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Abstract

Consider a preordered metric space (X, d,�). Suppose that d(x, y)
≤ d(x′, y′) if x′ � x � y � y′. We say that a self-map T on X is
asymptotically contractive if d(T ix, T iy) → 0 for all x, y ∈ X. We
show that an order-preserving self-map T on X has a globally stable
fixed point if and only if T is asymptotically contractive and there
exist x, x∗ ∈ X such that T ix � x∗ for all i ∈ N and x∗ � Tx∗. We
establish this and other fixed point results for more general spaces
where d consists of a collection of distance measures. We apply our
results to order-preserving nonlinear Markov operators on the space
of probability distribution functions on R.
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1 Introduction

The majority of fixed point theorems require a space that is complete in
some sense. Fixed point theorems based on the metric approach such as the
celebrated Banach contraction principle and its numerous extensions com-
monly assume a complete metric space (see, e.g., [5]). Results based on
the order-theoretic approach such as Tarski’s fixed point theorem and the
Knaster-Tarski fixed point theorem typically require a complete lattice or a
chain-complete partially ordered space (see, e.g., [1]). These two approaches
are combined in the growing literature on fixed point theory for partially
ordered complete metric spaces (e.g., [2, 3, 6, 8, 11, 12, 13, 14, 16]), where
completeness still plays an indispensable role.

However, there are various situations in which it is fairly easy to construct
a good candidate for a fixed point even if the underlying space may not
be complete. For example, consider a self-map on a space of real valued
functions on some set. Then an increasing sequence of functions majorized
by a common function converges pointwise to some function in the same
space. If this pointwise limit turns out to be a good candidate for a fixed
point, then there is no need to verify that the entire space is complete or
chain-complete.

In this paper we develop simple fixed point results for order-preserving
self-maps on a space equipped with a transitive binary relation and a collec-
tion of distance measures. Most of our results assume existence of a good
candidate for a fixed point instead of completeness. Some of our results use
the condition that the self-map in question is asymptotically contractive,
which means in our terminology that two distinct points are mapped arbi-
trarily close to each other after sufficiently many iterations. In the case of
Markov operators induced by Markov chains, this property is an implication
of the order-theoretic mixing condition introduced in [9], which is a natural
property of various stochastic processes (see [9, 10]). We show that asymp-
totic contractiveness is not only a useful condition for showing existence of a
fixed point, but also a necessary condition for existence of a globally stable
fixed point.

In practice, a candidate for a fixed point must be constructed or must
be shown to exist. If the underlying space is a complete metric space, then
the limit of a certain Cauchy sequence serves as a good candidate. This
classical approach is still common in the recent literature on fixed points of
order-preserving self-maps on partially ordered complete metric spaces (e.g.,
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[2, 3, 6, 8, 12, 14, 16]). For comparison purposes, we establish a fixed point
result for such spaces as a consequence of our general results.

To illustrate how a candidate fixed point can be constructed in practice,
we consider nonlinear Markov operators on the space of probability distribu-
tion functions on R. We provide a simple sufficient condition for existence
of a globally stable fixed point.

2 Definitions

Let X be a set. A binary relation � ⊂ X ×X on X is called transitive if for
any x, y, z ∈ X,

x � y � z ⇒ x � z, (2.1)

reflexive if
∀x ∈ X, x � x, (2.2)

and antisymmetric if for any x, y ∈ X,

x � y and y � x ⇒ x = y. (2.3)

A binary relation is called a preorder if it is transitive and reflexive. A
preorder � is called a partial order if it is antisymmetric.

Let A be a set. Let Φ(A) be the set of functions φ : A → R+. Let
φ, ψ ∈ Φ(A). We write φ = 0 if φ(a) = 0 for each a ∈ A, and φ ≤ ψ if
φ(a) ≤ ψ(a) for each a ∈ A. The expressions φ + ψ and max{φ + ψ} are
defined respectively by

∀a ∈ A, (φ+ ψ)(a) = φ(a) + ψ(a), (2.4)

∀a ∈ A, (max{φ+ ψ})(a) = max{φ(a) + ψ(a)}. (2.5)

