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Abstract

This paper strengthens the Hopenhayn-Prescott stability theorem for mono-
tone economies by extending it to a significantly larger class of models. We
provide general conditions for existence, uniqueness and stability of stationary
distributions. The conditions in our main result are both necessary and suffi-
cient for global stability of monotone economies that satisfy a weak mixing con-
dition introduced in the paper. Through our analysis we develop new insights
on the nature and causes of stability and instability.
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1 Introduction

Hopenhayn and Prescott’s (1992) stability theorem is a standard tool for analysis
of dynamics and stationary equilibria. For example, Huggett (1993) used the the-
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orem to study asset distributions in incomplete-market economies with infinitely-
lived agents.1 The same theorem was applied to variants of Huggett’s model with
features such as habit formation, endogenous labor supply, capital accumulation
and international trade (Dı́az et al., 2003; Joseph and Weitzenblum, 2003; Pijoan-
Mas, 2006; Marcet et al., 2007; Portes, 2009). It was used to study the classical
one-sector optimal growth model by Hopenhayn and Prescott (1992), a stochastic
endogenous growth model by de Hek (1999), and a small open economy by Chat-
terjee and Shukayev (2010). It has been used in a wide range of OLG models with
features such as credit rationing (Aghion and Bolton, 1997; Piketty, 1997), human
capital (Owen and Weil, 1998; Lloyd-Ellis, 2000; Cardak, 2004; Couch and Morand,
2005; Cabrillana, 2009), international trade (Ranjan, 2001; Das, 2006), nonconcave
production (Morand and Reffett, 2007), and occupational choice (Lloyed-Ellis and
Bernhardt, 2000; Antunes and Cavalcanti, 2007; Antunes et al., 2008). Other well-
known applications include variants of Hopenhayn and Rogerson’s (1993) model
of job turnover (Cabrales and Hopenhayn, 1997; Samaniego, 2008) as well as vari-
ants of Hopenhayn’s (1993) model of entry and exit (Cooley and Quadrini, 2001;
Samaniego, 2006).

Although Hopenhayn and Prescott’s theorem has already proved to be impor-
tant, there are important economic models to which it does not apply. A typi-
cal problem is that the theorem requires that the state space be compact and or-
der bounded. This condition is not satisfied if, for example, we are working with
a macroeconomic model where exogenous productivity follows an AR(1) process
with normal (or lognormal) shocks, or with a model of wealth or firm size distribu-
tions where the interest is in whether the right-hand tail follows a power law.

In this paper we show that it is possible to significantly weaken the conditions
of Hopenhayn and Prescott’s theorem. We begin by introducing a mixing condition
called “order reversing” that is weaker than the mixing condition used by Hopen-
hayn and Prescott. We also relax the restriction that the state space be compact and
order bounded. In this setting, we obtain general conditions for monotone, order
reversing processes to attain global stability. The conditions are also necessary, and
hence we are able to fully characterize global stability for monotone economies that
satisfy this very weak mixing condition.

To date, one major difficulty in extending the Hopenhayn-Prescott theorem has
been due to the fact that the proof of the existence of a stochastic steady state uses

1See Kam and Lee (2011) for a recent extension of Huggett’s (1993) analysis.
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the Knaster-Tarski fixed point theorem in the space of distributions on the state.
For non-compact state spaces the Knaster-Tarski theorem cannot be applied, since a
chain in the space of distributions need not have a supremum or an infimum. Our
fixed point argument is new, combining order-theoretic and topological results to
obtain existence of the stochastic steady state. Freeing Hopenhayn and Prescott’s
existence result from the Knaster-Tarski theorem has the obvious benefit of permit-
ting more general state spaces. On a deeper level, it also relaxes a tension that is
present in the original formulation of the stability theorem: On one hand, a compact
state space is needed to apply the Knaster-Tarski theorem, which yields existence
of a stationary distribution. On the other hand, the restriction to compact state
spaces requires that shocks have relatively small supports, which in turn implies
less mixing. Since mixing is associated with uniqueness and stability of stationary
distributions, reduced mixing means that these properties are less likely to hold.2

To put these ideas in a different light, suppose that we have a model with nor-
mal shocks, and hence the state space is unbounded. It is potentially possible to
truncate these shocks, thereby creating a version of the model with a compact state
space. One immediate problem is that we are approximating in an ad hoc manner.
A second problem, alluded to above, is that the stability problem may now be signif-
icantly harder, because we have reduced the amount of mixing in the model. A third
problem is that certain questions become more difficult to address, such as whether
large shocks are stabilizing or destabilizing, or whether the tails are well modeled
by a Pareto distribution. For all of these reasons it may be preferable to work with
the original model. As we show below, this can be done in a natural and convenient
way.

Our results are illustrated in two applications: a model of renewable resource
exploitation and an overlapping generations model with borrowing constraints. In
both applications, we illustrate situations where the conditions of our extended
Hopenhayn-Prescott theorem are satisfied, while those of the theorem in its original
formulation do not hold. In fact no current theory from the literature on Markov
processes can be used to obtain existence of a stationary distribution in these cases.
Our applications also shed some light on the extent to which large shocks are desta-
bilizing. Our results suggest that, provided that the fundamentals of the model act
against divergence, large shocks are not destabilizing. On the contrary, large shocks
generate mixing, and mixing promotes stability.

2For a discussion of the relationship between mixing and stability see Stokey et al. (1989, p. 380).
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Concerning related literature, monotone economic models with the Markov prop-
erty have been studied by Razin and Yahav (1979), Bhattacharya and Lee (1988),
Stokey, Lucas and Prescott (1989), Hopenhayn and Prescott (1992), Bhattacharya
and Majumdar (2001), Bhattacharya et al. (2010) and Szeidl (2012). Hopenhayn and
Prescott (1992) is an extension of the work by Stokey, Lucas and Prescott (1989),
which in turn extends Razin and Yahav (1979). The papers by Bhattacharya and
Lee (1988), Bhattacharya and Majumdar (2001) and Bhattacharya et al. (2010) stud-
ied stability in the monotone setting via a mixing condition called “splitting.” Our
order reversing condition is weaker than splitting. At the same time, the literature
on splitting contains many important results not treated in this paper.

The paper by Szeidl (2012) is also a direct extension of the Hopenhayn-Prescott
stability result for monotone economies. It studies processes that satisfy a certain
“weak mixing” condition. Our order reversing condition is weaker than this weak
mixing condition, and the main stability results in Szeidl’s paper are special cases of
theorems 3.1 and 3.2 below. Nonetheless, Szeidl’s paper contains many interesting
and thoughtful arguments, and his weak mixing condition is a useful way to check
order reversing.

The rest of the paper is structured as follows: Section 2 reviews some basic def-
initions and introduces the concept of order reversing. Section 3 states the main
results and compares them to the original formulation of the Hopenhayn-Prescott
stability theorem. Section 4 gives applications and section 5 concludes.

