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Abstract

Production takes time, and labor supply and profit maximization decisions that
relate to current production are typically made before all shocks affecting that pro-
duction have been realized. In this paper we re-examine the problem of stochastic
optimal growth with aggregate risk where the timing of the model conforms to this
information structure. We provide a set of conditions under which the economy has a
unique, nontrivial and stable stationary distribution. In addition, we verify key opti-
mality properties in the presence of unbounded shocks and rewards, and provide the
sample path laws necessary for consistent estimation and simulation.
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1 Introduction

In their 1983 paper “Real Business Cycles,” John Long and Charles Plosser not only coined
a phrase that every economist would soon come to know, they also helped lay the foun-
dations of a new approach to modeling the business cycle. The particular version of the
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stochastic optimal growth model used by Long and Plosser in their study contains a no-
table feature: Decisions regarding labor input must be made before current production
shocks are realized. Subsequent research has carried on their agenda, but mainly using a
different timing, where those making labor input decisions are permitted to observe the
realized value of all shocks that will affect current production before choosing labor input
(see Stokey and Lucas [30] for an introductory treatment).

In empirical research, however, these production shocks are never directly observable;
they are typically computed as residuals given data on output, capital, and labor. The
now conventional shock-labor-output timing (the second timing discussed above) as-
sumes that decision makers can observe these residuals before making labor input de-
cisions. On the other hand, the labor-shock-output timing adopted by Long and Plosser
is consistent with the view that decision makers have no more information than macroe-
conomists, and can observe (or calculate) the residuals only after observing output. Al-
though the relative suitability of the two approaches will vary across different modeling
applications, it seems hard to deny that the Long-Plossor approach has not received due
attention in the literature.1

In this paper, our aim is to address fundamental aspects of the stochastic optimal growth
model with Long and Plosser’s timing, and provide the underlying results necessary for
further research. We provide a detailed analysis of optimality and dynamics with gen-
eral functional forms. (Long and Plosser’s model specialized to the case of log utility and
Cobb-Douglas production, which results in a linear law of motion for log output. This
case is a useful benchmark, but is limited in the dynamics it is able to represent.) Our first
significant contribution in this paper is to provide conditions under which a nontrivial
stationary distribution for output exists, and for when it is unique and globally stable.
These results are valuable because the dynamics of the stochastic optimal growth model
with elastic labor and general functional forms are still largely unknown, both for the
traditional timing and the timing studied here. This is remarkable, given that the dynam-
ics in the inelastic labor case were established so many years ago [6, 22], that all realistic
applications of this class of models allow labor to be endogenously supplied, and that
almost all estimation and calibration techniques depend at a fundamental level on the
existence of unique, nontrivial stationary solutions.2

1Papers working with the Long-Plossor timing can be found in the literature. For a recent example see
Balbus, Reffett and Woźny [2, p. 8]. What is lacking, however, is a foundational treatment like the one given
in this paper.

2That quantitative applications of the stochastic optimal growth model adopt endogenous labor supply
is not surprising. Not only does endogenous labor supply add realism, it also permits modelers to address
some of the most fundamental questions of macroeconomics. Fluctuations in employment and the co-
movement of output, investment and labor supply are key phenomena of the business cycle. Because the
efficiency of the labor market is a crucial determinant of the efficiency of the whole economy, labor-output
dynamics have important implications for policy makers.

2



We also establish geometric ergodicity of the output process, and laws of large numbers
and central limit theorems for functions of output, investment and labor. These properties
are fundamental to almost all quantitative analysis, and the sample path limit theorems
are essential for simulation and estimation strategies. Finally, as an additional contribu-
tion, we provide weak conditions on the primitives of the model under which the Bellman
equation holds, optimal policies exist and are unique, continuous and (in the case of sav-
ings and consumption) monotone. These conditions permit shocks, utility and the state
space to be unbounded. Our approach to the dynamic programming problem is based on
the use of weighted-supremum norms.

1.1 Related Literature

The stochastic optimal growth model analyzed by Brock and Mirman [6, 7] motivated
many subsequent studies aimed at characterizing optimal investment. See, for example,
Mirman and Zilcha [23], Razin and Yahav [25], Donaldson and Mehra [10], Brock and
Majumdar [5], Stokey et al. [30], Hopenhayn and Prescott [16], Mirman [22], Stachurski
[27], Zhang [31], Nishimura and Stachurski [24], and Kamihigashi [17]. In all of these
papers, labor is assumed to be inelastically supplied.

The joint behavior of capital and labor in stochastic dynamic recursive economies with
market distortions and externalities has been considered in Greenwood and Huffman
[14], Coleman [8], and Datta et al. [9] under a set of conditions related to monotonicity
of the marginal utilities. Most recently, under more general setting, Bosi and Le Van [3],
and Goenka et al. [13] have studied similar problems in deterministic Ramsey models
with and without borrowing constraints, respectively. In these papers, the focus is on the
existence of competitive equilibria, and the problem of stability is largely untreated.

In the dynamic stochastic general equilibrium (DSGE) literature, models usually are ap-
proximated using Taylor expansions or similar techniques (e.g. Kydland and Prescott
[19], Hansen [15], and Galı́ [12, Chapter 2]). With this approach, the co-movements of
capital investment and labor supply around the steady states or balanced growth path
can be studied. However, it is not in general true that stability of the linear approxima-
tion implies stability of the original model (see Stachurski [28]). Furthermore, the higher
order properties that are eliminated may be critical to understanding actual dynamics
(see Durlauf and Quah [11]).

1.2 Structure of the Paper

The rest of the paper is structured as follows. Section 2 sets up the model and studies the
social planner’s problem. Section 3 gives conditions under which a nontrivial stationary
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distribution of output exist. Section 4 presents results on stability and uniqueness, and
on sample path properties such as the law of large numbers and the central limit theory.
Section 5 concludes. All proofs are deferred to the appendices.

2 The Model

In this section we first define the model and solve the social planner’s problem. Below
we let R+ := [0, ∞) and R++ := (0, ∞). For a generic function h, the symbols h′i, h′′i and
h′′ij refer to the first-order, second-order, and cross partial derivatives respectively, with i, j
indexing the arguments.

2.1 Model and Assumptions

We begin with an elementary description of the basic model suitable for optimization by
a social planner. (There are no externalities or distortions in the model, and a discussion
of decentralization can be found in Long and Plosser, 1983.) Final output is denoted
yt, and is treated as a state variable. It is observed at the start of period t and can be
transformed one-for-one into current physical investment kt. Investment and labor `t
are choice variables, selected at the start of time t. A shock zt+1 is then revealed and
production takes place, yielding at the start of next period

yt+1 = zt+1 F(kt, `t). (1)

The convention with subscripts is that a time t subscript indicates that the variable lies
in the time t information set and not the t − 1 information set. In particular, zt+1 is not
previsible at t. The function F represents the common production technology, and the
shock zt+1 is aggregate. The value yt+1 that we refer to as “output” is more correctly
thought of as the sum of current output and capital net of depreciation.3

Assumption 2.1. The shocks {zt} follow the Markov process on R+ given by

zt+1 = ψ(zt, et+1), {et}
IID∼ µ, t = 0, 1, . . . (2)

The IID sequence {et} is defined on a probability space (Ω, F ,P) and takes values in a
measurable space (E, E ) with common distribution µ. The function ψ : R+ × E → R+ is
jointly measurable, and z 7→ ψ(z, e) is continuous and increasing on R+ for each e ∈ E.

3To be more explicit, we could take F(k, `) := Fc(k, `) + (1− δ)k, where Fc(k, `) is current output and δ
parametrizes depreciation. It is easy to verify that if Fc satisfies the conditions of our assumptions below
then so does F.
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We take Π to be the associated stochastic kernel (i.e., transition probability function),
so that, in particular, Π(z, B) = P{ψ(z, et+1) ∈ B} for all z ∈ R+ and Borel subsets
B of R+. (Some authors prefer to take the stochastic kernel Π as the primitive. The
two approaches are equivalent, in the sense that every stochastic kernel on a completely
metrizable topological space can be represented in the form of (2) given suitable choice of
ψ, Ω, F and P. See, for example, Bhattacharya and Majumdar [4, proposition C1.1].)

