∞ to R. We endow S∞ with the pointwise order

inherited from (S,-). In particular, we say that {xt} - {x′t} if xt - x′t in S for all t.

An event A ∈ B∞ is called shift-invariant if θ−1(A) = A. It is called trivial if

the function h(x) := P
Q
x (A) is constant on S and takes values in {0, 1}. A family

of sets in B∞ is called trivial if every element of the family is trivial. A random

variable Y is called shift-invariant if it is measurable with respect to the family of

shift-invariant sets (which form a σ-algebra). We will make use of the following

lemma, which is proved in section 6.4.
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Lemma 6.1. Let G ⊂ B∞ be a σ-algebra, let iG be the increasing sets in G , and let Y be

an increasing, G -measurable random variable. If iG is trivial, then there exists a γ ∈ R
such that PQ

x {Y = γ} = 1 for all x ∈ S.

Here is the generalization of theorem 3.2:

Theorem 6.1. For any increasing stochastic kernel Q with stationary distribution π, the

following conditions are equivalent:

(i) Every increasing shift-invariant set is trivial.

(ii) Q is monotone ergodic.

(iii) For every x ∈ S and increasing π-integrable function h, we have

P
Q
x

{
lim

n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h dπ

}
= 1.

Proof of theorem 3.2. (i) =⇒ (ii). Let h be bounded, increasing and invariant. De-

fine Y := lim supt h(Xt). We then have h(x) = E
Q
x Y for all x ∈ S, as shown in

theorem 17.1.3 of Meyn and Tweedie (2009). Notice that Y is shift invariant, since,

for each a ∈ R, the set A := {Y ≤ a} satisfies θ−1(A) = A. Notice also that

Y is increasing on the sample space S∞. It now follows from our hypothesis and

lemma 6.1 that there exists a γ ∈ R such that PQ
x {Y = γ} = 1 for all x ∈ S. Hence

h(x) = E Q
x (Y) = γ for all x ∈ S. Thus h is constant, as was to be shown.

(ii) =⇒ (iii). Let h be any increasing function in L1(π). Without loss of generality,

we assume that
∫

h dπ = 0. Define

Eh :=

{
lim inf

n

1
n

n

∑
t=1

h(Xt) ≥ 0

}

and H(x) := P
Q
x (Eh). It is clear that Eh is shift-invariant, and hence, by theo-

rem 17.1.3 of Meyn and Tweedie (2009), the function H is invariant in the sense

of (8). From the fact that h is increasing, the set Eh is increasing on S∞. Using the

hypothesis that Q is increasing and applying proposition 2 of Kamae et al. (1977),

we see that H is increasing. Evidently H is bounded. It now follows from (ii) that

H is constant, with H(x) ≡ α for some α ∈ [0, 1].
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Seeking a contradiction, suppose that α < 1. In view of theorem 17.1.2 of Meyn

and Tweedie (2009), there exists a measurable function f : S→ R and a set Fh ∈ B

such that

(a)
∫

f (x)π(dx) = 0

(b) π(Fh) = 1

(c) PQ
x

{
lim infn

1
n ∑n

t=1 h(Xt) = f (x)
}
= 1 for all x ∈ Fh.

Fix x ∈ Fh. Since α < 1, we have

P
Q
x

{
lim inf

n

1
n

n

∑
t=1

h(Xt) < 0

}
= 1− H(x) = 1− α > 0.

In conjunction with (c), this implies that{
lim inf

n

1
n

n

∑
t=1

h(Xt) < 0

}
∩
{

lim inf
n

1
n

n

∑
t=1

h(Xt) = f (x)

}
6= ∅.

Hence f (x) < 0. Since x ∈ Fh was arbitrary, we have f < 0 on Fh. From (b) we

have π(Fh) = 1, so ∫
f (x)π(dx) =

∫
Fh

f (x)π(dx) < 0.

This inequality is impossible by (a).

We have now contradicted α < 1, which implies that H is everywhere equal to 1.

In other words,

P
Q
x

{
lim inf

n

1
n

n

∑
t=1

h(Xt) ≥ 0

}
= 1, ∀x ∈ S.

A symmetric argument shows that PQ
x
{

lim supn n−1 ∑n
t=1 h(Xt) ≤ 0

}
= 1 for all

x ∈ S.20 The claim in (iii) now follows.

(iii) =⇒ (i). Let A be increasing and shift-invariant. Let h(x) := P
Q
x (A). Our

aim is to show that h is constant and equal to either zero or one. Fixing x ∈ S

20In this case, the analogous function H is bounded and invariant, but decreasing rather than

increasing. Under (ii), such a function is also constant, because −H is bounded, invariant and

increasing. The rest of the argument is essentially the same.
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and applying theorem 17.1.3 of Meyn and Tweedie (2009), we can write 1A =

limt h(Xt), where equality holds PQ
x -a.s. As a consequence,

1A = lim
n→∞

1
n

n

∑
t=1

h(Xt).