2 Preliminaries

At each time t = 0, 1, . . . , the state of the economy is described by a point Xt in
topological space S. The space S is equipped with its Borel sets BS and a closed
partial order ≤. An order interval of S is a set of the form [a, b] := {x ∈ S : a ≤
x ≤ b}. A function f : S → R is called increasing if f (x) ≤ f (y) whenever x ≤ y. A
subset B of S is called order bounded if there exists an order interval [a, b] ⊂ S with
B ⊂ [a, b]. In addition, B is called increasing if its indicator function 1B is increasing,
and decreasing if 1B is decreasing.

To simplify terminology, we often use the word “distribution” to mean “prob-
ability measure on (S, BS)”. The set of all probability measures on (S, BS) will be
denote by PS. We let cbS denote the continuous bounded functions from S to R,
and ibS denote the set of increasing bounded measurable functions from S toR. We
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adopt the standard definitions of convergence in distribution and stochastic dom-
ination: Given sequence {µn}∞

n=0 in PS, we say that µn converges to µ and write
µn → µ0 if

∫
h dµn →

∫
h dµ0 for all h ∈ cbS. We say that µ2 stochastically dominates

µ1 and write µ1 � µ2 if
∫

h dµ1 ≤
∫

h dµ2 for all h ∈ ibS.
Following Hopenhayn and Prescott (1992), we assume that S is a normally or-

dered Polish space.3 Hopenhayn and Prescott assume in addition that S is compact,
with least element a and greatest element b.4 Since we wish to include more gen-
eral state spaces such as Rn, we make the weaker assumption that a subset of S is
compact if and only if it is closed and order bounded. This is obviously the case
in Hopenhayn and Prescott’s setting, where all subsets of S are order bounded, and
any closed subset is compact. It also holds for S = R

n with its standard partial order,
since order boundedness is then equivalent to boundedness. In addition, it holds in
common state spaces such asRn

+ orRn
++, or in any set of the form I1× · · ·× In ⊂ Rn,

where each Ii is an open, closed, half-open or half-closed interval in R.5

2.1 Markov Properties

Throughout the paper, we suppose that the model under consideration is time-
homogeneous and Markovian. The dynamics of such a model can be summarized
by a stochastic kernel Q, where Q(x, B) represents the probability that the state
moves from x ∈ S to B ∈ BS in one unit of time. As usual, we require that
Q(x, ·) ∈ PS for each x ∈ S, and that Q(·, B) is measurable for each B ∈ BS.
For each t ∈ N, let Qt be the t-th order kernel, defined by

Q1 := Q, Qt(x, B) :=
∫

Qt−1(y, B)Q(x, dy) (x ∈ S, B ∈ BS).

The value Qt(x, B) represents the probability of transitioning from x to B in t steps.
Here and below, (Ω, F ,P) denotes a fixed probability space on which all ran-

dom variables are defined, andE is the corresponding expectations operator. Given
µ ∈ PS and stochastic kernel Q, an S-valued stochastic process {Xt}t∈Z+ is called

3A Polish space is a separable and completely metrizable topological space. The space (S,≤) is
normally ordered if, given any closed increasing set I and closed decreasing set D with I ∩ D = ∅,
there exists an f in ibS ∩ cbS such that f (x) = 0 for all x ∈ D and f (x) = 1 for all x ∈ I.

4A point a is called a least element of S if a ∈ S and a ≤ x for all x ∈ S. A point b is called a greatest
element of S if b ∈ S and x ≤ b for all x ∈ S.

5A simple example that does not satisfy our assumptions is S = (0, 1) ∪ (2, 3). In this case the
order interval [0.5, 2.5] is closed and order bounded but not compact.
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(Q, µ)-Markov if X0 has distribution µ and Q(x, ·) is the conditional distribution of
Xt+1 given Xt = x.6 If µ is the distribution δx ∈ PS concentrated on x ∈ S, we
call {Xt} (Q, x)-Markov. We call {Xt} Q-Markov if {Xt} is (Q, µ)-Markov for some
µ ∈PS.

Example 2.1. Many economic models result in processes for the state variables rep-
resented by nonlinear, vector-valued stochastic difference equations. As a generic
example, consider the S-valued process

Xt+1 = F(Xt, ξt+1), {ξt}
IID∼ φ, (1)

where {ξt} takes values in Z ⊂ Rm, the function F : S×Z → S is measurable, and φ

is a probability measure on the Borel sets of Z. Let QF be the kernel

QF(x, B) := P{F(x, ξt) ∈ B} = φ{z ∈ Z : F(x, z) ∈ B}. (2)

Then {Xt} in (1) is QF-Markov.7

For each Q we define two operators, sometimes called the left and right Markov
operators. The left Markov operator maps µ ∈PS into µQ ∈PS, where

(µQ)(B) :=
∫

Q(x, B)µ(dx) (B ∈ BS). (3)

The right Markov operator maps bounded measurable function h : S → R into
bounded measurable function Qh, where

(Qh)(x) :=
∫

h(y)Q(x, dy) (x ∈ S).

The interpretation of the left Markov operator µ 7→ µQ is that it shifts the distribu-
tion for the state forward by one time period. In particular, if {Xt} is (Q, µ)-Markov,
then µQt is the distribution of Xt. The interpretation of the right Markov operator
h 7→ Qh is that (Qth)(x) is the expectation of h(Xt) given X0 = x. If QF is the ker-
nel in (2), then (QFh)(x) =

∫
h[F(x, z)]φ(dz). Also, given any x ∈ S, B ∈ BS and

t ∈ N, the t-th order kernel and the left and right Markov operators are related by
Qt(x, B) = (δxQt)(B) = (Qt

1B)(x). Here 1B is the indicator function of B.

6More formally, P[Xt+1 ∈ B |Ft] = Q(Xt, B) almost surely for all B ∈ BS, where Ft is the
σ-algebra generated by the history X0, . . . , Xt.

7Although the process (1) is only first order, models including higher order lags of the state and
shock process can be rewritten in the form of (1) by redefining the state variables.
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A stochastic kernel Q is called bounded in probability if the sequence {Qt(x, ·)}t≥0

is tight for all x ∈ S.8 If µ∗ ∈ PS and µ∗Q = µ∗, then µ∗ is called stationary (or
invariant) for Q. If Q has a unique stationary distribution µ∗ in PS, and, in addition,
µQt → µ∗ as t → ∞ for all µ ∈ PS, then Q is called globally stable. In this case, µ∗

is naturally interpreted as the long-run equilibrium of the economic system. If µ∗

is stationary, then any (Q, µ∗)-Markov process {Xt} is strict-sense stationary with
Xt ∼ µ∗ for all t.

If µ ∈ PS and µQ � µ, then µ is called excessive. If µ � µQ, then µ is called
deficient. If Q satisfies µQ � µ′Q whenever µ � µ′, then Q is called increasing.9

It is in fact sufficient to check that Q(x, ·) � Q(x′, ·) whenever x ≤ x′. A third
equivalent condition is that Qh ∈ ibS whenever h ∈ ibS. If, on the other hand,
Qh ∈ cbS whenever h ∈ cbS, then Q is called Feller.