Assumption 2.2. The production function F is homogeneous of degree one, increasing
and concave on R2

+. On R2
++, it is twice differentiable, strictly positive, and satisfies

1. F′i (k, `) > 0, F′′ij (k, `) ≥ 0, and F′′i (k, `) < 0 for i, j = 1, 2.
2. limk→0 F′1(k, `) = lim`→0 F′2(k, `) = ∞.

These assumptions are standard. For example, they are satisfied when

F(k, `) = A(αkγ + β`γ)1/γ, A, α, β > 0, γ ∈ (0, 1) (3)

or
F(k, `) = Akα`1−α, A > 0, α ∈ (0, 1). (4)

Assumption 2.3. The period utility function U : R2
+ → R+ is additively separable, strictly

increasing and concave. In particular, we assume that U(x, y) := u(x) + v(y) with the
standard restrictions h(0) = 0, h′ > 0, h′′ < 0 and limx→0 h′(x) = ∞ for h ∈ {u, v}.

2.2 Optimality

The social planner maximizes the expected discounted sum E ∑∞
t=0 βtU(ct, 1− `t), where

β ∈ (0, 1) is the discount factor. Let Γ(y) := [0, y]× [0, 1]. A Borel measurable function

σ : R2
+ 3 (y, z) 7→ σ(y, z) := (k(y, z), `(y, z)) ∈ R+ × [0, 1]

is called a feasible policy if σ(y, z) ∈ Γ(y) for all (y, z) ∈ R2
+. Let the set of all feasible

policies be denoted by Σ. The value Vσ(y, z) of a feasible policy σ(y, z) = (k(y, z), `(y, z))
is defined as the expected discounted value of following σ. That is,

Vσ(y, z) := E

{
∞

∑
t=0

βtU(yt − k(yt, zt), 1− `(yt, zt))

}
((y, z) ∈ R2

+) (5)

where yt+1 = zt+1F[k(yt, zt), `(yt, zt)] and (y0, z0) = (y, z). To ensure that the optimiza-
tion problem is well defined, we require a restriction over the set of primitives that en-
sures the value Vσ(y, z) is finite and bounded over σ ∈ Σ. To impose such a restriction,
we bound the value of the maximal output process

ŷt+1 = zt+1F(ŷt, 1), (ŷ0, z0) = (y, z) ∈ R2
+. (6)
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Assumption 2.4. ∃ δ ∈ (β, 1) with m(y, z) := E ∑∞
t=0 δtu(ŷt) < ∞ for all (y, z) ∈ R2

+.4

The value function V is defined by V(y, z) = supσ∈Σ Vσ(y, z) for all (y, z). A feasible
policy σ is called optimal if Vσ = V. If σ(y, z) = (k(y, z), `(y, z)) is optimal, then the
corresponding optimal consumption is defined as c(y, z) := y− k(y, z). The optimal repro-
duction function is defined as g = F ◦ σ. That is,

g(y, z) := F[k(y, z), `(y, z)] := F(σ(y, z)).

Let w be the function defined by w(y, z) := m(y, z) + v(1) + 1, where m is the function
defined in assumption 2.4 and v is the utility of leisure (see assumption 2.3). Letting ‖ · ‖∞
be the usual supremum norm, a real-valued function h on R2

+ is called w-bounded if the
weighted supremum norm ‖h‖w := ‖h/w‖∞ is finite. Let W be the set of continuous
w-bounded functions on R2

+.

Theorem 2.1. If assumptions 2.1–2.4 hold, then the following statements are true.

1. The value function is finite, continuous and w-bounded. It is the unique function in W
satisfying the Bellman equation

V(y, z) = max
k,`∈Γ(y)

{
U(y− k, 1− `) + β

∫
V[z′F(k, `), z′]Π(z, dz′)

}
. (7)

2. A unique optimal policy σ(y, z) = (k(y, z), `(y, z)) exists. For each (y, z) ∈ R2
+, it satisfies

σ(y, z) = arg max
(k,`)∈Γ(y)

{
U(y− k, 1− `) + β

∫
V[z′F(k, `), z′]Π(z, dz′)

}
. (8)

3. V is strictly concave, strictly increasing and differentiable in its first argument. When
y, z > 0 we have V′1(y, z) = u′ ◦ c(y, z) := u′(c(y, z)).

4. For each z > 0, the optimal policy (k(·, z), `(·, z)) is continuous and interior, and k(·, z),
c(·, z) and g(·, z) are all monotone increasing.

5. If y, z > 0, then the optimal policies satisfy

u′ ◦ c(y, z) = β
∫

u′ ◦ c[z′g(y, z), z′]z′F′1(σ(y, z))Π(z, dz′) (9)

v′(1− `(y, z)) = β
∫

u′ ◦ c[z′g(y, z), z′]z′F′2(σ(y, z))Π(z, dz′). (10)

Proof. See appendix A.

4If, in addition to our other assumptions, u′(c) → 0 as c → ∞, then there exists a K < ∞ such that
u(y) ≤ y + K for all y, and finiteness of ∑t δt

E ŷt is sufficient for assumption 2.4.
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3 Existence of Stationary Distributions

In this section we study the existence of nontrivial stationary distributions for the optimal
output process, where nontrivial means that probability mass is not concentrated on zero.
In all of what follows, the term distribution will be synonymous with “Borel probability
measure.” When studying existence and stability, we will restrict attention to the case of
IID shocks:

Assumption 3.1. The shocks {zt} are IID with common distribution µ. The distribution µ

satisfies µ(R++) = 1,
∫

zµ(dz) < ∞ and
∫
(1/z)µ(dz) < ∞.

The assumptions
∫

zµ(dz) < ∞ and
∫
(1/z)ν(dz) < ∞ ensure that the right and left hand

tails of µ are not excessively large. They are satisfied if, for example, µ is the lognormal
density. When assumption 3.1 holds and the shocks are IID, the stochastic kernel Π(z, dz′)
is equal to µ(dz′). It is then immediate from the Bellman equation (7) that the value func-
tion V(y, z) is constant in z. Likewise, it is immediate from (8) that the optimal policies
are also constant in z, and hence the optimal reproduction function g is constant in z. In
all of what follows, when treating the IID case, we will simplify notation by omitting this
constant second argument. Hence V(y, z) is written as V(y) and treated as a function on
R+, and likewise for σ, k, `, c and g.

Once an initial level of output y0 is given, the optimal investment-labor policy determines
the optimal output process {yt} via the stochastic recursion

yt+1 = zt+1F[k(yt), `(yt)] = zt+1g(yt) t = 0, 1, . . . (11)

The dynamics from y0 = 0 are degenerate and trivial. On the other hand, since policies are
interior, if yt is strictly positive, then both k(yt) and `(yt) are strictly positive. Moreover,
F(k, `) is assumed to be strictly positive whenever k, ` > 0, and the distribution µ is
concentrated on R++. It follows that yt+1 ∈ R++ with probability one. As a result, in
all of our stability analysis we shall restrict the state space to R++. One benefit of this
approach is that any stationary distribution we obtain is automatically nontrivial.

A distribution π on R++ is called stationary for the process (11) if yt+1 has distribution π

whenever yt has distribution π. More formally, π is stationary for (11) if∫
h(y)π(dy) =

∫ [∫
h[zg(y)]µ(dz)

]
π(dy) (12)

for all bounded Borel measurable h : R++ → R. Note that if π is stationary and yt has
distribution π at some time t, then the process from t on is strict sense stationary, with
common marginal distribution π. In the current setting, existence of a stationary distri-
bution is a nontrivial problem. The main part of the proof involves showing that optimal
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output does not diverge to infinity or collapse to zero. Establishing these properties re-
quires additional assumptions on β, µ and F. We will require that one of the following
two assumptions holds.

