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Abstract

We analyze an infinitely repeated tariff-setting game played by two large countries with
alternating moves. We focus on the subgame perfect equilibria in which each country
chooses its tariff according to a stationary function of the other country’s tariff. We
show that there are many equilibria with two steady states, one with higher tariffs
(but still lower than the static Nash tariffs), the other with lower tariffs. We also
show that there is a special class of equilibria in which there exists a unique, globally
stable steady state. In both types of equilibria, one country unilaterally reduces its
tariff from the static Nash equilibrium, the other country reciprocates in response to
the first country’s implicit “promise” to lower its tariff even further, and this process
continues forever, converging to a steady state with tariffs lower than the static Nash
tariffs. Therefore, promises, rather than threats, induce countries to gradually reduce
their tariffs.
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1 Introduction

Why does a country sometimes liberalize trade unilaterally? Trade theory suggests that

trade liberalization benefits a country as long as it is small. But why do even large countries

sometimes liberalize trade unilaterally? A notable example is Britain’s unilateral trade

liberalization in the 1840s, including the repeal of the Corn Laws in 1846 (Conybeare, 2002).

Did Britain act unilaterally because it believed that unilateral trade liberalization itself

would benefit Britain? Or did Britain hope that other countries would follow suit? Bhagwati

(2002) argues that the latter idea occurred to British Prime Minister Sir Robert Peel, who

showed leadership in abolishing the Corn Laws. Indeed, most European countries gradually

liberalized trade from the 1840s to the 1880s, following the continual free trade movement

by Britain (Bairoch, 1989; Kindleberger, 1975; Conybeare, 2002, p. 47). History witnessed

what is now known as gradual trade liberalization.

In the literature on trade liberalization, threats play an important role in sustaining lib-

eralized trade. In the framework of a repeated tariff-setting game, Dixit (1987) shows that

liberalized trade can be sustained by the threat of reverting forever to the static Nash equi-

librium after any deviation. The threat of Nash reversion is also used to support an entire

process of trade liberalization by Staiger (1995a), Furusawa and Lai (1999), and Bond and

Park (2002). They all consider trade agreements between two countries in which the coun-

tries gradually decrease their tariffs while at all times satisfying an incentive constraint such

that any deviation triggers Nash reversion. These studies show that optimal reciprocal lib-

eralization must be gradual if skills of workers who are displaced from the import-competing

industry dissipate (Staiger, 1995a), if there are sectoral adjustment costs (Furusawa and Lai,

1999), or if the incentive constraint is binding for only one of the countries because of size

asymmetry (Bond and Park, 2002).1

1Krishna and Mitra (1999) and Coates and Ludema (2001) explain unilateral trade liberalization based on
lobbying activities, but they do not consider the gradual feature of liberalization processes. Baldwin (2010)
introduces some political economy mechanisms of unilateral trade liberalization by developing nations with
particular emphasis on the role of production unbundling.
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However, since punitive retaliatory actions are seldom observed in reality, the analysis

using the threat of reverting to the static Nash equilibrium may not be realistic. Furthermore,

such threats are effective only in sustaining an already established (or agreed-upon) process

of trade liberalization. Once any deviation occurs, the cooperative process can never be

restored.

In this paper, we argue that when a country liberalizes trade unilaterally, what motivates

other countries to follow suit is its implicit promise to liberalize trade further if they recipro-

cate. For this purpose we study a simple tariff-setting game with alternating moves between

two large countries. Each country’s one-shot payoff is simply the sum of import and export

surplus, and the countries take turns in setting their tariffs: in the first period one country

chooses its tariff, in the second period the other country chooses its tariff, in the third period

the first country chooses its tariff again, and so on. By looking at an alternating-move game,

we can capture a realistic feature of the information structure, that when countries choose

their trade policies they can observe other countries’ concurrent trade policies. Maskin and

Tirole (1988) suggest another rationale for alternating-move games: that they are effectively

the same as games with endogenous timing of players’ moves, which suits the analysis of

countries’ tariff-setting behavior. In this framework, we focus on the subgame perfect equi-

libria in which each country, on its turn to move, chooses its tariff according to a stationary

function of the other country’s current tariff. A subgame perfect equilibrium in this class is

termed an “immediately reactive equilibrium” (IRE) by Kamihigashi and Furusawa (2010),

and this class seems particularly suitable for capturing the sequential and reciprocal aspects

of trade liberalization.