Remark 2.1. Let Q be an increasing stochastic kernel. If A is an increasing set, then
x 7→ Q(x, A) is increasing. If A is a decreasing set, then x 7→ Q(x, A) is decreasing.

Remark 2.2. If S has a least element a, then δa is deficient for any kernel Q, because
δa � µ for every µ ∈ PS, and hence δa � δaQ. Similarly, if S has a greatest element
b, then δb is excessive for Q.

Remark 2.3. Let F and QF be as in example 2.1. If x 7→ F(x, z) is increasing, then QF
is increasing. If x 7→ F(x, z) is continuous, then QF is Feller.

2.2 Order Reversing

Our next step is to introduce a new order-theoretic mixing condition. We will say
that a stochastic kernel Q is order reversing if, given any x and x′ in S with x′ ≤ x, and
independent Q-Markov processes {Xt} and {X′t} starting at x and x′ respectively,
there exists a t ∈ N with P{Xt ≤ X′t} > 0. In other words, the initial ordering is
reversed at some point in time with positive probability.

8Sequence {µn} ⊂ PS is called tight if, for all ε > 0, there exists a compact K ⊂ S such that
µn(K \ S) ≤ ε for all n.

9Many examples of models with increasing kernels were given in the introduction. Other ex-
amples not discussed there include various infinite horizon optimal growth models with features
such as irreversible investment, renewable resources, distortions, and capital-dependent utility. In-
creasing kernels are also found in stochastic OLG models besides those mentioned previously, such
as models with limited commitment, and in a variety of stochastic games. See, for example, Amir
(2002, 2005), Gong et al. (2010), Balbus et al. (2010), Olson (1989), Olson and Roy (2000), Datta et al.
(2002) and Mirman et al. (2008). For an empirical test of the increasing property, see Lee et al. (2009).
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Two remarks on the definition are as follows: First, in verifying order reversing,
it is clearly sufficient to check the existence of a t with P{Xt ≤ X′t} > 0 for arbi-
trary pair x, x′ ∈ S. Often this is just as easy, and much of the following discussion
proceeds accordingly. Second, it is not entirely clear from the definition given here
that order reversing is a property of Q alone. This fact is clarified in the technical
appendix, where we give an alternative (more formal) definition.

Below we give some examples that illustrate order reversing, and show that for
any increasing kernel Q, order reversing is weaker than the monotone mixing con-
dition (MMC) used in Hopenhayn and Prescott (1992). For increasing kernels, or-
der reversing is also weaker than the splitting condition used by Bhattacharya and
Majumdar (2001), the “weak mixing” condition used by Szeidl (2012), and the “or-
der mixing” condition used by Kamihigashi and Stachurski (2011a). The proofs are
quite straightforward, and details are available from the authors.

Example 2.2. Suppose we are studying a dynamic model of household wealth. In-
formally, the model is order reversing if, for two households receiving idiosyncratic
shocks from the same distribution, the wealth of the first household is less than that
of the second at some point in time with non-zero probability, regardless of initial
wealth for each of the two households.

Example 2.3. Let S be a compact metric space with least element a and greatest
element b, and let Q be an increasing kernel on S. In this setting, Q is said to satisfy
the MMC whenever

∃ x̄ ∈ S and k ∈ N such that Qk(a, [x̄, b]) > 0 and Qk(b, [a, x̄]) > 0. (4)

Under these conditions, Q is order reversing: If we start independent Q-Markov
processes {Xa

t } and {Xb
t } at a and b respectively, then (4) implies the order reversal

Xb
k ≤ Xa

k occurs at time k with positive probability. Since Q is increasing, closer
initial conditions only make this event more likely.10

Example 2.4. Consider the stochastic kernel Q(x, B) = P{ρx + ξt ∈ B} on S = R

associated with the linear Gaussian model

Xt+1 = ρXt + ξt+1, {ξt}
IID∼ N(0, 1). (5)

10To be precise, let x̄ and k be as in (4). Fix x, x′ ∈ S and let {Xt} and {X′t} be independent, (Q, x)-
Markov and (Q, x′)-Markov respectively. By independence and {Xk ≤ x̄ ≤ X′k} ⊂ {Xk ≤ X′k}, we
have P{Xk ≤ x̄}P{x̄ ≤ X′k} = P{Xk ≤ x̄ ≤ X′k} ≤ P{Xk ≤ X′k}. But P{x̄ ≤ X′k} = Qk(x, [a, x̄]) and
P{Xk ≤ x̄} = Qk(x, [x̄, b]) are strictly positive by (4) and remark 2.1. Hence Q is order reversing.
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This kernel does not satisfy the MMC because S = R. On the other hand, it is order
reversing. To see this, fix (x, x′) ∈ R2, and take a second, independent Q-Markov
process X′t+1 = ρX′t + ξ ′t+1 with X′0 = x′, where {ξt} and {ξ ′t} are IID, standard
normal, and independent of each other. We can see that, for any given pair (x, x′) of
initial conditions, P{Xt ≤ X′t} > 0 is satisfied with t = 1, because

P{X1 ≤ X′1} = P{ρx + ξ1 ≤ ρx′ + ξ ′1} = P{ξ1 − ξ ′1 ≤ ρ(x′ − x)}.

Since ξ1 − ξ ′1 is Gaussian, this probability is strictly positive.

3 Results

We can now state our main results, which concern stability of increasing, order re-
versing stochastic kernels.

3.1 Global Stability

Our first result extends Hopenhayn and Prescott’s stability theorem to a broader
class of models. It also characterizes the set of increasing order reversing kernels
that are globally stable. The proof is in section 6.

Theorem 3.1. Let Q be a stochastic kernel that is both increasing and order reversing. Then
Q is globally stable if and only if

1. Q is bounded in probability, and
2. Q has either a deficient or an excessive distribution.

Remark 3.1. In terms of sufficient conditions for global stability, the order reversing
assumption cannot be omitted, even for existence of a stationary distribution. In
particular, there exist increasing kernels that are bounded in probability and possess
an excessive or deficient distribution, but have no stationary distribution.11

11An example is the kernel Q associated with the deterministic process on S = R+ defined by
Xt+1 = 1/2 + ∑∞

n=0 1{n ≤ Xt < n + 1}(n + (Xt − n)/2). It is easy to check that Xt+1 > Xt with
probability one, and hence Xt+1 and Xt can never have the same distribution. On the other hand,
Q is increasing, bounded in probability (because each interval [n, n + 1) is absorbing) and has the
deficient distribution δ0 (cf., remark 2.2).
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To see that the conditions of theorem 3.1 are weaker than those of the original
Hopenhayn-Prescott stability theorem, suppose as they do that S is a compact metric
space with least element a and greatest element b, and Q is an increasing kernel
satisfying the MMC. The conditions of theorem 3.1 then hold. First, Q is increasing
by assumption. Second, Q is order reversing, as shown in example 2.3. Third, Q
is bounded in probability, since S is compact and hence {Qt(x, ·)} is always tight.
Fourth, Q has a deficient distribution because S has a least element (see remark 2.2).