For {φi}i∈N ⊂ Φ(A), we write φi → 0 if φi(a)→ 0 as i ↑ ∞ for each a ∈ A.
Let d : X ×X ×A→ R+; the dependence of d on (x, y, a) ∈ X ×X ×A

is expressed by d(x, y)(a). We treat the expression d(x, y) as a function
from A to R+; more precisely, d(x, y) is the function φ ∈ Φ(A) given by
φ(a) = d(x, y)(a) for all a ∈ A. Under the conventions described in the
previous paragraph, for any x, y, x′, y′ ∈ X and {xi}i∈N, {yi}i∈N ⊂ X, we
have the following relations:

d(x, y) = 0 ⇐⇒ ∀a ∈ A, d(x, y)(a) = 0, (2.6)

d(x, y) ≤ d(x′, y′) ⇐⇒ ∀a ∈ A, d(x, y)(a) ≤ d(x′, y′)(a), (2.7)

d(xi, yi)→ 0 ⇐⇒ ∀a ∈ A, d(xi, yi)(a)→ 0. (2.8)
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The expressions d(x, y) + d(x′, y′) and max{d(x, y), d(x′, y′)} are defined as
in (2.4) and (2.5).

We say that d is identifying if for any x, y ∈ X,

d(x, y) = 0 ⇒ x = y, (2.9)

reflexive if
∀x ∈ X, d(x, x) = 0, (2.10)

and symmetric if
∀x, y ∈ X, d(x, y) = d(y, x). (2.11)

We say that d satisfies the triangle inequality if

∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z). (2.12)

We say that d is one-dimensional if d(x, y)(a) does not depend on a for any
x, y ∈ X. If d is one-dimensional, then we treat d as a function from X ×X
to R+. If d is one-dimensional, identifying, reflexive, symmetric, and satisfies
the triangle inequality, then d is called a metric.

In what follows, the set X is assumed to be equipped with a binary
relation � and a function d : X ×X ×A→ R+. Even though � is merely a
binary relation, we regard it as a type of order.

We say that a sequence {xi}i∈N is increasing if xi � xi+1 for all i ∈ N.
We say that a function f : D → R with D ⊂ R is increasing if f(x) ≤ f(y)
for any x, y ∈ D with x ≤ y.

We say that d is regular if for any x, y, z ∈ X with x � y � z, we have

max{d(x, y), d(y, z)} ≤ d(x, z). (2.13)

Inequality (2.13) means that if x � y, then d(x, y) increases as x “decreases”
or y “increases.”

Example 2.1. Let X = R. Let � be the usual partial order on R. For
x, y ∈ X, define d(x, y) = |x− y|. Then d is one-dimensional, a metric, and
regular.

Example 2.2. Let X be the set of functions on R. Let A = R. For f, g ∈ X,
write f � g if f ≤ g. Then � is a partial order. For f, g ∈ X and a ∈ A,
define d(f, g)(a) = |f(a) − g(a)|. Then d is not one-dimensional, but d is
identifying, reflexive, symmetric, regular, and satisfies the triangle inequality.
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Example 2.3. Let (S,S ) be a measurable space. Let X be the set of finite
measures on S. For µ, ν ∈ X, write µ � ν if µ(B) ≤ ν(B) for each B ∈ S .
Then � is a partial order. Let A be the set of bounded measurable functions
from S to R. For µ, ν ∈ X and f ∈ A, define d(µ, ν)(f) = |

∫
fdµ−

∫
fdν|.

Then d is not one-dimensional, but d is identifying, reflexive, symmetric,
regular, and satisfies the triangle inequality.

Example 2.4. Let X = R2. For x, y ∈ X, write x � y if ‖x‖ ≤ ‖y‖, where
‖ ·‖ is the Euclidian norm. Then � is a preorder, but it is not a partial order
since it fails to be antisymmetric. For x, y ∈ X, let d(x, y) = ‖x− y‖. Then
d is a metric, but not regular. For example, (1/2, 0) � (0, 1) � (1, 0), but
d((0, 1), (1, 0)) =

√
2 > d((1/2), 0), (1, 0)) = 1/2.

Example 2.5. Let X = R2. For x, y ∈ X, write x � y if x ≤ y component-
wise. Define d as in Example 2.4. Then d is a metric and regular.

Example 2.6. Let X = R2. For x, y ∈ X, write x � y if x1 < y1 or if
x1 = y1 and x2 ≤ y2, where x = (x1, x2), etc. This binary relation � is a
lexicographic order, which is a partial order. Define d as in Example 2.4.
Then d is a metric, but not regular. For example, (0, 0) � (1, 100) � (2, 0),
but d((0, 0), (1, 100)) > 100 > d((0, 0), (2, 0)) = 2.

A self-map T : X → X is called order-preserving if for any x, y ∈ X,

x � y ⇒ Tx � Ty. (2.14)

A fixed point of T is an element x ∈ X such that Tx = x. We say that a
fixed point x∗ of T is globally stable if

∀x ∈ X, d(T ix, x∗)→ 0. (2.15)

Note that if x∗ is a globally stable fixed point of T , then T has no other fixed
point as long as d is identifying. To see this, note that if T has another fixed
point x, then for any i ∈ N, we have d(x, x∗) = d(T ix, x∗)→ 0; thus x = x∗.