Assumption 3.2. Together, β, F and µ satisfy∫ 1
z

µ(dz) < β lim
k→0

F′1(k, 0) and lim
k→∞

F(k, 1)
k

∫
zµ(dz) < 1. (13)

For example, the CES production function in (3) satisfies the restrictions in (13) whenever
E (1/zt) < (βAα1/γ)/γ and Aα1/γ

E zt < 1. The first inequality in (13) implies sufficient
labor and investment to prevent yt converging to zero. It states that the probability of bad
shocks is small relative to the patience of the agent and marginal productivity of capital
near zero. The second bound prevents yt from diverging to infinity.

Assumption 3.3. The function F satisfies

F(k, 0) = F(0, `) = lim
k→∞

F′2(k, `) = lim
`→∞

F′2(k, `) = 0 for all (k, `) ∈ R2
+. (14)

For example, the Cobb-Douglas production function in (4) satisfies (14).

Theorem 3.1. If assumptions 2.2–2.4 and 3.1 all hold, and at least one of assumptions 3.2 and
3.3 holds, then then the optimal output process has at least one nontrivial stationary distribution.

Proof. See appendix B.

4 Stability and Ergodicity

Existence of a stationary distribution is necessary for the model to have a stationary equi-
librium that can be tested against data. However, such an equilibrium cannot be consid-
ered as a prediction of the model unless it is stable, and preferably unique. Here unique-
ness means that no more than one distribution on R++ satisfies (12), and stability means
that there exists a unique stationary distribution π, and, moreover, the distribution of yt
converges to π weakly as t→ ∞, irrespective of the initial condition y0 ∈ R++.5

The conditions of theorem 3.1 are not sufficient for uniqueness and stability of the station-
ary distribution. In this section we look at providing weak conditions for uniqueness and
stability. Uniqueness and stability cannot be obtained without sufficient mixing in the

5Recall that a sequence of distributions {πn} on R++ converges weakly to π if
∫

hdπn converges to∫
hdπ for every continuous bounded h : R++ → R.
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stochastic process {yt}.6 One approach to mixing is via irreducibility, but this approach
requires relatively strict conditions on the distribution of the shock that are not in fact
necessary for uniqueness and stability (see section 4 for more discussion). Instead we im-
pose the following assumption on µ, which states that arbitrarily low productivity shocks
are possible (although the probability can be extremely small).

Assumption 4.1. If a ∈ R++, then P{zt ≤ a} > 0.

From an econometric and computational perspective, another desirable property of the
optimal output process is that the law of large numbers is valid, in the sense that time
series averages converge to the corresponding expectations under the stationary distri-
bution: For h : R++ → R,

1
n

n

∑
t=1

h(yt)
a.s.→

∫
h dπ (n→ ∞), (15)

where a.s.→ means almost sure convergence.7 Many results on laws of large numbers re-
quire that the process {yt} in (15) is either weak or strict sense stationary, which in the
Markov setting translates to the requirement that the first element y1 is drawn from a
stationary distribution. Such a result is much less useful, since it cannot in general be
used for simulation-based computations (because we have no way of drawing from the
unknown stationary distribution). The following theorem provides uniqueness, stability
and a law of large numbers where the initial condition can be arbitrary.

Theorem 4.1. Assume the conditions of theorem 3.1. Let {yt} be the optimal output process, with
arbitrary initial condition y0 ∈ R++. If assumption 4.1 also holds, then

1. the stationary distribution π is unique,
2. the distribution of yt converges weakly to π as t→ ∞, and
3. the convergence in (15) is valid whenever h is bounded and either continuous or monotone.

Proof. See appendix C.

While theorem 4.1 is a useful result, there are several ways in which it can be strength-
ened. First, the stability result in theorem 4.1 is defined in terms of weak convergence,
which is a weaker and less quantitative measure of divergence than, say, total variation
convergence (see below). Second, the theorem provides no information on the rate of

6For intuition, see, for example, Stokey et al. [30, p. 380].
7As usual, we say that a sequence of random variables {Xn} converges to a random variable X almost

surely if the scalar convergence Xn(ω)→ X(ω) holds on the complement of a P-null set.
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convergence. Third, the law of large numbers holds only for a limited class of functions.
Fourth, a central limit theorem is lacking. The last two properties are particularly impor-
tant for estimation and simulation-based analysis. In order to address these limitations,
we now consider stronger assumptions:

Assumption 4.2. The distribution µ is absolutely continuous with respect to Lebesgue
measure, and its density is strictly positive and continuous on R++. In addition, the
moment E (zp) is finite for some p ≥ 2, and, moreover,

lim
k→∞

[
F(k, 1)

k

]p ∫
zpµ(dz) < 1. (16)

For example, the lognormal distribution satisfies assumption 4.2 for all p ∈ N.

Recall that the total variation distance between two distributions φ and φ′ is defined as ‖φ−
φ′‖TV := supB |φ(B) − φ′(B)|, where the supremum is over all Borel sets. The optimal
output process {yt} is said to be geometrically ergodic if, in addition to the existence of
a unique stationary distribution π, there exists an α ∈ [0, 1) such that, for any initial
condition y0, the total variation distance between the distribution of yt and π is O(αt).8

We can now present the following result, which gives both a stronger convergence result
than theorem 4.1 and a rate of convergence. The proof is in appendix D.

Theorem 4.2. Assume the conditions of theorem 3.1. If assumption 4.2 also holds, then {yt} is
geometrically ergodic.

An initial sample path result was presented in theorem 4.1. With the current assumptions
we can obtain stronger results. To simplify the presentation in what follows, we introduce
some additional notation. If h : R++ → R is such that

∫
hdπ exists, then we define the

asymptotic variance

γ2
h := lim

n→∞

1
n
E π

{
n

∑
t=1

[
h(yt)−

∫
hdπ

]}2

,

where E π denotes the conditional expectation given y0 ∼ π.

Theorem 4.3. Let {yt} be the optimal output process starting from arbitrary y0 ∈ R++, and let
h be any measurable real-valued function defined on R++. If the conditions of theorem 4.2 hold,

8In other words, if πt is the distribution of yt when y0 = y, then ‖πt−π‖TV ≤ αt M(y) for some function
M that is everywhere finite onR++.
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then γ2
h is finite and the following implications are true:

|h(y)| ≤ yp =⇒ lim
n→∞

1
n

n

∑
t=1

h(yt) =
∫

hdπ a.s. (17)

h(y)2 ≤ yp and γ2
h = 0 =⇒ lim

n→∞

1√
n

n

∑
t=1

h(yt) = 0 a.s. (18)

h(y)2 ≤ yp and γ2
h > 0 =⇒ 1√

n

n

∑
t=1

[
h(yt)−

∫
hdπ

]
d→ N(0, γ2

h). (19)

Proof. See appendix D.

An immediate consequence of theorem 4.3 is that all moments of the optimal output pro-
cess up to order p satisfy the law of large numbers, while all moments up to order q satisfy
the central limit theorem, where q is the largest integer such that 2q ≤ p. Moreover, since
0 < k(y)p < yp, 0 < c(y)p < yp and 0 < `(y)p < 1, the investment, consumption and
labor processes also satisfy the limit theorems.

5 Concluding Remarks

In this paper we addressed foundational aspects of the stochastic optimal growth model
with Long and Plosser’s (1983) timing. We provided conditions under which a nontrivial
stationary distribution for output exists, and for when it is unique and globally stable. We
showed how geometric ergodicity of the output process, laws of large numbers and cen-
tral limit theorems can be obtained for functions of output, investment and labor. These
amount to the first set of detailed stability results for a stochastic optimal growth model
with elastic labor supply. In addition, we used a weighted supremum norm approach
to provide weak conditions on the primitives of the model under which the Bellman
equation holds, optimal policies exist and are unique, continuous and, in some cases,
monotone. These conditions allow shocks, utility and the state space to be unbounded.