To see that the conditions of theorem 3.1 are strictly weaker than those of Hopen-
hayn and Prescott, consider the linear Gaussian model (5) with ρ ∈ [0, 1). Here the
Gaussian shocks force us to choose the state space S = R, which is not compact, and
the Hopenhayn-Prescott theorem in its original formulation cannot be applied. On
the other hand, all the conditions of theorem 3.1 are satisfied.12 (Of course this is an
extremely simple example. Nontrivial applications are presented in section 4.)

Regarding the proof of theorem 3.1, boundedness in probability and existence
of an excessive or deficient distribution generalize Hopenhayn and Prescott’s as-
sumption that S is compact and has a least and greatest element. As Hopenhayn
and Prescott show, if S is compact and has a least and greatest element, then the
Knaster-Tarski fixed point theorem implies that every increasing stochastic kernel
has a stationary distribution. Adding the MMC then yields uniqueness and global
stability. In our setting, the same fixed point argument cannot be applied. As re-
mark 3.1 shows, our mixing condition plays an essential role in the proof of ex-
istence, and the proof is fundamentally different to the Knaster-Tarski fixed point
argument.

We make two final remarks. First, one of the most attractive features of the
MMC is that it is straightforward to check in applications when it holds. In sec-
tion 3.2.3, we provide conditions for order reversing that are also straightforward to
verify when they hold. Second, there is no continuity requirement in theorem 3.1.
However, in many applications the kernel Q will have the Feller property (see re-
mark 2.3). If Q is Feller, then condition 2 can be omitted. Since this result is likely to
be useful, we state it as a second theorem.

Theorem 3.2. Let Q be increasing, order reversing, and Feller. Then Q is globally stable if
and only if Q is bounded in probability.

12That the model is order reversing was shown in example 2.3. Monotonicity follows from re-
mark 2.3. Boundedness in probability is shown below. For existence of a µ with µ � µQ, we can take
µ = N(0, (1− ρ2)−1).
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3.2 Verifying the Conditions

Theorem 3.1 requires that Q is increasing, order reversing, bounded in probability,
and possesses an excessive or deficient distribution. A sufficient condition for Q
to be increasing was given in remark 2.3. In this section, we present a number of
sufficient conditions for the remaining properties.

3.2.1 Checking Boundedness in Probability

Boundedness in probability is a standard condition in the Markov process literature.
As is well known, if Q is a stochastic kernel on either S = R

n or S = R
n
+, then Q is

bounded in probability whenever suptE ‖Xt‖ < ∞ for any (Q, x)-Markov process
{Xt}. (The norm ‖ · ‖ can be any norm on Rn.) For example, it is easy to show by
this method that the process (5) is bounded in probability whenever |ρ| < 1. More
systematic approaches to establishing boundedness in probability can be found in
Meyn and Tweedie (2009, chapter 12).

3.2.2 Finding Excessive and Deficient Distributions

Condition 2 of theorem 3.1 requires existence of either an excessive or a deficient
distribution. If S has a least element or a greatest element then the condition al-
ways holds (see remark 2.2). However, there are many settings where S has neither
(S = R

n and S = R
n
++ are obvious examples), and the existence is harder to ver-

ify. In this case, one can work more carefully with the definition of the model to
construct excessive and deficient distributions. One example is Zhang (1997), who
constructs such distributions for the stochastic optimal growth model. However,
it is useful to have a more systematic method that is relatively straightforward to
check in different applications. To this end we provide the following result:

Proposition 3.1. Let Q be a stochastic kernel on S. If there exists another kernel Q′ such
that Q′ is Feller, bounded in probability and Q � Q′ (resp., Q′ � Q), then Q has an
excessive (resp., deficient) distribution.13

3.2.3 Checking the Order Reversing Property

In this section we give sufficient conditions for order reversing. To state them, we
introduce two new definitions: We call kernel Q on S upward reaching if, given any

13The statement Q � Q′ means that µQ � µQ′ for all µ ∈PS.
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(Q, x)-Markov process {Xt} and c in S, there exists a t ∈ N such thatP{Xt ≥ c} > 0.
We call Q downward reaching if, given any (Q, x)-Markov process {Xt} and c in S,
there exists a t ∈ N such that P{Xt ≤ c} > 0. For example, the linear Gaussian
process in (5) is both upward and downward reaching: If we fix x, c in S = R and
take t = 1, then P{X1 ≤ c} = P{ρx + ξ1 ≤ c} = P{ξ1 ≤ c − ρx}. This term
is always strictly positive because ξt is Gaussian. Hence Q is downward reaching.
The proof of upward reaching is similar.

Proposition 3.2. Suppose that Q is bounded in probability. If Q is either upward or down-
ward reaching, then Q is order reversing.

It follows that the statements in theorem 3.1 and theorem 3.2 remain valid if
order reversing is replaced by either upward or downward reaching.

4 Applications

We now turn to more substantial applications of the results described above.

4.1 Optimal Exploitation of a Renewable Resource

Consider an elementary model of renewable resource exploitation, where a single
planner maximizesE ∑∞

t=0 βtu(ct) subject to yt+1 = ξt f (yt− ct). Here yt is the stock
of the resource, ct is consumption, all variables are nonnegative and {ξt}

IID∼ φ.
For simplicity, we assume that u is bounded with u′ > 0, u′′ < 0, and u′(0) = ∞.
The growth function f for the resource is assumed to satisfy f (0) = 0, f ′ > 0,
f ′(0) = ∞ and f ′(∞) = 0. Since f is biologically determined, we do not assume
it is concave. To study dynamics, we take yt as the state variable, and consider
the optimal process yt+1 = ξt f (yt − σ(yt)), where σ(·) is an optimal consumption
policy. Let Q be the corresponding stochastic kernel. For the state space we take
S = (0, ∞). Zero is deliberately excluded from S so that any stationary distribution
on S is automatically non-trivial. Regarding the shock process {ξt}, we assume that
arbitrarily bad shocks are possible. In particular, we assume that P{ξt ≤ z} > 0 for
all z ∈ S. We also replace the common assumption that shocks are bounded with
the small tail conditions E ξt < ∞ and E (1/ξt) < ∞.

The dynamics of models similar to the one described above have been studied by
various authors, including Nishimura and Stachurski (2005), Olson and Roy (2006)
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and Mitra and Roy (2006). Here one difficulty is that f is not concave, implying
that the optimal policy is not continuous. As a result, the stochatic kernel Q is not
Feller. Moreover, without additional assumptions, the MMC does not apply, Q is not
irreducible, the splitting condition fails, the model is not an expected contraction,
the state space is unbounded and the standard Harris recurrence conditions are not
satisfied.14 On the other hand, theorem 3.1 can easily be applied. Q is still increasing
and bounded in probability (see, e.g., Nishimura and Stachurski, 2005). Existence
of an excessive distribution is not difficult to establish.15 Moreover, the process is
downward reaching (and hence order reversing, cf., proposition 3.2) because if y0

and ȳ in S are given, then

P{y1 ≤ ȳ} = P{ξ1 f (y0 − σ(y0)) ≤ ȳ} = P{ξ1 ≤ ȳ/ f (y0 − σ(y0))} > 0. (6)

Hence theorem 3.1 applies, and Q is globally stable.
Regarding this argument, it is interesting to note that in order to prove stability

we used order reversing, and to prove order reversing we relied on nonzero prob-
ability of arbitrarily bad shocks. These shocks are stabilizing rather than destabiliz-
ing because the Inada conditions prevent divergence, and the large shocks generate
mixing.