We show that there are many IREs that have two steady states, one with higher tariffs,

the other with lower tariffs; the higher-tariff steady state is locally stable, and the lower-tariff

steady state is stable from below but unstable from above. Then, we look at an IRE that

satisfies a certain criterion of efficiency. Unlike other IREs, in this “effectively efficient” IRE
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(defined in Section 3), there is a unique, globally stable steady state.

In many of these equilibria, including all the effectively efficient IREs, if the initial tariff

vector is at the static Nash equilibrium, the countries gradually decrease their tariffs toward

a steady state with low tariffs. More specifically, the country that is allowed to move in the

first period cuts its tariff, the second country responds by cutting its tariff, the first country

then reacts by further cutting its tariff again, and this process continues and gradually

converges to the steady state. Hence these equilibria induce gradual trade liberalization

initiated by unilateral tariff reduction. Furthermore, when the first country cuts its tariff in

the first period, the second country is not threatened to reciprocate. If it did not reciprocate,

the first country would simply keep its tariff unchanged. It is therefore the first country’s

implicit promise to lower its tariff even further when the second country reciprocates that

motivates the second country to lower its tariff.

A steady state of an IRE has the property that it is supported by a minimum threat:

each country simply makes the other country indifferent between raising its tariff and staying

at the steady state. Even after a deviation, each country promises to lower its tariff as long

as the other country follows suit, which makes it possible to restore the steady state in a

self-enforcing way. Therefore, any stable steady state of an IRE has a built-in mechanism to

restore itself after a deviation. This is in sharp contrast with the aforementioned studies on

gradual trade liberalization, which use the threat of Nash reversion to support a cooperative

process that could be lost forever in case of any deviation.

We should mention that Johnson (1953-54) studies a similar framework in which two

large countries alternately select their tariffs. In his model, each country chooses its tariff in

a myopic way in response to the tariff chosen by the other country in the previous period.

The tariff vector then converges either to the static Nash equilibrium or to a cycle around

the Nash equilibrium. By contrast, in our model countries are fully rational and there are

many equilibria in which the tariff vector converges to a steady state with tariffs lower than
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at the static Nash equilibrium.

The rest of the paper is organized as follows. In Section 2 we describe our tariff-setting

game and formally define IREs. In Section 3 we establish some general properties of the

IREs of our model based on Kamihigashi and Furusawa’s (2010) results. In Section 4 we

describe various IREs of interest and discuss trade liberalization processes. In Section 5 we

offer some concluding remarks.

2 The Model

We consider an alternating-move, tariff-setting game between two large countries, 1 and

2. Each country i consumes three goods, country i’s export good, country j’s (j 6= i)

export good, and a common numeraire good; the representative consumer’s utility function

is additively separable in the three goods and linear in the numeraire good. Social welfare

of each country can thus be represented by the total surplus derived from the markets of the

non-numeraire goods and can thus be measured by gains from trade.2

We can compute gains from trade from each country’s import demand and export supply

functions. Country i imposes a tariff at a specific rate of τi ≥ 0 on imports from country

j 6= i. Country i’s import demand is assumed to be a strictly decreasing, continuous function

of the price of imports such that it is equal to zero at country i’s autarkic equilibrium price,

whereas its export supply is a strictly increasing, continuous function of the price of exports.