Appendix

Before commencing proofs we collect all notation that will be used in the remainder of
the paper. First, for given function h, the subscript + and superscript − denote the lower
right and upper left partial derivatives, respectively. For any partially ordered topologi-
cal space T, the symbol B(T) always denotes the Borel σ-algebra of subsets of T, while
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P(T) is the set of distributions (i.e., Borel probability measures) on T. In addition, we let
C(T) be the set of all bounded continuous functions from T to R, M(T) be the set of all
bounded, measurable functions from T toR, and iM(T) be increasing functions in M(T).

A stochastic kernel P on T is function from T to P(T) such that x 7→ P(x, B) is Borel
measurable for each B ∈ B(T).9 The value P(x, B) represents the probability of output
transitioning from current state x into set B in one unit of time. Given a stochastic kernel
P, we define two linear operators. The first is the so-called left Markov operator, which
maps P(T) into itself via

(φP)(B) =
∫

P(x, B)φ(dx) (φ ∈P(T), B ∈ B(T)).

The second is the so-called right Markov operator, which maps M(T) into itself via

(Ph)(x) =
∫

h(y)P(x, dy) (h ∈ M(T), x ∈ T).

For the right Markov operator, every constant function on T is a fixed point. (We will
also use the notation (Ph)(x) =

∫
h(y)P(x, dy) for unbounded nonnegative h, but with

the understanding that the integral in this expression may not be finite-valued.) The
interpretation of the t-th iterate (Pth)(x) is the expectation of h(Xt) given that X0 = x
and the process {Xt} updates by P. The interpretation of (φPt)(B) is the probability
that Xt ∈ B given that X0 has distribution φ. Following standard usage we typically
write Pt(x, B) for (δxPt)(B), where δx is the probability measure concentrated on x. This
expression gives the probability of the state moving from x now into set B in t steps.

P is said to have the Feller property if Ph ∈ C(T) whenever h ∈ C(T), and increasing if
Ph ∈ iM(T) whenever h ∈ iM(T). A distribution π ∈ P(T) is called stationary for P
iff π = πP. A stochastic kernel P is called globally stable if there exists one and only one
stationary distribution π in B(T), and, moreover, the sequence {φPt}t≥0 converges to π

in distribution as t → ∞ for any φ ∈ P(T). Letting ≤ be the partial order on T, we say
that P is downward reaching [18] if, for each a ∈ T and x ∈ T, there exists a t ∈ N with
Pt(x, {y ∈ T : y ≤ a}) > 0. In other words, given any initial state x and any other point a
in the state space, the process falls below a at some point in time with positive probability.

A sequence of distributions {φn} in P(T) is called tight if, for all ε > 0, there exists
a compact set K ⊂ T such that supn∈N φn(T \ K) ≤ ε. A stochastic kernel P is called
bounded in probability if {δxPt}t≥0 is tight for every x ∈ T. A nonnegative measurable
function W on T is called coercive if there exists an increasing sequence of compact sets
{Cn} such that T = ∪nCn and limn→∞ infy/∈Cn W(y) = ∞. When T = R++, coerciveness
of W is equivalent to

lim
y→0

W(y) = lim
y→∞

W(y) = ∞. (20)

9See Meyn and Tweedie [21] for more discussion on stochastic kernels and Markov processes.
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Let φ ∈P . A stochastic kernel P on T is called φ-irreducible if, for all x ∈ T and B ∈ B(T)
with φ(B) > 0, there exists a t with Pt(x, B) > 0. A set C ∈ B(T) is called a C -set for P if
there exists a non-trivial measure φ on B(T) such that

x ∈ C =⇒ {P(x, B) ≥ φ(B), ∀B ∈ B(T)} . (21)

P is called strongly aperiodic if (21) holds for some C ∈ B(T) with positive φ-measure.
Letting {Xt} be a Markov chain with stochastic kernel P, a set A is called Harris recurrent
if P{Xt ∈ A infinitely often} = 1 whenever X0 ∈ A. P is called Harris recurrent if it is
φ-irreducible for some φ ∈P , and every set with positive φ-measure is Harris recurrent.
P is called positive Harris recurrent if it is Harris recurrent and has a stationary distribution.

Appendix A: Proof of Theorem 2.1

Throughout this section, we maintain assumptions 2.1–2.4. The weight function w, the
function space W and the norm ‖ · ‖w are as defined in section 2.2. The maximal output
process {ŷt} is as given in (6). We let R be the corresponding Markov operator on R2

+.
That is, given integrable h : R2

+ → R,

(Rh)(y, z) =
∫

h[z′F(y, 1), z′]Π(z, dz′) (y, z) ∈ R2
+.

Lemma A-1. The weight function w is finite, continuous and increasing on R2
+.

Proof. Recall that w(y, z) = m(y, z) + v(1) + 1, and m(y, z) is finite by assumption 2.4.
Hence it remains only to check that m is continuous and increasing. Abusing notation
slightly we let u(y, z) := u(y), in which case m can be expressed using the Markov oper-
ator R as

m(y, z) =
∞

∑
t=0

δt(Rtu)(y, z) (y, z) ∈ R2
+.

It follows from assumptions 2.1 and 2.2 that R is increasing, and, since u is itself increas-
ing, Rtu is increasing for all t. Hence m is increasing.

Regarding continuity, it also follows from assumptions 2.1 and 2.2 that R is Feller, and,
since u is continuous, Rtu is continuous for all t. Hence the partial sum ∑k

t=0 δt(Rtu) is
continuous for all k. Continuity of the infinite sum m can be justified via the dominated
convergence theorem in a straightforward way.10

10Take (yn, zn) → (y, z) ∈ R2
+. Let ȳ := supn yn and z̄ := supn zn. Let an(t) := δt(Rtu)(yn, zn), a(t) :=

δt(Rtu)(y, z) and ā(t) := δt(Rtu)(ȳ, z̄). By continuity of Rtu we have an(t) → a(t) for all t. Moreover,
an(t) ≤ ā(t) for all t by monotonicity of Rtu, and ∑t āt = m(ȳ, z̄) < ∞. Hence the dominated convergence
theorem applies, and ∑t an(t)→ ∑t a(t) as n→ ∞. That is, m(yn, zn)→ m(y, z), and m is continuous.
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Proposition A-1. The value function is finite, continuous and w-bounded. It is the unique func-
tion in W satisfying the Bellman equation (7).

Proof. To verify the statement in proposition A-1, it suffices to check the conditions of
theorem 12.2.22 of Stachurski (2009). The only nontrivial condition in our setting is to
show that for the weight function w = m + v(1) + 1 we have

1. supk,`∈Γ(y) U(y− k, 1− `) ≤ w(y, z) for all (y, z) ∈ R2
+.

2. There exists a ρ < 1/β such that

sup
k,`∈Γ(y)

∫
w[z′F(k, `), z′]Π(z, dz′) ≤ ρw(y, z) for all (y, z) ∈ R2

+.

3. The function (y, z, k, `) 7→
∫

w[z′F(k, `), z′]Π(z, dz′) is continuous on the set of feasi-
ble state-action pairs.

Part 1 is trivial, because supk,`∈Γ(y) U(y − k, 1 − `) = u(y) + v(1) ≤ m(y, z) + v(1) ≤
w(y, z). Regarding part 2, observe that

sup
k,`∈Γ(y)

∫
w[z′F(k, `), z′]Π(z, dz′) =

∫
w[z′F(y, 1), z′]Π(z, dz′) = Rw(y, z).

and that

Rm = R
∞

∑
t=0

δtRtu =
∞

∑
t=0

δtRt+1u =
1
δ

∞

∑
t=0

δt+1Rt+1u ≤ 1
δ

m.