Figure 1 shows a collection of stationary distributions for log yt, each one corre-
sponding to a different value of the discount factor β.16 For this model, a sudden
shift in the optimal harvest policy occurs around β = 0.965. As a result, a very small
difference in the patience of the agent can lead to a large difference in the steady
state population of the stock.

14For a discussion of irreducibility and Harris recurrence, see Meyn and Tweedie (2009). On the
splitting condition, see, e.g., Bhattacharya and Lee (1988), or Bhattacharya and Majumdar (2001).

15Since f ′ > 0 and f ′(∞) = 0, we can choose positive constants α, β with αE ξt < 1 and f (x) ≤
αx + β. Now take G(x, z) := z(αx + β), so that F(x, z) := z f (x − σ(x)) ≤ z f (x) ≤ G(x, z). Letting
QF and QG be the corresponding kernels, the last inequality implies QF � QG. It can be shown that
QG is both bounded in probability and Feller (for details see the working paper version, Kamihigashi
and Stachurski, 2011b), so proposition 3.1 applies.

16The utility function is u(x) = 1− exp(−θxγ) and production is f (x) = xα`(x), where ` is the
logistic function `(x) = a + (b− a)/(1 + exp(−c(x− d))). The parameters are a = 1, b = 2, c = 20,
d = 1, θ = 0.5, γ = 0.9 and α = 0.5. The discount factor β ranges from 0.945 to 0.99. The shock is
lognormal (−0.1, 0.2). For details on the calculations including full justification of consistency, see
the working paper version (Kamihigashi and Stachurski, 2011b).
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Figure 1: Stationary distributions as a function of β

4.2 Wealth Distribution Dynamics: A Two-Dimensional Example

Next we consider an OLG model of wealth distribution. The model can be viewed
as a stochastic version of the small open economy of Matsuyama (2004), but we
introduce persistence in inequality by assuming that an old agent provides finan-
cial support to her child.17 Agents live for two periods, consuming only when old.
Households consist of one old agent and one child. There is a unit mass of such
households indexed by i ∈ [0, 1]. In each period t, the old agent of household i
provides financial support bi

t to her child. The child has the option to become an
entrepreneur, investing one unit of the consumption good in a “project,” and receiv-
ing stochastic output θ + ηi

t+1 in period t + 1. Let ki
t+1 ∈ {0, 1} be young agent i’s

investment in the project. If the remainder bi
t − ki

t+1 is positive, then she invests this
quantity at the world risk-free rate R. If it is negative then she borrows ki

t+1 − bi
t

at the same risk-free rate. Independent of her investment choice, she receives an
endowment of ei

t+1 units of the consumption good when old. Suppressing the i su-
perscript to simplify notation, her wealth at the beginning of period t+ 1 is therefore

wt+1 = (θ + ηt+1)kt+1 − R(kt+1 − bt) + et+1. (7)

17This is a common assumption in the literature on wealth distribution (see, e.g., Antunes and
Cavalcanti, 2007; Antunes et al., 2008; Cardak, 2004; Couch and Morand, 2005; Lloyd-Ellis, 2000;
Lloyd-Ellis and Bernhardt, 2000; Owen and Weil, 1998; Piketty, 1997; and Ranjan, 2001).
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We assume that
et+1 = ρet + εt+1, 0 < ρ < 1. (8)

The idiosyncratic shocks {ηt} and {εt} are taken to be IID and nonnegative, and εt

satisfies P{εt > z} > 0 for any z ≥ 0. (For example, εt might be lognormal.) We
also assume that R < θ, which implies that becoming an entrepreneur is always
profitable, even ex-post, and every agent would choose to do so absent additional
constraint. Due to a credit market imperfection, however, each agent may borrow
only up to a fraction λ ∈ (0, 1) of θ + ρet, the minimum possible value of her old-age
income. That is,

R(kt+1 − bt) ≤ λ(θ + ρet). (9)

As becoming an entrepreneur is always profitable, young agents do so whenever
feasible, implying

kt+1 = κ(bt, et) := 1{R(1− bt) ≤ λ(θ + ρet)}. (10)

(Here 1{·} is an indicator function.) Let ct+1 denote consumption at t + 1. It is
common in the literature on wealth distribution to assume that each agent derives
utility from her own consumption and financial support to her child. Following
this approach, we assume that young agents maximize E t[c

1−γ
t+1 bγ

t+1] subject to (7),
(9), and the budget constraint ct+1 + bt+1 = wt+1. Regarding the parameter γ we
assume that γR < 1. Maximization of c1−γ

t+1 bγ
t+1 subject to the budget constraint

implies that bt+1 = γwt+1. Combining this equality, (7) and (8), we obtain

bt+1 = γ[(θ + ηt+1 − R)κ(bt, et) + Rbt + ρet + εt+1]. (11)

Together, (8) and (11) define a Markov process with state vector Xt := (bt, et) taking
values in state space S := R

2
+. Let Q denote the corresponding stochastic kernel.18

Recalling that R < θ, ρ ∈ (0, 1) and ηt+1 ≥ 0, and observing that κ(bt, et) is
increasing in (bt, et), we can see from (8) and (11) that (bt+1, et+1) is increasing in
(bt, et) when the values of the shocks are held fixed. Hence Q is increasing (cf.,
remark 2.3). On the other hand, (11) is discontinuous in (bt, et), so Q is not Feller.

As far as we are aware, no existing Markov process theory can be used to show
that Q is globally stable unless additional conditions are imposed. In contrast, global
stability can be obtained in a straightforward way from theorem 3.1. To begin, let

18We do not exclude (0, 0) from the state space since it is not an absorbing state.
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mη := E ηt and mε := E εt. To see that Q is bounded in probability, we can take
expectations of (8) and iterate backwards to obtain

E et ≤ mε/(1− ρ) + ρte0 ≤ mε/(1− ρ) + e0 =: e (12)

for all t. In addition, it follows from (11) and (12) that

E bt+1 ≤ γ[θ + mη − R + RE bt + e].

Using γR < 1 and iterating backwards, we obtain the bound

E bt ≤ γ[θ + mη − R + e]/(1− γR) + b0 (13)

for all t. Together, (12) and (13) imply that Q is bounded in probability.19 Since
P{εt > z} > 0 for any z ≥ 0, and since both bt and et can be made arbitrarily large by
choosing εt sufficiently large (see (8) and (11)), it follows that Q is upward reaching,
and thus order reversing by proposition 3.2. In view of these results and theorem 3.1,
Q will be globally stable whenever it has a deficient or excessive distribution. Since
(0, 0) is a least element for S, remark 2.2 implies that Q has a deficient distribution,
and we conclude that Q is globally stable.