Since A and Q are both increasing, proposition 2 of Kamae et al. (1977) tells us that

h is increasing. Clearly it is π-integrable. Applying (iii), we see that 1A =
∫

h dπ

holds PQ
x -a.s. In particular, the indicator of A is constant PQ

x -a.s., and the value of

the constant does not depend on x. Being an indicator, the constant value is either

zero or one. Hence either h = 0 or h = 1.

�

Proof of corollary 3.1. . Fix x ∈ S and h ∈ L . As per footnote 12, we can write h as

h = h1− h2, where h1 and h2 are increasing and π-integrable. By theorem 3.2, for h1

and h2 there exist events F1 and F2 withPQ
x (Fi) = 1 and n−1 ∑n

t hi(Xt)→
∫

hid π on

Fi. Setting F := F1 ∩ F2 and applying linearity, we obtain n−1 ∑n
t h(Xt) →

∫
hd π

on F. Evidently PQ
x (F) = 1. Hence (9) holds with µ = δx for any x ∈ S. This

extends to general µ via the identity

P
Q
µ (B) =

∫
P

Q
x (B)µ(dx) for all B ∈ B∞ and µ ∈P .

(The last equality can be obtained via a generating class argument applied to (7).)

�

Now we turn to the proof of theorem 3.3. In the proof, we let ic(S, [0, 1]) be the

functions in icbS taking values in [0, 1]. As usual, µn → µ means that 〈µn, f 〉 →
〈µ, f 〉 for all f ∈ cbS. Also, we require the following definition: Letting G and

H be sets of bounded measurable functions, we say that H is monotonically

approximated by G if, for all h ∈ H , there exist sequences {g1
n} and {g2

n} in G

with g1
n ↑ h and g2

n ↓ h pointwise. The proofs of the next two lemmas are given at

the end of this section.

Lemma 6.2. If H is monotonically approximated by G , then G is convergence determin-

ing for H , in the sense that if {νn} and ν are elements of P , and 〈νn, g〉 → 〈ν, g〉 for all

g ∈ G , then 〈νn, h〉 → 〈ν, h〉 for all h ∈H .
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Lemma 6.3. If the conditions of theorem 3.3 hold, then there exists a countable class

G such that PQ
x {n−1 ∑n

t=1 g(Xt) →
∫

g dπ} = 1 for every g ∈ G , and, moreover,

ic(S, [0, 1]) is monotonically approximated by G .

Proof of theorem 3.3. Fix x ∈ S. Let πn be the empirical distribution. As a first

step of the proof, we claim that {πn} is tight with probability one. (Recall that a

sequence {µn} ⊂ P is called tight if, for all ε > 0, there exists a compact K ⊂ S

such that µn(K) ≥ 1− ε for all n.) To see this, fix ε > 0, and let K be a compact

subset of S with π(K) ≥ 1− ε. By assumption, compact subsets of S are order

bounded, and so we have a, b ∈ S with K ⊂ [a, b]. Let I := {y ∈ S : a - y} and

J := {y ∈ S : y - b}. Evidently

(10) πn([a, b]) = πn(I ∩ J) ≥ πn(I) + πn(J)− 1.

Note that both I and J are increasing. By corollary 3.1, we can take Fa to be a subset

of S∞ with PQ
x (Fa) = 1 and πn(I) → π(I) on Fa; and Fb ⊂ S∞ with PQ

x (Fb) = 1

and πn(J)→ π(J) on Fb. It follows from (10) that on F := Fa ∩ Fb we have

lim inf
n→∞

πn([a, b]) ≥ π(I) + π(J)− 1 ≥ 2π(K)− 1 ≥ 1− ε.

Since closed and bounded order intervals are compact by assumption, it follows

that {πn} is tight on the probability one set F.