As a consequence, we have

Rw = R(m + v(1) + 1) = Rm + v(1) + 1 ≤ 1
δ

m + v(1) + 1 ≤ 1
δ
(m + v(1) + 1) =

1
δ

w.

Combining these inequalities shows that part 2 is valid with ρ := 1/δ.11

Regarding part 3, take arbitrary sequence of feasible state-action pairs (yn, zn, kn, `n) con-
verging to (y, z, k, `) as n → ∞. By continuity of w (lemma A-1) and the primitives F and
ψ, we have

w[ψ(zn, e)F(kn, `n), ψ(zn, e)]→ w[ψ(z, e)F(k, `), ψ(z, e)] (n→ ∞).

To extend this to convergence of the integrals (and hence verify part 3), we need only
show that w[ψ(zn, e)F(kn, `n), ψ(zn, e)] is dominated by an µ-integrable function of e. In
view of the fact that w, F and z 7→ ψ(z, e) are all increasing, a suitable dominating function
is given by D(e) := w[ψ(z̄, e)F(ȳ, 1), ψ(z̄, e)] where ȳ := supn yn and z̄ := supn zn. The
function D is integrable because

∫
D(e)µ(de) = (Rw)(ȳ, z̄). As proved in part 2, the last

term is dominated by (1/δ)w(ȳ, z̄), which is finite.
11Recall from assumption 2.4 that β < δ. Hence ρ = 1/δ < 1/β as required.
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Proposition A-2. V is strictly increasing in its first argument.

Proof. Let Ci(R
2
+) be the set of all functions in C(R2

+) that are increasing in their first
argument, and let C′i(R

2
+) be the set of all functions in C(R2

+) that are strictly increasing
in their first argument. It is not difficult to see that Ci(R

2
+) is closed in C(R2

+). Choose
any v ∈ Ci(R

2
+). Fix z ∈ R++. Choose y1 < y2. By definition

(Tv)(y1, z) = max
(k,`)∈Γ(y1)

{
U(y1 − k, 1− `) + β

∫
v[z′F(k, `), z′]Π(z, dz′)

}
. (A-1)

Let (k1, `1) denote the solution to the right-hand-side of (A-1). Since Γ(y1) ⊂ Γ(y2) we
have

(Tv)(y1, z) =
{

U(y1 − k1, 1− `1) + β
∫

v[z′F(k1, `1), z′]Π(z, dz′)
}

<

{
U(y2 − k1, 1− `1) + β

∫
v[z′F(k1, `1), z′]Π(z, dz′)

}
≤ max

(k,`)∈Γ(y2)

{
U(y2 − k, 1− `) + β

∫
v[z′F(k, `), z′]Π(z, dz′)

}
.

The last term is just (Tv)(y2, z). Hence T : Ci(R
2
+) → C′i(R

2
+) ⊂ Ci(R

2
+). It now follows

[30, corollary 1, chapter 3] that T has a unique fixed point v in Ci(R
2
+). Moreover, since

T : Ci(R
2
+)→ C′i(R

2
+), we conclude that V = TV ∈ C′i(R

2
+).

Proposition A-3. V is strictly concave in its first argument. For each z, the optimal investment
and labor policies k(·, z) and `(·, z)) are single-valued and continuous.

Proof. Let Cic(R
2
+) be the set of all functions in C(R2

+) that are increasing and concave in
their first argument, and let C′ic(R

2
+) be the set of all functions in C(R2

+) that are increasing
and strictly concave in their first argument. It is not difficult to see that Cic(R

2
+) is closed

in C(R2
+). We now show that T : Cic(R

2
+)→ C′ic(R

2
+).

To see this, fix z. Choose y1 6= y2, and let (k1, `1) and (k2, `2) be the corresponding optimal
policies. For any θ ∈ (0, 1), let yθ := θy1 + (1− θ)y2, kθ := θk1 + (1− θ)k2 and `θ :=
θ`1 + (1− θ)`2. Fix any v ∈ Cic(R

2
+). Since Γ is convex, (kθ, `θ) ∈ Γ(yθ), and thus

(Tv)(yθ, z) ≥ U(yθ − kθ, 1− `θ) + β
∫

v[z′F(kθ, `θ), z′]Π(z, dz′).

By strict concavity of U,

U(yθ − kθ, 1− `θ) > θU(y1 − k1, 1− `1) + (1− θ)U(y2 − k2, 1− `2).

15



By concavity and monotonicity of v plus concavity of (k, `) 7→ F(k, `), we have∫
v[z′F(kθ, `θ), z′]Π(z, dz′)

≥ θ
∫

v[z′F(k1, `1), z′]Π(z, dz′) + (1− θ)
∫

v[z′F(k2, `2), z′]Π(z, dz′).

Hence (Tv)(yθ, z) > θ(Tv)(y1, z) + (1 − θ)(Tv)(y2, z), and Tv is strictly concave in its
first argument. We saw in the proof of proposition A-2 that Tv is increasing in its first
argument. Hence T : Cic(R

2
+) → C′ic(R

2
+) ⊂ Cic(R

2
+). By the same line of reasoning as in

the last proposition, V is strictly concave in its first argument as claimed.

Because V is increasing and concave in its first argument, U is strictly concave, and F is
concave, the composite function

k, ` 7→ U(y− k, 1− `) + β
∫

V[z′F(k, `), z′]Π(z, dz′)

is strictly concave too [26, theorem 5.1]. This implies single-valuedness of k(·, z) and
`(·, z). Continuity of k(·, z) and `(·, z) then follows from Berge’s theorem [1, theorem
17.31].

Corollary A-1. The optimal consumption function c(·, z) and reproduction function g(·, z) are
both continuous for each z ∈ R+.

Proposition A-4. If c(y, z) > 0, then V′1(y, z) exists and V′1(y, z) = u′ ◦ c(y, z).

Proof. This proof follows Mirman and Zilcha [23, lemma 1]. Fix z and y > 0. Choose
ε > 0. By optimality,

V(y + ε, z) ≥ z′u(c(y, z) + ε) + v(1− `(y, z)) + β
∫

V[z′F(k(y, z), `(y, z)), z′]Π(z, dz′),

which implies
V(y + ε, z)−V(y, z)

ε
≥ u(c(y, z) + ε)− u(c(y, z))

ε
.

Taking ε ↓ 0, it follows that V′1(y, z)+ ≥ u′ ◦ c(y, z).

Choose ε such that 0 < ε < c(y, z), which exists by assumption. Again by optimality, we
have

V(y− ε, z) ≥ u(c(y, z)− ε) + u(1− `(y, z)) + β
∫

V[z′F(k(y, z), `(y, z)), z′]Π(z, dz′),

which implies
V(y− ε, z)−V(y, z)

−ε
≤ u(c(y, z)− ε)− u(c(y, z))

−ε
.
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Taking ε ↓ 0, it follows that V′1(y, z)− ≤ u′ ◦ c(y, z).

On the other hand, concavity of V in the first argument implies that V′1(y, z)+ ≤ V′1(y, z)−

(see, e.g., [26, theorem 23.1]) and hence V′1(y, z) = u′ ◦ c(y, z).

Proposition A-5. The optimal investment policy k(·, z) is increasing for each z ∈ R+.

Proof. Fix z ∈ R+. Choose y1 < y2, and let (k1, `1) and (k2, `2) be the corresponding
optimal choices. Suppose for a contradiction that k1 > k2. Define c1 := y1 − k1, c2 :=
y2 − k2, and ĉ := k1 − k2 > 0. It follows that

c2 − ĉ = y2 − k1 > y1 − k1 = c1 ≥ 0.