Figure 2 shows smoothed histograms representing the marginal stationary dis-
tribution of wealth at two different values of λ, computed by simulation.20 The shift
in the densities shows how the distribution of wealth in the stationary equilibrium
can be highly sensitive to the value of the borrowing constraint parameter λ.

5 Conclusion

The Hopenhayn-Prescott stability theorem has become an important tool for assess-
ing the dynamics of stochastic economic models. This paper significantly extends
their theorem. Our results are necessary and sufficient for global stability of mono-
tone models satisfying a very weak mixing condition. Two applications were dis-
cussed.

19The function V(b, e) = |b|+ |e| is a norm onR2. Equations (12) and (13) yield suptE [V(bt, et)] ≤
suptE [bt] + suptE [et] < ∞, implying boundedness in probability. See section 3.2.1.

20The values of λ are 0.57 and 0.58. The other parameters are γ = 0.2, R = 1.05, θ = 1.1 and ρ = 0.9.
The shock ε is lognormal with parameters µ = −3 and σ = 0.1. The shock η is beta with shape
parameters 3,10. For full details on the calculations, see the working paper version (Kamihigashi
and Stachurski, 2011b).
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Figure 2: Stationary distribution of wealth

6 Technical Appendix

Before proving theorem 3.1, we need some additional results and notation. To begin, let Q
be any stochastic kernel on S, let x ∈ S and let S-valued stochastic process {Xt} be (Q, x)-
Markov. The joint distribution of {Xt} over the sequence space S∞ will be denoted by PQ

x .
For example, PQ

x {Xt ∈ B} = Qt(x, B) for any B ⊂ S, and PQ
x ∪∞

t=0 {Xt ∈ B} is the prob-
ability that the process ever enters B. The symbol EQ

x represents the expectations operator
corresponding to PQ

x . For given kernel Q, we say that Borel set B ⊂ S is

• strongly accessible if PQ
x ∪∞

t=0 {Xt ∈ B} = 1 for all x ∈ S, and
• C-accessible if, for all compact K ⊂ S, there exists an n ∈ Nwith infx∈K Qn(x, B) > 0.

The following lemma is fundamental to our results, although the proofs are delayed to main-
tain continuity.

Lemma 6.1. Let B be a Borel subset of S. If Q is bounded in probability and B is C-accessible, then
B is strongly accessible.

It is helpful to provide a second definition of order reversing. To do so, let

G := graph(≤) := {(y, y′) ∈ S× S : y ≤ y′},
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so that y ≤ y′ iff (y, y′) ∈ G. Also, let Q be a stochastic kernel on S, and consider the product
kernel Q×Q on S× S defined by

(Q×Q)((x, x′), A× B) = Q(x, A)Q(x′, B) (14)

for (x, x′) ∈ S × S and A, B ∈ BS.21 The product kernel represents the stochastic kernel
of the joint process {(Xt, X′t)} when {Xt} and {X′t} are independent Q-Markov processes.
Using this notation, Q is order reversing if and only if

∀ x, x′ ∈ S with x′ ≤ x, ∃ t ∈ N such that (Q×Q)t((x, x′),G) > 0. (15)

This second definition emphasizes the fact that order reversing is a property of the kernel Q
alone (taking S and ≤ as given). Condition (15) can alternatively be written as

∀ x, x′ ∈ S with x′ ≤ x, ∃ t ≥ 0 such that PQ×Q
x,x′ {Xt ≤ X′t} > 0, (16)

where {Xt} and {X′t} are independent of each other and (Q, x)-Markov and (Q, x′)-Markov
respectively. Following Kamihigashi and Stachurski (2011a), Q is called order mixing if
PQ×Q

x,x′ ∪∞
t=0 {Xt ≤ X′t} = 1 for all x, x′ ∈ S. Put differently, Q is order mixing ifG is strongly

accessible for the product kernel Q×Q.

Lemma 6.2. If Q is bounded in probability on S, then so Q×Q on S× S.

Lemma 6.3. If Q is increasing and bounded in probability, then {µQt} is tight for all µ ∈PS.

Lemma 6.4. If Q is increasing and order reversing, thenG is C-accessible for Q×Q.

Proofs are given at the end of this section.
Let us now turn to the proof of theorem 3.1. The proof proceeds as follows: First we

show that under the conditions of the theorem, Q is order mixing. Using order mixing, we
then go on to prove existence of a stationary distribution, and global stability.

Lemma 6.5. If Q is increasing, bounded in probability and order reversing, then Q is order mixing.

Proof. To show that Q is order mixing we need to prove that G is strongly accessible for
Q×Q under the conditions of theorem 3.1. Since Q is bounded in probability, Q×Q is also
bounded in probability (lemma 6.2), and hence, by lemma 6.1, it suffices to show that G is
C-accessible for Q×Q. This follows from lemma 6.4.

21Sets of the form A× B with A, B ∈ BS provide a semi-ring in the product σ-algebra BS⊗BS that
also generates BS ⊗BS. Defining the probability measure Q((x, x′), ·) on this semi-ring uniquely
defines Q((x, x′), ·) on all of BS ⊗BS. See, e.g., Dudley (2002, theorem 3.2.7).
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We now prove global stability, making use of order mixing. In the sequel, we define icbS
to be the bounded, increasing and continuous functions from S to R (i.e., icbS = ibS ∩ cbS).
To simplify notation, we will also use inner product notation to represent integration, so that

〈µ, h〉 :=
∫

h(x)µ(dx) for µ ∈PS and h ∈ ibS ∪ cbS.

It is well known (see, e.g., Stokey et al. 1989, p. 219) that the left and right Markov operators
are adjoint, in the sense that, for any such h and any µ ∈PS, we have 〈µ, Qh〉 = 〈µQ, h〉.

We will make use of the following results, which are proved at the end of this section.

Lemma 6.6. Let µ, µ′, µn ∈PS.

1. µ � µ′ iff 〈µ, h〉 ≤ 〈µ′, h〉 for all h ∈ icbS,
2. µ = µ′ iff 〈µ, h〉 = 〈µ′, h〉 for all h ∈ icbS, and
3. µn → µ iff {µn} is tight and 〈µn, h〉 → 〈µ, h〉 for all h ∈ icbS.

Proof of theorem 3.1. We begin by showing that if Q is globally stable, then conditions 1–2
of the theorem hold. Regarding condition 1, fix x ∈ S. Global stability implies that {µQt}
is convergent for each µ ∈ PS, and hence {Qt(x, ·)} = {δxQt} is convergent. Since con-
vergent sequences are tight (Dudley, 2002, proposition 9.3.4) and x ∈ S was arbitrary, we
conclude that Q is bounded in probability, and condition 1 is satisfied. Condition 2 is trivial,
because global stability implies existence of a stationary distribution, and every stationary
distribution is both deficient and excessive.