We say that T : X → X is asymptotically contractive if

∀x, y ∈ X, d(T ix, T iy)→ 0. (2.16)

The term “asymptotically contractive” has been used in different meanings
in the literature (e.g., [4, 15]). Our usage of the term can be justified by
noting that (2.16) is an asymptotic property as well as an implication of
well-known contraction properties; see (4.8) and (4.9).
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3 Fixed Point Results

Let X and A be sets. Let � be a binary relation on X. Let T : X → X. Let
d : X×X×A→ R+. In this section we maintain the following assumptions:

Assumption 3.1. T is order-preserving.

Assumption 3.2. � is transitive.

Assumption 3.3. d is identifying.

Assumption 3.4. d is regular.

The following theorem is the most fundamental of our fixed point results.

Theorem 3.1. Suppose that there exist x, x∗ ∈ X such that

d(T ix, T ix∗)→ 0, (3.1)

∀i ∈ N, T ix � x∗, (3.2)

x∗ � Tx∗. (3.3)

Then x∗ is a fixed point of T .

Proof. Since T is order-preserving, (3.3) implies that

x∗ � Tx∗ � T 2x∗ � T 3x∗ � · · · . (3.4)

This together with (3.2) implies that

∀i ∈ N, T ix � x∗ � T ix∗. (3.5)

Thus by regularity of d, for any i ∈ N we have

d(x∗, Tx∗) ≤ d(x∗, T ix∗) (3.6)

≤ d(T ix, T ix∗)→ 0, (3.7)

where the convergence holds by (3.1). It follows that d(x∗, Tx∗) = 0; thus x∗

is a fixed point of T since d is identifying.

The above proof generalizes the fixed point argument used in [10]. Under
additional assumptions, conditions (3.1)–(3.3) are also necessary for existence
of a fixed point.
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Theorem 3.2. Suppose that � is reflexive. Suppose further that d is reflex-
ive. Then T has a fixed point if and only if there exist x, x∗ ∈ X satisfying
(3.1)–(3.3).

Proof. The “if” part follows from Theorem 3.1. For the “only if” part, let x∗

be a fixed point of T . Then since � and d are reflexive, (3.1)–(3.3) trivially
hold with x = x∗.

Let us now consider global stability of a fixed point. We start with a
simple consequence of asymptotic contractiveness.

Lemma 3.1. Suppose that T is asymptotically contractive and has a fixed
point x∗. Then x∗ is globally stable.

Proof. To see that x∗ is unique, let x be another fixed point. Then by (2.16)
with y = x∗, we have

d(x, x∗) = d(T ix, T ix∗)→ 0. (3.8)

Thus x = x∗.
For global stability, let x ∈ X be arbitrary. Again by (2.16) with y = x∗

we obtain (2.15). Hence x∗ is globally stable.

Theorem 3.3. Suppose that T is asymptotically contractive. Suppose further
that there exist x, x∗ ∈ X satisfying (3.2) and (3.3). Then x∗ is a globally
stable fixed point of T .

Proof. Since T is asymptotically contractive, x and x∗ satisfy (3.1). Thus by
Theorem 3.1, x∗ is a fixed point of T . Global stability follows from Lemma
3.1.

Theorem 3.4. Suppose that � is reflexive. Suppose further that d is sym-
metric and satisfies the triangle inequality. Then T has a globally stable fixed
point if and only if T is asymptotically contractive and there exist x, x∗ ∈ X
satisfying (3.2) and (3.3).

Proof. The “if” part follows from Theorem 3.3. For the “only if” part, sup-
pose that T has a globally stable fixed point x∗. Then for any x, y ∈ X, by
the triangle inequality, symmetry of d, and global stability of x∗,

d(T ix, T iy) ≤ d(T ix, x∗) + d(x∗, T iy) (3.9)

= d(T ix, x∗) + d(T iy, x∗)→ 0. (3.10)

Thus (2.16) holds; i.e., T is asymptotically contractive. By reflexivity of �,
(3.2) and (3.3) hold with x = x∗.
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4 The Case of a Complete Metric Space

In this section, in addition to Assumptions 3.1–3.4, we maintain the following
assumptions.

Assumption 4.1. (X, d) is a complete metric space.

Assumption 4.2. For any increasing sequence {xi}i∈N ⊂ X converging to
some x ∈ X, we have xi � x for all i ∈ N.