Note that c1 + ĉ+ k2 = y1, and hence (c1 + ĉ, `2) is a feasible choice from y1. By optimality,
we have

U(c1, 1− `1) + β
∫

V[z′F(k1, `1), z′]Π(z, dz′)

≥ U(c1 + ĉ, 1− `2) + β
∫

V[z′F(k2, `2), z′]Π(z, dz′). (A-2)

In addition, c2 − ĉ + k1 = y2, and hence (c2 − ĉ, `1) is feasible at y2. It follows that

U(c2 − ĉ, 1− `1) + β
∫

V[z′F(k1, `1), z′]Π(z, dz′)

≤ U(c2, 1− `2) + β
∫

V[z′F(k2, `2), z′]Π(z, dz′). (A-3)

Subtracting (A-3) from (A-2) yields

U(c2, 1− `2)−U(c1 + ĉ, 1− `2) ≥ U(c2 − ĉ, 1− `1)−U(c1, 1− `1)

By separability of U, this is equivalent to

u(c2)− u(c1 + ĉ) ≥ u(c2 − ĉ)− u(c1).

Because c1 + ĉ > c1, we obtain a contradiction to the strict concavity of u.

Lemma A-2. If h : R2
+ → R+ is concave in its first argument, then

lim
ε↓0

∫ h(x + ε, z)− h(x, z)
ε

φ(dz) =
∫

lim
ε↓0

h(x + ε, z)− h(x, z)
ε

φ(dz).

Proof. Fix x, and let {tn} be a real sequence with tn ↓ 0. As concavity of h in R2
+ implies

concavity of h(·, y) in R+ for any fixed y, by [26, theorem 23.1],

h(x + tn+1, z)− h(x, z)
tn+1

≥ h(x + tn, z)− h(x, z)
tn

, ∀n.

An application of the monotone convergence theorem concludes the proof.
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Lemma A-3. If y, z > 0, then k(y, z) > 0 or `(y, z) > 0 or both.

Proof. Fix y, z > 0. Suppose instead that k(y, z) = `(y, z) = 0. Choose ε such that 0 < ε <
y. By optimality, we have

u(y) + v(1) + β
∫

V(0, z′)Π(z, dz′) ≥ u(y− ε) + v(1− ε) + β
∫

V[z′F(ε, ε), z′]Π(z, dz′).

Dividing by ε and using homogeneity of degree one in production, which implies that
F(ε, ε)/ε = F(1, 1), we obtain

u(y− ε)− u(y)
−ε

+
v(1− ε)− v(1)

−ε
≥ β

∫ [V[z′F(ε, ε), z′]−V(0, z′)
z′F(ε, ε)

]
z′F(1, 1)Π(z, dz′).

Taking ε ↓ 0 and applying lemma A-2, we obtain the contradiction

u′(y) + v′(1) ≥ βF(1, 1)
∫

V′(0, z′)+z′Π(z, dz′) ≥ βF(1, 1)u′(0)
∫

z′Π(z, dz′) = ∞.

Lemma A-4. If y, z > 0 and k(y, z) > 0, then `(y, z) is interior.

Proof. Fix y, z > 0 and set k̃ := k(y, z) > 0. Suppose for a contradiction that `(y, z) = 0.
Choose ε such that 0 < ε < 1. Optimality requires

v(1− ε)− v(1)
−ε

≥ β
∫ [V[z′F(k̃, ε), z′]−V[z′F(k̃, 0), z′]

z′F(k̃, ε)− z′F(k̃, 0)
F(k̃, ε)− F(k̃, 0)

ε

]
z′Π(z, dz′).

Taking ε ↓ 0 and applying lemma A-2 yields the contradiction

v′(1) ≥ β
∫

V′[z′F(k̃, 0), z′]+F′2(k̃, 0)+z′Π(z, dz′) = ∞.

Next suppose that `(y, z) = 1. Choose ε such that 0 < ε ≤ 1/2. Optimality implies that
v(ε)/ε is dominated by

β
∫ [V[z′F(k̃, 1− ε), z′]−V[z′F(k̃, 1), z′]

z′F(k̃, 1− ε)− z′F(k̃, 1)
F(k̃, 1− ε)− F(k̃, 1)

−ε

]
z′Π(z, dz′)

≤ β
∫ [V[z′F(k̃, 1/2), z′]−V[z′F(k̃, 1), z′]

z′F(k̃, 1/2)− z′F(k̃, 1)
F(k̃, 1/2)− F(k̃, 1)

−1/2

]
z′Π(z, dz′),

where the second inequality follows by monotonicity and concavity of both F and the
concavity of V in its first argument. Since the right-hand side is finite and constant in ε,
taking ε ↓ 0 and using v′(0)+ = ∞ yields a contradiction.
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Proposition A-6. If y, z > 0, then the optimal action (k(y, z), `(y, z)) is interior.

Proof. In view of lemma A-4, it suffices to show that 0 < k(y, z) < y. To show this, fix
z and y > 0. Suppose for a contradiction that k(y, z) = 0. lemma A-3 then implies that
`(y, z) > 0. Fix ˜̀ = `(y, z) and choose ε such that 0 < ε < y. Optimality requires

u(y− ε)− u(y)
−ε

≥ β
∫ [V[z′F(ε, ˜̀), z′]−V[z′F(0, ˜̀), z′]

z′F(ε, ˜̀)− z′F(0, ˜̀)
F(ε, ˜̀)− F(0, ˜̀)

ε

]
z′Π(z, dz′).

Taking ε ↓ 0 and using lemma A-2 yields the contradiction

u′(y) ≥ β
∫

V′[z′F(0, ˜̀), z′]+F′1(0, ˜̀)+z′Π(z, dz′) = ∞.

Next suppose that k(y, z) = y. By lemma A-4, we have `(y, z) > 0. Fix ˜̀ = `(y, z), and
choose ε such that 0 < ε ≤ y/2. Optimality again requires

u(ε)
ε
≤ β

∫ [V[z′F(y− ε, ˜̀), z′]−V[z′F(y, ˜̀), z′]
z′F(y− ε, ˜̀)− z′F(y, ˜̀)

F(y− ε, ˜̀)− F(y, ˜̀)
−ε

]
z′Π(z, dz′)

≤ β
∫ [V[z′F(y/2, ˜̀), z′]−V[z′F(y, ˜̀), z′]

z′F(y/2, ˜̀)− z′F(y, ˜̀)
F(y/2, ˜̀)− F(y, ˜̀)

−y/2

]
z′Π(z, dz′),

where the second inequality follows by monotonicity and concavity of F and the concav-
ity of V in its first argument. Taking ε ↓ 0, the right-hand side remains constant while the
left converges to infinity. Contradiction.

Proposition A-7. If y, z > 0, then the optimal policy satisfies (9) and (10).

Proof. Fix y, z > 0. By proposition A-6, both k(y, z) and `(y, z) are interior. Then the result
follows from proposition A-4 and the first order conditions of optimality.

Proposition A-8. The optimal reproduction function g(y, z) is increasing in y for each z ∈ R++.

Proof. Fix z ∈ R++. Choose 0 < y1 < y2. Let ki := k(yi, z) and `i := `(yi, z) for i = 1, 2.
Suppose for a contradiction that F(k1, `1) > F(k2, `2). By proposition A-5 we have k1 ≤ k2.
Since F is increasing, it must be that 0 < `2 < `1 < 1. As F is concave, u is strictly concave
and V is strictly concave in its first argument, proposition A-7 now gives

v′(1− `2) = β
∫

V′[z′F(k2, `2), z′]F′2(k2, `2)z′Π(z, dz′)

> β
∫

V′[z′F(k1, `1), z′]F′2(k2, `2)z′Π(z, dz′)

≥ β
∫

V′[z′F(k1, `1), z′]F′2(k1, `2)z′Π(z, dz′)

> β
∫

V′[z′F(k1, `1), z′]F′2(k1, `1)z′Π(z, dz′) = v′(1− `1)
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This is a contradiction, since u′2 is strictly decreasing. Hence F(k1, `1) ≤ F(k2, `2) must
hold.

Proposition A-9. The optimal consumption policy c(·, z) is strictly increasing for each z > 0.