Next we show that if Q is increasing, order reversing and conditions 1–2 of theorem 3.1
hold, then Q has at least one stationary distribution. By lemma 6.5, Q is order mixing, and
hence, by Kamihigashi and Stachurski (2011a, theorem 3.1), for any ν and ν′ in PS we have

lim
t→∞
|〈νQt, h〉 − 〈ν′Qt, h〉| = 0, ∀ h ∈ ibS. (17)

By condition 2 of theorem 3.1 there exists a µ ∈ PS that is either excessive or deficient.
In what follows we will assume it is deficient, since the excessive case only changes the
direction of inequalities. Since µ is deficient we have µ � µQ. Since Q is increasing, we can
iterate on this inequality to establish that the sequence {µQt} is monotone increasing in �.
By condition 1 of theorem 3.1 and lemma 6.3, the sequence {µQt} is also tight.

By Prohorov’s theorem (Dudley, 2002, theorem 11.5.4), tightness implies existence of a
subsequence of {µQt} converging to some ψ∗ ∈PS. Since {µQt} is �-increasing, it follows
that, for any given h ∈ icbS, the entire sequence 〈µQt, h〉 converges up to 〈ψ∗, h〉. Because
{µQt} is tight, part 3 of lemma 6.6 implies that µQt → ψ∗.

In addition to µQt → ψ∗, we also have µQt � ψ∗ for all t ≥ 0, because for any h ∈ icbS
and t ≥ 0 we have

〈µQt, h〉 ≤ sup
t≥0
〈µQt, h〉 = lim

t→∞
〈µQt, h〉 = 〈ψ∗, h〉.
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The inequality µQt � ψ∗ now follows from part 1 of lemma 6.6.
Next, we claim that ψ∗ � ψ∗Q. To see this, pick any h ∈ icbS. Since µQt � ψ∗ for all t,

and since Qh ∈ ibS,
〈µQt, Qh〉 ≤ 〈ψ∗, Qh〉 = 〈ψ∗Q, h〉.

Using this inequality and the fact that h ∈ cbS, we obtain

〈ψ∗, h〉 = lim
t→∞
〈µQt+1, h〉 = lim

t→∞
〈µQt, Qh〉 ≤ 〈ψ∗Q, h〉.

Hence 〈ψ∗, h〉 ≤ 〈ψ∗Q, h〉 for all h ∈ icbS, and ψ∗ � ψ∗Q as claimed. Iterating on this
inequality we obtain ψ∗ � ψ∗Qt for all t.

To summarize our results so far, we have µQt � ψ∗ � ψ∗Q � ψ∗Qt for all t ≥ 0, and
hence

〈µQt, h〉 ≤ 〈ψ∗, h〉 ≤ 〈ψ∗Q, h〉 ≤ 〈ψ∗Qt, h〉 for all h ∈ icbS.

Applying (17), we obtain 〈ψ∗, h〉 = 〈ψ∗Q, h〉 for all h ∈ icbS. By lemma 6.6, this implies that
ψ∗ = ψ∗Q. In other words, ψ∗ is stationary for Q.

It remains to show that Q is globally stable. Fixing ν ∈ PS and applying (17) again, we
have

〈νQt, h〉 → 〈ψ∗, h〉, ∀ h ∈ ibS. (18)

Since icbS ⊂ ibS and {νQt} is tight (cf., lemma 6.3), this implies that νQt → ψ∗ (lemma 6.6,
part 3). Finally, uniqueness is also immediate, because if ν is also stationary, then by (18) we
have 〈ν, h〉 = 〈ψ∗, h〉 for all h ∈ icbS. By lemma 6.6, we then have ν = ψ∗.

Proof of theorem 3.2. Under the conditions of the theorem, Q is order mixing, as proved in
lemma 6.5. In addition, boundedness in probability and the Feller property guarantee the
existence of a stationary distribution by the Krylov-Bogolubov theorem (Meyn and Tweedie,
2009, proposition 12.1.3 and lemma D.5.3). Given existence of a stationary distribution ψ∗,
the proof that Q is globally stable is now identical to the proof of the same claim given for
theorem 3.1 (see the preceding paragraph).

Proof of proposition 3.1. Suppose that Q′ is Feller and bounded in probability with Q′ �
Q. By the Krylov-Bogolubov theorem (Meyn and Tweedie, 2009, proposition 12.1.3 and
lemma D.5.3), Q′ has at least one stationary distribution µ. For this µ we have µ = µQ′ �
µQ. In other words, µ is deficient for Q. A similar argument shows that if Q′ is Feller and
bounded in probability with Q � Q′ then Q has an excessive distribution.

Proof of proposition 3.2. Let Q be bounded in probability. Suppose first that Q is upward
reaching. Pick any (x, x′) ∈ S× S. Let {Xt} and {X′t} be independent, (Q, x)-Markov and
(Q, x′)-Markov respectively. We need to prove existence of a k ∈ N such thatP{Xk ≤ X′k} >
0. Since Q is bounded in probability, there exists a compact C ⊂ S with P{Xt ∈ C} > 0 for
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all t ≥ 0. Since compact sets are assumed to be order bounded, we can take an order interval
[a, b] of S with C ⊂ [a, b]. For this a, b we have P{a ≤ Xt ≤ b} > 0 for all t ≥ 0. As Q is
upward reaching, there is a k ∈ N such that P{b ≤ X′k} > 0. Using independence, we now
have

P{Xk ≤ X′k} ≥ P{Xk ≤ b ≤ X′k} = P{Xk ≤ b}P{b ≤ X′k} > 0,

as was to be shown. The proof for the downward reaching case is similar.

Finally, we complete the proof of all remaining lemmas stated in this section.

Proof of lemma 6.1. Let B be a C-accessible subset of S. To prove the lemma, it suffices to
show that PQ

x ∪t {Xt ∈ B} = 1 whenever {Qt(x, ·)} is tight. To this end, fix x ∈ S, and
assume that {Qt(x, ·)} is tight. Let τ := inf{t ≥ 0 : Xt ∈ B}. Evidently we have ∪∞

t=0{Xt ∈
B} = {τ < ∞}. Thus, we need to show that PQ

x {τ < ∞} = 1.
Fix ε > 0. Since {Qt(x, ·)} is tight, there exists a compact set C such that

inf
t

PQ
x {Xt ∈ C} = inf

t
Qt(x, C) ≥ 1− ε.

Since B is C-accessible, there exists an n ∈ N and δ > 0 such that infy∈C Qn(y, B) ≥ δ. For
t ∈ N, define pt := PQ

x {τ ≤ tn}. We wish to obtain a relationship between pt and pt+1. To
this end, note that

1{τ ≤ (t + 1)n} = 1{τ ≤ tn}+ 1{τ > tn}1{τ ≤ (t + 1)n}
≥ 1{τ ≤ tn}+ 1{τ > tn}1{X(t+1)n ∈ B}
≥ 1{τ ≤ tn}+ 1{τ > tn}1{Xtn ∈ C}1{X(t+1)n ∈ B}.

Taking expectations yields

pt+1 ≥ pt + EQ
x 1{τ > tn}1{Xtn ∈ C}1{X(t+1)n ∈ B}.