Country i’s import surplus mi(τi) is the area below the import demand curve and above the

world price level. Country i’s export surplus xi(τj) is the area below the world price level

and above the export supply curve. The one-shot payoff of country i is its gains from trade,

2Two non-numeraire goods may be a capital-intensive manufacture good, such as automobiles, and a
labor-intensive good, such as clothing. A non-numeraire good may be agricultural goods. Strictly speaking,
it is not surprising that a tariff on automobiles affects to some degree the demand for clothing and agricultural
products through substitution and income effects. Since the direction and degree of these effects are generally
ambiguous, however, it is not uncommon to assume that consumers’ utility functions are additively separable.
See, for example, Staiger (1995a,b) and Furusawa and Lai (1999).
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i.e., the sum of its import surplus mi(τi) and export surplus xi(τj):

ui(τi, τj) = mi(τi) + xi(τj).

Optimal tariff theory suggests that mi(τi) is increasing where τi is small and decreasing where

τi is large. We assume for simplicity that mi(τi) has a single peak at τNi > 0 and is strictly

increasing for τi < τNi . The export-surplus function xi is a strictly decreasing continuous

function of τj. In Appendix A we derive the surplus functions mi and xi explicitly in a

parametric example based on linear demand and supply functions.

Since τNi is country i’s strictly dominant strategy in the one-shot game, (τN1 , τ
N
2 ) is a

unique static Nash equilibrium. We henceforth restrict the feasible set of country i’s tariffs

to [0, τNi ], as we are mainly interested in tariff reduction processes. A more general case

allowing for τi > τNi can be analyzed with Kamihigashi and Furusawa’s (2010) results.

Let T1 = {1, 3, 5, · · · } and T2 = {2, 4, 6, · · · } denote the sets of periods in which country

1 and country 2 select their individual tariffs, respectively. We focus on the subgame perfect

equilibria in which country i, in its turn to move (i.e., t ∈ Ti), selects its tariff τi,t according

to a stationary reaction function fi of country j’s current tariff τj,t, which was selected in

the previous period. Such equilibria are termed immediately reactive equilibria (IREs) by

Kamihigashi and Furusawa (2010). Since country i cannot change its tariff from τi,t in period

t + 1 ∈ Tj, we have τi,t+1 = τi,t for all t ∈ Ti. Let δi ∈ (0, 1) denote country i’s discount

factor. Then, given country j’s reaction function fj, country i maximizes the discounted

sum of one-shot payoffs from period i (= 1 or 2) onward:

max
{τi,t}t∈Ti

∞∑
t=i

δt−ii [mi(τi,t) + xi(τj,t)]

s.t. τi,t+1 = τi,t for t ∈ Ti,

τj,t+1 = τj,t = fj(τi,t) for t ∈ Tj,

τj,i given.

We say that country i’s reaction function fi is a best response to country j’s reaction
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function fj if for any τj,i ∈ [0, τNj ], the above maximization problem has a solution {τi,t}∞t=i

such that τi,t = fi(τj,t) for all t ∈ Ti. We call a pair of reaction functions (f1, f2) an

immediately reactive equilibrium (IRE) if f1 is a best response to f2, and vice versa.3

Given an IRE (f1, f2), we say that (τ1, τ2) ∈ [0, τN1 ]× [0, τN2 ] is a steady state if τ1 = f1(τ2)

and τ2 = f2(τ1). Needless to say, if the game starts from a steady state (τ1, τ2), each country

i keeps choosing τi forever according to fi.

3 General Properties of IREs

In this section we present some useful properties of IREs. Since the tariff-setting game in this

paper is a special case of the general model studied by Kamihigashi and Furusawa (2010),

the results obtained by Kamihigashi and Furusawa (2010) apply here. However, many of

those results are considerably simplified (and easier to understand) because of the extra

assumption that mi is strictly increasing (together with the assumption that xi is strictly

decreasing). This assumption also enables us to establish some additional results.

In this section we assume only that mi is strictly increasing and continuous in τi, and

that xi is strictly decreasing and continuous in τj. Additional assumptions will be introduced

in the next section.