Proof. Fix z > 0. If y = 0, then clearly c(y, z) = 0. For y > 0, by proposition A-6, k(y, z) is
interior, and thus c(y, z) > 0. By propositions A-2 and A-4, we have V′1(y, z) = u′ ◦ c(y, z),
or, equivalently, c = (u′)−1 ◦ V′1(·, z). Since V′1(·, z) and (u′)−1 are strictly decreasing,
c(·, z) strictly increasing.

All of the results in theorem 2.1 have now been verified.

Appendix B: Proof of Theorem 3.1

Throughout this section we maintain the assumptions of theorem 3.1. In particular, we
suppose that assumptions 2.2–2.4 and 3.1 all hold, and at least one of assumptions 3.2
and 3.3 holds. Recall from the discussion in section 3 that in this IID setting, the value
and policy functions are constant in z, and hence we simplify notation by omitting this
constant second argument. Hence V(y, z) is written as V(y) and treated as a function on
R+, and likewise for σ, k, `, c and g. For example, the Euler equations from theorem 2.1
become

u′ ◦ c(y) = β
∫

u′ ◦ c[zg(y)] zF′1(k(y), `(y))µ(dz), and (B-1)

v′(1− `(y)) = β
∫

u′ ◦ c[zg(y)] zF′2(k(y), `(y))µ(dz). (B-2)

We let Q be the stochastic kernel on R++ representing optimal output dynamics. Thus,

Q(y, B) = P{ω ∈ Ω : zt(ω)g(y) ∈ B} = µ{z ∈ R++ : zg(y) ∈ B}. (B-3)

We now introduce some preliminary results that are needed for the proof of theorem 3.1.

Proposition B-1. The stochastic kernel Q is increasing.

Proof. Fix h ∈ iM(R++). We aim to show that Qh ∈ iM(R++). To see this, fix z ∈ R++

and y, y′ ∈ R++ with y ≤ y′. Since g is increasing, it follows from the monotonicity of
the integral that Qh(y) =

∫
h[zg(y)]µ(dz) ≤

∫
h[zg(y′)]ν(dz) = Qh(y′). Hence Qh ∈

iM(R++) as required.

Lemma B-1. If F satisfies assumption 3.3, then limy→0 F′1(k(y), `(y)) = ∞.
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Proof. Under assumption 3.3 we have F(0, `) = 0 for all `, and hence, from the Bellman
equation, V(0) = max`∈[0,1] {v(1− `) + βV(0)}. It follows immediately that `(0) = 0.
Moreover, since ` is single-valued and continuous, we must then have limy→0 `(y) = 0.
We now claim that limy→0 F′2(k(y), `(y)) = 0. To see this, recall the Euler equation (B-2).
As y→ 0, both k(y), `(y)→ 0. The left-hand-side of (B-2) converges to the constant v′(1),
while on the right-hand-side, for any given z ∈ R++, we have u′ ◦ c[zg(y)]→ u′(c(0)) =
∞. Thus, for (B-2) to hold, it must be that F′2(k(y), `(y)) → 0. Since F is homogeneous
of degree one, its derivatives are homogeneous of degree zero, and hence we can write
this convergence as F′2(1, `(y)/k(y)) → 0 as y → 0. This implies that `(y)/k(y) → ∞, or,
conversely, that k(y)/`(y)→ 0. Using homogeneity of degree zero again, combined with
assumption 2.2, we obtain

lim
y→0

F′1(k(y), `(y)) = lim
y→0

F′1(k(y)/`(y), 1) = ∞,

as was to be shown.

Lemma B-2. Let W1 :=
√

u′ ◦ c. If at least one of assumptions 3.2 and 3.3 hold, then there exists
a δ > 0 and an a1 ∈ (0, 1) such that

(QW1)(y) ≤ a1W1(y), ∀y < δ. (B-4)

Proof. The argument is an extension of techniques used in [24]. We begin the proof with
the claim that

(QW1)(y) ≤W1(y)
[∫ 1

β zF′1(k(y), `(y))
µ(dz)

]1/2

. (B-5)

To see this, note that

(QW1)(y) =
∫ {

u′ ◦ c[zg(y)]
}1/2

µ(dz) =
∫ [

β u′ ◦ c[zg(y)]
zF′1(k(y)`(y))

βzF′1(k(y)`(y))

]1/2

µ(dz).

Applying the Cauchy-Schwartz inequality yields

(QW1)(y) ≤
[

β
∫

u′ ◦ c[zg(y)]zF′1(k(y)`(y))µ(dz)
]1/2 [∫ 1

βzF′1(k(y), `(y))
µ(dz)

]1/2

.

An application of the Euler equation (B-1) and the definition of W1 produces (B-5).

In light of (B-5), to complete the proof of lemma B-2, we need only show that

lim
y→0

[∫ 1
βzF′1(k(y), `(y))

µ(dz)
]1/2

< 1. (B-6)
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Consider first the case where F satisfies assumption 3.2. From our restrictions on the
derivatives of F in assumption 2.2, we have[∫ 1

βzF′1(k(y), `(y))
µ(dz)

]1/2

≤
[∫ 1

βzF′1(y, 0)
µ(dz)

]1/2

.

Equation (B-6) is now immediate from (13).

Alternatively, suppose that assumption 3.3 holds. Then, by proposition B-1, we have

lim
y→0

∫ 1
βzF′1(k(y), `(y))

µ(dz) = 0.

Once again, (B-6) is established, and the proof of lemma B-2 is done.12

Lemma B-3. If the conditions of lemma B-2 hold, then, given δ as in (B-4), there exists a b1 < ∞
such that (QW1)(y) ≤ b1 for all y ≥ δ.

Proof. Since the optimal consumption function c is increasing on R++, the composition
u′ ◦ c is decreasing, and hence −W1 is increasing. Since Q is increasing (proposition B-1),
it follows that Q(−W1) is also increasing, and hence (Q(−W1))(δ) ≤ (Q(−W1))(y) for
all y ≥ δ. Using the fact that Q is a linear operator, we obtain (QW1)(y) ≤ (QW1)(δ) for
all y ≥ δ, and hence the claim in the lemma is satisfied with b1 := (QW1)(δ).

Lemma B-4. If W2 is the identity on R++, then there exists positive constants a2 < 1 and
b2 < ∞ such that QW2 ≤ a2W2 + b2 on R++.

Proof. Since F is increasing in both arguments we have

(QW2)(y) =
∫

zµ(dz)g(y) ≤
∫

zµ(dz)F(y, 1). (B-7)

In view of (16), there exists a constant a2 ∈ (0, 1) and a ȳ > 0 such that

y > ȳ =⇒
∫

zF(y, 1)µ(dz) < a2y. (B-8)

On the other hand,

y ≤ ȳ =⇒
∫

zF(y, 1)µ(dz) ≤
∫

zF(ȳ, 1)µ(dz) =: b2. (B-9)

Combining (B-7), (B-8) and (B-9) yields (QW2)(y) ≤ a2y + b2 for all y > 0. This amounts
to the claim in lemma B-4.

12We are using the finiteness of E (1/zt) imposed in assumption 3.1.
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Turing to the case of assumption 3.3, let γ ∈ (0, 1) be such that a2 := γ
∫

zµ(dz) < 1. As
limk→∞ F′(k, 1) = 0, there exists a d < ∞ such that F(y, 1) ≤ γy for all y > d. This leads
to the estimate (QW2)(y) ≤ a2y for all y > d. On the other hand, we clearly have

(QW2)(y) ≤
∫

zF(d, 1)µ(dz) =: b2, ∀y ≤ d.

Hence (QW2)(y) ≤ a2W2(y) + b2 for all y > 0. The proof of lemma B-4 is now complete.

Proposition B-2. The stochastic kernel Q is bounded in probability.