We estimate the last expectation as follows:

EQ
x 1{τ > tn}1{Xtn ∈ C}1{X(t+1)n ∈ B}

= EQ
x [1{τ > tn}1{Xtn ∈ C}EQ

x [1{X(t+1)n ∈ B}|Ftn]]

= EQ
x [1{τ > tn}1{Xtn ∈ C}Qn(Xtn, B)]

≥ EQ
x 1{τ > tn}1{Xtn ∈ C}δ

= EQ
x (1− 1{τ ≤ tn})1{Xtn ∈ C}δ

= EQ
x 1{Xtn ∈ C}δ− EQ

x 1{τ ≤ tn}1{Xtn ∈ C}δ

≥ (1− ε)δ− EQ
x 1{τ ≤ tn}δ

= (1− ε)δ− ptδ.
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∴ pt+1 ≥ pt + (1− ε)δ− ptδ = (1− δ)pt + (1− ε)δ.

The unique, globally stable fixed point of qt+1 = (1− δ)qt + (1− ε)δ is 1− ε, so 1− ε ≤
limt→∞ pt = PQ

x {τ < ∞} ≤ 1. Since ε was arbitrary, we obtain PQ
x {τ < ∞} = 1.

Proof of lemma 6.2. Fix x, x′ ∈ S and ε > 0. Since Q is bounded in probability, we can choose
compact sets C and C′ such that

Qt(x, C) ≥ (1− ε)1/2 and Qt(x′, C′) ≥ (1− ε)1/2 for all t.

∴ (Q×Q)t((x, x′), C× C′) = Qt(x, C)Qt(x′, C′) ≥ 1− ε for all t.

Since C× C′ is compact in the product space, Q×Q is bounded in probability.

Proof of lemma 6.3. Fix µ ∈ PS and ε > 0. Since individual elements of PS are tight (Dud-
ley, 2002, theorem 11.5.1), we can choose a compact set Cµ ⊂ S with µ(Cµ) ≥ 1 − ε. By
assumption, we can take an order interval [a, b] of S with Cµ ⊂ [a, b]. For this a, b, we have

µ([a, b]c) = µ(S \ [a, b]) ≤ ε. (19)

By hypothesis, {Qt(x, ·)} is tight for all x ∈ S, so we choose compact subsets Ca and Cb of S
with Qt(a, Ca) ≥ 1− ε and Qt(b, Cb) ≥ 1− ε for all t. Since Ca ∪ Cb is also compact, we can
take an order interval [α, β] of S with Ca ∪Cb ⊂ [α, β] ⊂ S. We then have Qt(a, [α, β]) ≥ 1− ε

and Qt(b, [α, β]) ≥ 1− ε for all t. Letting Iα := {x ∈ S : x ≥ α} and Dβ := {x ∈ S : x ≤ β},
this leads to

Qt(a, Iα) ≥ 1− ε and Qt(b, Dβ) ≥ 1− ε for all t. (20)

In view of remark 2.1 and (20), we have

a ≤ x =⇒ Qt(x, Iα) ≥ Qt(a, Iα) ≥ 1− ε,

and, by a similar argument,

x ≤ b =⇒ Qt(x, Dβ) ≥ Qt(b, Dβ) ≥ 1− ε.

Since [α, β] := {x ∈ S : α ≤ x ≤ β} = Iα ∩ Dβ, we have

Qt(x, [α, β]c) = Qt(x, Dc
β ∪ Ic

α) ≤ 2−Qt(x, Dβ)−Qt(x, Iα).

This leads to the estimate

a ≤ x ≤ b =⇒ Qt(x, [α, β]c) ≤ 2ε. (21)
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Combining (19) and (21), we now have

µQt([α, β]c) =
∫

Qt(x, [α, β]c)µ(dx)

=
∫
[a,b]

Qt(x, [α, β]c)µ(dx) +
∫
[a,b]c

Qt(x, [α, β]c)µ(dx)

≤
∫
[a,b]

2ε µ(dx) + µ([α, β]c) ≤ 3ε.

Since [α, β] is compact and t is arbitrary, we conclude that {µQt} is tight.

Proof of lemma 6.4. Let C be any compact subset of S× S. We need to prove existence of an
n ∈ N and δ > 0 such that (Q × Q)n((x, x′),G) ≥ δ whenever (x, x′) ∈ C. To do so, we
introduce the function

ψn(x, x′) := (Q×Q)n((x, x′),G) = PQ×Q
x,x′ {Xn ≤ X′n},

where (Xn, X′n) is (Q×Q, (x, x′))-Markov. Intuitively, since Q is increasing, the event {Xn ≤
X′n} becomes less likely as x rises and x′ falls, and hence ψn(x, x′) is decreasing in x and
increasing in x′ for each n. A routine argument confirms this is the case.

Since C ⊂ S× S is compact, we can take an order interval [a, b] of S with C ⊂ [a, b]×
[a, b].22 Moreover, since Q is order reversing, we can take an n ∈ N such that δ := ψn(b, a) >
0. Observe that

(x, x′) ∈ C =⇒ (x, x′) ∈ [a, b]× [a, b] =⇒ x ≤ b and x′ ≥ a.

∴ (x, x′) ∈ C =⇒ (Q×Q)n((x, x′),G) = ψn(x, x′) ≥ ψn(b, a) = δ.

In other words,G is C-accessible for Q×Q.

Proof of lemma 6.6. The statement µ � µ′ iff 〈µ, h〉 ≤ 〈µ′, h〉 for all h ∈ icbS holds for every
normally ordered space, as shown by Whitt (1980, theorem 2.6). Moreover, since � is a
partial order on PS (Kamae and Krengel, 1978, theorem 2), and hence antisymmetric, it
follows that µ = µ′ iff 〈µ, h〉 = 〈µ′, h〉 for all h ∈ icbS. Regarding the third assertion of the
lemma, observe first that if µn → µ, then since S is Polish the sequence {µn} is tight (Dudley,
2002, theorem 11.5.3). The statement 〈µn, h〉 → 〈µ, h〉 whenever h ∈ icbS is obvious. To
prove the converse, suppose that {µn} is tight and 〈µn, h〉 → 〈µ, h〉 for all h ∈ icbS. Take

22To see this, let K be a compact subset of S with C ⊂ K×K. (Such a K can be obtained by projecting
C onto the first and second axis, and defining K as the union of these projections.) Since K is order
bounded in S by assumption, we just choose a, b ∈ S with K ⊂ [a, b].
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any subsequence {µn}n∈N1 of {µn}. By tightness and Prohorov’s theorem (Dudley, 2002,
theorem 11.5.4), this subsequence has a subsubsequence converging to some ν ∈PS:

∃N2 ⊂ N1 such that lim
n∈N2
〈µn, h〉 = 〈ν, h〉 for all h ∈ cbS.

Since 〈µn, h〉 → 〈µ, h〉 for all h ∈ icbS, we now have limn∈N2〈µn, h〉 = 〈ν, h〉 = 〈µ, h〉 for
all h ∈ icbS, and hence ν = µ. We have now shown that every subsequence of {µn} has a
subsubsequence converging to µ, and hence the entire sequence also converges to µ.
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