Let us define the function wi : [0, τNi ]× [0, τNj ]→ R by

wi(τi, τj) = mi(τi) + δixi(τj). (3.1)

We call this function country i’s effective payoff since country i in effect seeks to maximize

the discounted sum of effective payoffs. Indeed, country i’s discounted sum of payoffs from

3The concept of IRE is similar to that of Markov perfect equilibrium (Maskin and Tirole, 1988, 2001)
in that both IRE and Markov perfect equilibrium are the subgame perfect equilibrium in which strategies
depend only on the history that affects the continuation payoff. IRE is distinct from Markov perfect equi-
librium, however, if this “payoff relevant history” is restricted for Markov perfect equilibrium such that a
Markov strategy is measurable with respect to the coarsest partition of histories for which, if all other play-
ers use measurable strategies, each player’s decision-problem is also measurable (Maskin and Tirole, 2001).
According to this definition of Markov strategies, different payoff relevant histories should affect players’
behavior differently for Markov perfect equilibrium, whereas this restriction is absent for IRE.
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period i onward is written as

∞∑
t=i

δt−ii [xi(τj,t) +mi(τi,t)]

= xi(τj,i) +
∞∑
t=1

δt−1i [mi(τi,t) + δixi(τj,t+1)]

= xi(τj,i) +
∞∑
t=1

δt−1i wi(τi,t, τj,t+1). (3.2)

Since country i has no influence on τj,i, its problem is equivalent to maximizing the discounted

sum of effective payoffs. It then follows from (3.2) that each country i effectively solves the

static problem of maximizing wi(τi, fj(τi)) taking fj as given.

To characterize country i’s reaction function, let w∗i (fj) denote country i’s maximum

feasible effective payoff (provided that it exists):

w∗i (fj) ≡ max
τi∈[0,τNi ]

wi(τi, fj(τi)). (3.3)

Note that the maximization problem that country i faces in (3.3) does not involve τj. This

implies that if fi is a best response to fj, then for any τj, choosing τi = fi(τj) gives country

i its maximum feasible effective payoff w∗i (fj). Thus, we have the following lemma (see

Kamihigashi and Furusawa 2010, Lemma 2.1, for a formal proof).

Lemma 3.1. Country i’s reaction function fi is a best response to country j’s reaction

function fj if and only if

wi(fi(τj), fj(fi(τj))) = w∗i (fj) for any τj ∈ [0, τNj ]. (3.4)

In other words, (f1, f2) is an IRE if and only if (3.4) holds for i = 1, 2.

Lemma 3.1 implies that for a given τj, choosing τi = fi(τj) will bring the next period’s

tariff vector on the level curve of country i’s effective payoff at the value of w∗i (fj), which we

call country i’s optimal level curve (in response to fj). To represent level curves of country

i’s effective payoff, let us define a function gωi
j of τi by

ωi = wi(τi, g
ωi
j (τi)).
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0
τi

τj

g
wi(τ

N
i ,τ

N
j )

j (τi)

gωi
j (τi)

Figure 1: Level curves g
wi(τ

N
i ,τNj )

j and gωi
j with ωi < wi(τ

N
i , τ

N
j )

Put differently, the graph of gωi
j is the level curve of country i’s effective payoff at the

value of ωi, which we also call the level curve gωi
j to simplify the exposition. Figure 1 shows

two such graphs that correspond to ωi = wi(τ
N
i , τ

N
j ) and ωi < wi(τ

N
i , τ

N
j ).4 Since mi is

strictly increasing in τi and xi is strictly decreasing in τj, g
ωi
j is a strictly increasing function

of τi. The lower the level curve, the higher the effective payoff for country i.

Now, we can restate Lemma 3.1 in terms of level curves as follows.

Lemma 3.2. A pair of reaction functions (f1, f2) is an IRE if and only if for i = 1, 2,

fj(fi(τj)) = g
w∗i (fj)
j (fi(τj)) for any τj ∈ [0, τNj ].

Again, this lemma shows that (f1, f2) is an IRE if and only if for i = 1, 2, choosing τi =

fi(τj) induces country j to choose τj = fj(fi(τj)) such that the tariff vector (fi(τj), fj(fi(τj)))

is on country i’s optimal level curve. Thus, we have the following lemma.

Lemma 3.3. If (f1, f2) is an IRE, then for i = 1, 2,

w∗i (fj) ≥ wi(τ
N
i , τ

N
j ).