As the second step of the proof, we claim there exists a probability one set F′ such

that, for any given ω ∈ F′, we have 〈πω
n , f 〉 → 〈π, f 〉 for all f ∈ icbS. To see

that this is so, let G be as in lemma 6.3. Since G is countable and the law of large

numbers holds for every element of G , there exists a probability one set F′ ⊂ Ω

such that, for each ω ∈ F′, we have 〈πω
n , g〉 → 〈π, g〉 for all g ∈ G . Fix ω ∈ F′. Since

ic(S, [0, 1]) is monotonically approximated by G , lemma 6.2 implies that 〈πω
n , f 〉 →

〈π, f 〉 for all f ∈ ic(S, [0, 1]). It immediately follows that 〈πω
n , f 〉 → 〈π, f 〉 for all

f ∈ icbS.21

Now let F′′ be the probability one set F ∩ F′. For any ω ∈ F′′, the sequence of

distributions {πω
n } is tight, and satisfies 〈πω

n , f 〉 → 〈π, f 〉 for all f ∈ icbS. In view

21If f ∈ icbS, then there exists a g ∈ ic(S, [0, 1]) and constants a, b such that f = a + bg.
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of lemma 6.6 of Kamihigashi and Stachurski (2013), we then have 〈πω
n , f 〉 → 〈π, f 〉

for all f ∈ cbS. This concludes the proof of theorem 3.3. �

6.3. Proofs from section 4.

Proof of theorem 4.1. Suppose instead that h ∈ ibS is invariant, and, in addition,

there exist distinct points a, b ∈ R with nonempty preimages under h. Without

loss of generality, we set a < b. Using these two nonempty preimages, we can

take {Xt} and {X′t} to be independent Q-Markov processes defined on the same

probability space (Ω, F ,P) and having X0 and X′0 chosen such that E h(X0) = b

and E h(X′0) = a.

As h is invariant, both {h(Xt)} and {h(X′t)} are martingales. For example, {h(Xt)}
is a martingale because

E [h(Xt+1) |X0, . . . , Xt] = E [h(Xt+1) |Xt] = Qh(Xt) = h(Xt),

where the first and second equalities are by the Markov property and the last is by

the fact that h is invariant. Since h is bounded, these martingales are also bounded,

and hence, by the martingale convergence theorem, converge P-almost surely to

respective limits Y∞ and Y′∞. Since finite intersections of probability one sets have

probability one, the pair (h(Xt), h(X′t)) converges to (Y∞, Y′∞) in R2 with probabil-

ity one.

Let {Xt - X′t i.o. } be the event that Xt - X′t occurs infinitely often.22 The assump-

tion that Q is order mixing tells us that Xt - X′t at least once with probability one.

As shown in proposition 9.1.1 of Meyn and Tweedie (2009), this in turn implies the

seemingly stronger result P{Xt - X′t i.o. } = 1. Since h is increasing, this yields

1 = P{Xt - X′t i.o. } ≤ P{h(Xt) ≤ h(X′t) i.o. } ≤ 1.

By taking finite intersections again, we can now claim existence of a probability

one set on which h(Xt) ≤ h(X′t) infinitely often and (h(Xt), h(X′t)) converges to

(Y∞, Y′∞). On such a set we must have Y∞ ≤ Y′∞. We have now shown that Y∞ ≤ Y′∞
holds P-a.s., and hence EY∞ ≤ EY′∞.

22That is, {Xt - X′t i.o } :=
⋂∞

m=0
⋃

t≥m{Xt - X′t}.
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On the other hand, Y∞ and Y′∞ are the limits of martingales {h(Xt)} and {h(X′t)},
so EY∞ = E h(Xt) = E h(X0) and EY′∞ = E h(X′t) = E h(X′0). Recalling our

original construction of these sequences, we see that EY∞ = b, while EY′∞ = a.

Therefore EY∞ > EY′∞. Contradiction. �

Now we turn to the proof of proposition 4.1. As in Kamihigashi and Stachurski

(2013), we will say that a stochastic kernel Q is order reversing if, given a pair

x′ - x and any independent Markov-Q processes {Xt} and {X′t} starting at x and

x′ respectively, there exists a t ∈ N with P{Xt - X′t} > 0. In other words, the

initial ordering is reversed at some point in time with positive probability.

Proof of proposition 4.1. Let {ηt} and {η′t} be IID draws from φ and independent of

each other. Consider first condition (iii). We claim that QF is order reversing. To

see this, fix x′ - x. Let {zt}k
t=1 and {z′t}k

t=1 be as in the statement of the proposition.

Define the constant

γ := P{Fk(x, η1, . . . , ηk) < Fk(x′, η′1, . . . , η′k)}.

We aim to show that γ > 0. By hypothesis, Fk(x, z1, . . . , zk) < Fk(x′, z′1, . . . , z′k). By

continuity of F, there exist open neighborhoods Nt of zt and N′t of z′t such that

z̃t ∈ Nt and z̃′t ∈ N′t for t ∈ {1, . . . , k} =⇒ Fk(x, z̃1, . . . , z̃k) < Fk(x′, z̃′1, . . . , z̃′k).