Proof. Let W1 and W2 be as in lemmas B-2–B-4, and let W(y) := W1(y) + W2(y) :=√
u′1 ◦ c + y. By (20), the function W is coercive on R++. Observe that by linearity of

the operator Q and lemmas B-2–B-4, we have

QW = QW1 + QW2 ≤ a1W1 + a2W2 + b1 + b2

pointwise on R++. Letting λ := max{a1, a2} and B := b1 + b2 yields QW ≤ λW + B
with λ < 1. Using this result, we will show that lim supt→∞(QtW)(y) is finite for any
y ∈ R++. To see that this is so, observe that repeatedly applying Q to QW ≤ λW + B
yields

QtW ≤ λtW +
B(1− λt)

1− λ
.

Taking the limit gives finiteness of lim supt→∞(QtW)(y) for any y ∈ R++. As per Meyn
and Tweedie [21, lemma D.5.3], this implies that Q is bounded in probability.

Proposition B-3. The stochastic kernel Q is Feller.

Proof. Fix h ∈ C(R++). Boundedness of Qh is obvious. To obtain continuity, recall that g
is continuous. Fix y ∈ R++ and yn → y. By the dominated convergence theorem,

(Qh)(yn) =
∫

h[g(yn, z)]µ(dz)→
∫

h[g(y, z)]µ(dz) = (Qh)(y)

as n→ ∞. Hence Q is Feller as claimed.

We are now ready to complete the proof of theorem 3.1.

Proof of theorem 3.1. The Feller property (proposition B-3) combined with boundedness in
probability (proposition B-2) implies existence of a stationary distribution by [21, propo-
sition 12.1.3].
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Appendix C: Proof of Theorem 4.1

In this section we maintain the assumptions of theorem 4.1. In particular, we suppose
that assumptions 2.2–2.4 and 3.1 all hold, at least one of assumptions 3.2 and 3.3 holds,
and assumption 4.1 holds.

Proof of theorem 4.1. We have shown that Q is increasing, bounded in probability and
Feller (propositions B-1–B-3). Since assumption 4.1 is also taken to be valid, the kernel
Q is clearly downward reaching. It follows that the stationary distribution π of Q is
unique and globally stable [18, theorem 3.2 and corollary 4.1]. This shows parts 1–2 of
theorem 4.1. Part 3 follows from [18, theorem 3.3 and 3.4].

Appendix D: Proofs of Theorem 4.2–4.3

In this section we maintain the assumptions of theorem 4.2. In particular, we suppose
that assumptions 2.2–2.4 and 3.1 all hold, at least one of assumptions 3.2 and 3.3 holds,
and assumption 4.2 holds. The results in this section extend those in Nishimura and
Stachurski [24, theorems 3.1–3.2].

Lemma D-1. The stochastic kernel Q is irreducible with respect to the lognormal density onR++.

Proof. Take any B ∈ B(R++) with positive measure under the lognormal density, and fix
any y0 ∈ R++. It is easy to check that the set B/g(y0) has positive Lebesgue measure, and
hence positive µ-measure (by the strict positivity of µ in assumption 4.2). In addition, we
have P{y1 ∈ B | y0} = µ{z ∈ R++ : zg(y0) ∈ B} = µ(B/g(y0)). The final term is strictly
positive and equal to Q(y0, B). The claim in the lemma follows.

Lemma D-2. Every compact subset of R++ is a C -set, and Q is strongly aperiodic.

Proof. Regarding the first claim, it follows from the definition that measurable subsets of
C -sets are themselves C -sets. Hence it suffices to show that the interval Cn := [1/n, n]
is a C -set for every n ∈ N. Pick any n ∈ N. By interiority and monotonicity of g, 0 <
g(1/n) ≤ g(y) ≤ g(n) < ∞ for all y ∈ Cn. Since µ is continuous and strictly positive, it
follows that

inf
Cn×Cn

µ

(
y′

g(y)

)
1

g(y)
=: r > 0.

Let λ be Lebesgue measure. Choosing φ to be the measure defined by φ(B) = r ·λ(B∩Cn)
and picking any y ∈ Cn, we have

Q(y, B) =
∫

B
µ

(
y′

g(y)

)
1

g(y)
dy′ ≥

∫
B∩Cn

µ

(
y′

g(y)

)
1

g(y)
dy′ ≥ rλ(B ∩ Cn) = φ(B).
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In other words, (21) is valid.

Regarding the claim that Q is strongly aperiodic, we need to show that φ(Cn) > 0, where
φ and Cn are as defined immediately above. Since φ(Cn) = rλ(Cn) = r(n − 1/n), this
follows immediately from positivity of r.

Lemma D-3. If p is as in assumption 4.2, and W3(y) := yp, then there exists positive constants
a3 < 1 and b3 < ∞ such that QW3 ≤ a3W3 + b3 on R++.

Proof. Since F is increasing in both arguments we have

(QW3)(y) =
∫

zpµ(dz)g(y)p ≤
∫

zpµ(dz)F(y, 1)p. (D-1)

In view of (16), there exists a constant a3 ∈ (0, 1) and a ȳ > 0 such that

y > ȳ =⇒
∫

zpF(y, 1)pµ(dz) < a3yp. (D-2)

On the other hand,

y ≤ ȳ =⇒
∫

zpF(y, 1)pµ(dz) ≤
∫

zpF(ȳ, 1)pµ(dz) =: b3. (D-3)

Combining (D-1), (D-2) and (D-3) yields QW3 ≤ a3W3 + b3. This amounts to the claim in
lemma D-3.

Lemma D-4. There exists a C -set C ∈ B, a θ < 1, an L < ∞ and Ŵ : R++ → [1, ∞) such that
the pointwise inequality QŴ ≤ θŴ + L1C holds everywhere on R++.

Proof. Recall from the proof of proposition B-2 that if W := W1 + W2, then there exist
positive constants λ < 1 and B < ∞ such that QW ≤ λW + B pointwise on R++. An
identical argument to the proof given there (but replacing W2 with W3, a2 with a3 and b2
with b3) shows that if instead we take W := W1 +W3, then once again there exist positive
constants λ < 1 and B < ∞ such that QW ≤ λW + B pointwise on R++. Using this
choice of W, let Ŵ := W + 1, let θ be any number in (λ, 1) and let L := B + 1. Choose
C to be a compact set such that Ŵ(y) ≥ (B + 1)/(θ − λ) whenever y /∈ C. (Existence of
C follows from the definition of W.) We claim that for this choice of Ŵ, θ, L and C, the
conditions of lemma D-4 are satisfied. To see that this is in fact the case, observe first that
C is a C -set by lemma D-2. Second, if y ∈ C, then we have

QŴ(y) = QW(y) + 1 ≤ λW(y) + B + 1 ≤ θW(y) + L1C(y) ≤ θŴ(y) + L1C(y).

In other words, if y ∈ C, then the inequality in the statement of the lemma is verified.
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It remains only to check that the same inequality holds when y /∈ C. To see that this is so,
recall that for such a y we have Ŵ(y) ≥ (B + 1)/(θ − λ), and hence

QŴ(y) ≤
[

λ +
B + 1
Ŵ(y)

]
Ŵ(y) ≤ θŴ(y) = θŴ(y) + L1C(y).

We have now verified that QŴ ≤ θŴ + L1C holds everywhere on R++.

We are now ready to complete the proofs of theorems 4.2 and 4.2.

Proof of theorem 4.2. Let Ŵ be the function W1 + W3 + 1 defined in lemma D-4. If follows
from lemmas D-1–D-4 and [21, theorem 16.1.2] that the stochastic kernel Q is so-called
Ŵ-uniformly ergodic (see [21, chapter 16] for the definition). Geometric ergodicity is an
immediate consequence [21, theorem 16.0.1].

Proof of theorem 4.3. In the proof of theorem 4.2, it was shown that that Q is Ŵ-uniformly
ergodic. The claims in theorem 4.3 now follow from [21, theorem 17.0.1].
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