Assumption 4.3. For any increasing sequence {xi}i∈N ⊂ X converging to
some x ∈ X, if there exists y ∈ X such that xi � y for all i ∈ N, then x � y.

Assumptions 4.2 and 4.3 hold if � is closed (i.e., a closed subset of X×X).
To see this, let {xi}i∈N be an increasing sequence converging to some x ∈ X.
Then given any i ∈ N, we have xi � xj for all j ≥ i; thus letting j ↑ ∞, we
obtain xi � x. Furthermore, if there exists y ∈ X such that xi � y for all
i ∈ N, then letting i ↑ ∞ yields x � y.

Assumption 4.2 is standard in the recent literature on fixed point theory
for partially ordered metric spaces (e.g., [2, 3, 6, 8, 12, 16]). Our approach
differs in that it also utilizes Assumption 4.3.

Theorem 4.1. Suppose that for any y, z ∈ X, we have

y � z ⇒ d(T iy, T iz)→ 0. (4.1)

Suppose further that there exist x, x ∈ X such that

x � Tx. (4.2)

∀i ∈ N, T ix � x. (4.3)

Then T has a fixed point.

Proof. For i ∈ N, let xi = T ix. It follows from (4.2) that {xi}i∈N is increasing.
We show that {xi}i∈N is Cauchy. To this end, let ε > 0. By (4.1)–(4.3) there
exists N ∈ N such that d(TNx, TNx) < ε. Let i, j ≥ N with i ≤ j. Let
m = j −N . Since xN � xi � xj, by regularity of d we have

d(xi, xj) ≤ d(xN , xj) (4.4)

= d(TNx, T jx) = d(TNx, TNTmx) (4.5)

≤ d(TNx, TNx) < ε, (4.6)
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where the first inequality in (4.6) holds by (4.3) and regularity of d. Since
i, j ≥ N are arbitrary, it follows that {xi} is Cauchy.

Now, since {xi} is Cauchy and X is complete, it converges to some x∗ ∈
X. By (4.2) and Assumption 4.2, we have

∀i ∈ N, x � T ix � x∗. (4.7)

Thus (3.2) holds. Condition (3.1) follows from (4.7) and (4.1) with y = x and
z = x∗. From (4.7) we have T i+1x � Tx∗ for all i ∈ N. Thus by Assumption
4.3, x∗ � Tx∗. Hence (3.3) holds. It follows by Theorem 3.1 that x∗ is a
fixed point of T .

A simple sufficient condition for (4.1) is that for some k ∈ [0, 1),

y � z ⇒ d(Ty, Tz) ≤ kd(y, z). (4.8)

This condition is used in [12, Theorem 2.1]. A weaker condition is used in
[2, Theorem 2.1] to establish a result that implies the following.

Corollary 4.1. Let ψ : [0,∞)→ [0,∞) be an increasing function such that
limi↑∞ ψ

i(t) = 0 for each t > 0. Suppose that for any y, z ∈ X, we have

y � z ⇒ d(Ty, Tz) ≤ ψ(d(y, z)). (4.9)

Suppose further that there exists x ∈ X satisfying (4.2). Then T has a fixed
point.

Proof. For any i ∈ N and y, z ∈ X with y � z, it follows from (4.9) that

d(T iy, T iz) ≤ ψ(d(T i−1y, T i−1z)) ≤ · · · ≤ ψi(d(y, z))→ 0. (4.10)

Thus (4.1) holds. Let {xi}i∈N be as in the proof of Theorem 4.1. It is shown
in [2] that {xi}i∈N is Cauchy, so that it converges to some x∗ ∈ X. By
Assumption 4.2, we have T ix � x∗ for all i ∈ N. Thus (4.3) holds with
x = x∗. Now the conclusion follows by Theorem 4.1.

The core part of the proof of [2, Theorem 2.1] is to show that {T ix} is
Cauchy, which can in fact be done without Assumptions 3.4 and 4.3. Hence
the corresponding part of [2, Theorem 2.1] is not directly comparable to
Theorem 4.1. The same remark applies to [12, Theorem 2.1]. In [2, 12],
instead of Assumptions 3.4 and 4.3, the recursive structure of (4.8) or (4.9)
is utilized to show that {T ix} is Cauchy and that its limit is a fixed point.
See, e.g., [2, 3, 6, 8, 12, 14] for extensions.
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5 Nonlinear Markov Operators

In this section we consider the case in which T is a self-map on the space of
probability distribution functions on R. Such a map is often called a nonlinear
Markov operator; linear Markov operators are often associated with Markov
chains. Since our approach does not require linearity, we allow T to be
nonlinear. The analysis of this section can be extended to Markov chains on
considerably more general spaces than R along the lines of [7, 9, 10].