This leads to the estimate

γ ≥ P∩n
t=1 {ηt ∈ Nt and η′t ∈ N′t} =

n

∏
t=1

φ(Nt)φ(N′t).

Since Z is the support of φ, this last term is positive, and γ > 0.

The inequality γ > 0 tells us directly that QF is order reversing. Since QF is also

increasing and bounded in probability, lemma 6.5 of Kamihigashi and Stachurski

(2013) implies that QF is order mixing. Existence of a stationary distribution fol-

lows from theorem 3.2 of the same reference.

The proof of the proposition under conditions (i)–(ii) is similar. For example, an

argument similar to the one just given shows that condition (i) implies that QF

is downward reaching in the sense of Kamihigashi and Stachurski (2013). The
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order reversing property then follows from Kamihigashi and Stachurski (2013),

proposition 3.2, and the rest of the arguments are unchanged. �

6.4. Proofs of Remaining Lemmata. Finally, we complete the proof of all remain-

ing lemmata stated in this section.

Proof of lemma 6.1. Assume the conditions of the lemma. In particular, let iG be

trivial, and let Y be increasing and G -measurable. Fixing c ∈ R, let Fx(c) :=

P
Q
x {Y ≤ c}. Given the assumptions on Y, the set {Y ≤ c} is decreasing and in

G . Sinc iG is trivial, the decreasing sets in G must also be trivial.23 Hence the dis-

tribution function Fx(c) is either zero or one. Letting γ := inf{c ∈ R : Fx(c) = 1}
and applying right-continuity, we have Fx(γ) = 1 and Fx(c) = 0 for any c < γ.

Hence PQ
x {Y = γ} = 1. By the definition of triviality, γ does not depend on x. �

Proof of lemma 6.2. Let {νn} and ν be probability measures on S, and suppose that

〈νn, g〉 → 〈ν, g〉 for all g ∈ G ⊂ bS. We claim that 〈νn, h〉 → 〈ν, h〉 for all h ∈ H ⊂
bS. To see this, pick any h ∈ H , and choose sequences {g1

n} and {g2
n} in G with

g1
n ↑ h and g2

n ↓ h. Clearly

lim inf
n
〈νn, h〉 ≥ lim inf

n
〈νn, g1

k〉 = 〈ν, g1
k〉 for all k.

∴ lim inf
n
〈νn, h〉 ≥ sup

k
〈ν, g1

k〉 = lim
k
〈ν, g1

k〉 = 〈ν, h〉.

A symmetric argument applied to {g2
n} yields lim supn〈νn, h〉 ≤ 〈ν, h〉. �

Proof of lemma 6.3. Let A be the countable subset of S in assumption 3.1. For a ∈ A,

let Ia := 1{y ∈ S : a - y}. Let K be the set of functions ` = rIa for some

r ∈ Q ∩ [0, 1] and a ∈ A. Let G1 be all functions g = max`∈F ` where F ⊂ K

is finite. Clearly G1 is countable, and, by theorem 3.2, every g ∈ G1 satisfies

P
Q
x {n−1 ∑n

t=1 g(Xt) →
∫

g dπ} = 1. We claim that for each f ∈ ic(S, [0, 1]) there

exists a sequence {gn} in G1 converging up to f . To verify this claim it suffices to

show that

(11) sup{`(x) : ` ∈ K and ` ≤ f } = f (x) for any x ∈ S.

23Just observe that if D ∈ G is decreasing, then Dc is increasing, and hence h(x) = P
Q
x (Dc) =

1−PQ
x (D) is constant in {0, 1}. The claim follows.
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Indeed, if (11) is valid, then take {`k} to be an enumeration of all ` ∈ K with ` ≤ f

and choose gn = max1≤k≤n `k.

To establish (11), fix x ∈ S and ε > 0. By continuity of f and assumption 3.1,

we can find an a ∈ A with a - x and f (x) − ε < f (a). Let r ∈ Q be such that

f (x)− ε < r < f (a) and let `(x) := rIa. Since ` ≤ f (a)Ia and f is increasing we

have ` ≤ f . On the other hand, f (x)− ε < r = `(a) ≤ `(x). Since ε was arbitrary

we conclude that (11) is valid.

To complete the proof of lemma 6.3, we show existence of a class of functions G2

such that G2 is countable, every g ∈ G2 satisfiesPQ
x {n−1 ∑n

t=1 g(Xt)→
∫

g dπ} = 1,

and, for each f ∈ ic(S, [0, 1]), there exists a sequence {gn} in G2 converging down

to f . The claim in lemma 6.3 is then satisfied with G := G1 ∪ G2. We omit the

details, since the construction of G2 is entirely symmetric to the construction of

G1. �
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