Let F be the set of probability distribution functions on R; i.e., each
f ∈ F is an increasing and right-continuous function from R to [0, 1] such
that

lim
x↓−∞

f(x) = 0, (5.1)

lim
x↑∞

f(x) = 1. (5.2)

We define the binary relation � on F by

f � g ⇐⇒ ∀x ∈ R, f(x) ≥ g(x). (5.3)

Note that � is a partial order. This partial order is known as “stochastic
dominance.” We also write f ≥ g if f(x) ≥ g(x) for all x ∈ R. Hence f � g
if and only if f ≥ g.

In what follows we take as given an order-preserving self-map T : F → F .
Let A = R. For f, g ∈ F and a ∈ A, define

d(f, g)(a) = |f(a)− g(a)|. (5.4)

It is easy to see that Assumptions 3.2–3.4 hold under(5.3) and (5.4), and
that d is symmetric and satisfies the triangle inequality.

It is shown in [9, Theorem 3.1] that T is asymptotically contractive if
it is the linear Markov operator on F associated with an “order mixing”
Markov chain. Informally, a Markov chain is order mixing if given any two
independent versions {Xt} and {Yt} of the same chain with different initial
conditions, we have Xt ≤ Yt at least once with probability one. This is a
natural property of various stochastic processes; see [9, 10].

The following result is a restatement of Theorem 3.4.
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Theorem 5.1. T has a globally stable fixed point if and only if T is asymp-
totically contractive and there exist f, f ∗ ∈ F such that

∀i ∈ N, T if � f ∗, (5.5)

f ∗ � Tf ∗. (5.6)

The next result provides a sufficient condition for the existence of f, f ∗ ∈
F satisfying (5.5) and (5.6).

Theorem 5.2. Suppose that T is asymptotically contractive. Suppose further
that there exist f, f ∈ F such that

f � Tf (5.7)

∀i ∈ N, T if � f. (5.8)

Then T has a globally stable fixed point f ∗.

Proof. Let
f ∗ = inf

i∈N
(T if), (5.9)

where the infimum is taken pointwise. By construction, f ∗ satisfies (5.5).
We verify that f ∗ ∈ F , and that (5.6) holds.

To see that f ∗ ∈ F , note that since each fi is increasing, so is f ∗. From
(5.7)–(5.9) it follows that f ≤ f ∗ ≤ f . Thus f ∗(x) ∈ [0, 1] for all x ∈ R;
furthermore, limx↓−∞ f

∗(x) = 0 and limx↑∞ f
∗(x) = 1. That f ∗ is right con-

tinuous or, equivalently, upper semicontinuous (since f ∗ is increasing) follows
from the fact that the pointwise infimum of a family of upper semicontinuous
functions is upper semicontinuous (see [1, p. 43]).

It remains to verify (5.6). Since f ∗ ≤ T if for all i ∈ N, we have Tf ∗ ≤
T i+1 for all i ∈ N. Since this inequality holds pointwise, taking the infimum
of the right-hand side over i ∈ N and recalling that {T if} is increasing with
respect to � (i.e., decreasing with respect to ≤), we obtain Tf ∗ ≤ f ∗; hence
f ∗ � Tf ∗.

One way to ensure the existence of f satisfying (5.8) is by assuming that
{T if} is “tight” (with {T if} viewed as a sequence of probability measures).
In this case, the sequence {T if} has a weak limit, which can be used as an
upper bound on the sequence. This is the approach taken in [10].

Although (5.7) and (5.8) imply that {T if} is tight, Theorem 5.2 does not
follow from [10, Theorem 3.1, Lemma 6.5]. First of all, T is nonlinear here.
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Second, even if T is linear, there may be no Markov chain that induces T .
Third, asymptotic contractiveness is weaker than order mixing. Forth, T is
not assumed to be “bounded in probability” here.

If one assumes that Tf � f in addition to (5.7) and (5.8), then T maps
[f, f ] into itself, where [f, f ] is the set of functions f̃ : R → [0, 1] such that
f � f̃ � f . In this case, the existence of a fixed point can be shown by
applying the Knaster-Tarski fixed point theorem [1, p. 16] to the restriction
of T to [f, f ]. However, since we do not assume that Tf � f here, T need
not be a self-map on [f, f ]. Thus Theorem 5.2 does not follow from the
Knaster-Tarski fixed point theorem.
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