4As Figure 1 shows, the domain of gωi
j may not cover the entire feasible set of τi so that it must be

appropriately restricted if necessary.
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0 τ1
τN1

τ2
τN2

τ2,1

f
1

=
g
w

∗2
(f

1
)

1

f2 = g
w∗

1 (f2)
2

Figure 2: IRE with fi = g
w∗j (fi)

i for i = 1, 2

Suppose to the contrary that w∗i (fj) < wi(τ
N
i , τ

N
j ) so that country i’s optimal level curve

is above the graph of g
wi(τ

N
i ,τNj )

j , e.g., the dotted level curve in Figure 1. Then, country i

can obtain wi(τ
N
i , fj(τ

N
i )) ≥ wi(τ

N
i , τ

N
j ) > w∗i (fj) for any fj by choosing τNi , which is in

contradiction with the definition of w∗i .
5 Thus, country i’s effective payoff in an IRE must

be no less than its minimax effective payoff.

Figure 2 illustrates Lemma 3.2 and Lemma 3.3 by presenting an IRE such that fi = g
w∗j (fi)

i

for i = 1, 2. The figure also depicts an IRE path {(τ1,t, τ2,t)}∞t=1 induced by (f1, f2). In this

example, country i’s reaction function fi is nothing but the function that characterizes

country j’s optimal level curve. Given a τ2,1, country 1 chooses τ1,1 = f1(τ2,1) in period 1 so

that the tariff vector (f1(τ2,1), f2(f1(τ2,1))) that prevails in period 2 is on country 1’s optimal

level curve (illustrated by the dotted curve), as Lemma 3.2 indicates. In period 2, country

2 chooses τ2,2 = f2(f1(τ2,1)) so that (f2(f1(τ2,1)), f1(f2(f1(τ2,1)))) that prevails in period 3 is

on country 2’s optimal level curve (illustrated by the solid curve). The IRE path converges

to the intersection of the two optimal level curves.

We can infer from this example an important property of IRE paths.

5It follows from τj ∈ [0, τNj ] that fj(τ
N
i ) ≤ τNj , which gives us the first inequality.
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Lemma 3.4. Given an IRE (f1, f2), let {(τ1,t, τ2,t)}∞t=1 be any IRE path. For any t ≥ 2,

(τ1,t, τ2,t) is on country 1’s optimal level curve, i.e., τ2,t = g
w∗1(f2)
2 (τ1,t), if t ∈ T2, while

(τ1,t, τ2,t) is on country 2’s optimal level curve, i.e., τ1,t = g
w∗2(f1)
1 (τ2,t), if t ∈ T1.

See Kamihigashi and Furusawa (2010, Theorem 4.1) for the proof.

This result shows that any IRE path is characterized by the corresponding level curves

(g
w∗2(f1)
1 , g

w∗1(f2)
2 ) except for the tariff chosen in the initial period. The initial period must be

excluded because τ2,1 is an arbitrary initial condition that need not be optimal for country 2

given country 1’s reaction function f1. In Figure 2, by contrast, any IRE path stays on the

optimal level curves for all t ≥ 1, which is also consistent with Lemma 3.4.

Lemma 3.4 implies that any steady state must be on both countries’ optimal level curves.

We state this result as a corollary.

Corollary 3.1. Any steady state of an IRE (f1, f2) is an intersection of the two correspond-

ing level curves, the graphs of g
w∗1(f2)
2 and g

w∗2(f1)
1 .

We say that a pair of level curves (gω2
1 , g

ω1
2 ) is supported by an IRE if there exists an

IRE (f1, f2) such that ωi = w∗i (fj) for both i. Given a pair of level curves (gω2
1 , g

ω1
2 ), let

(τω1,ω2

1 , τω2,ω1

2 ) denote the lower left corner of the set

{(τ1, τ2) ∈ [0, τN1 ]× [0, τN2 ] : τ2 ≤ gω1
2 (τ1), τ1 ≤ gω2

1 (τ2)},

which is the shaded area in each panel of Figure 3 when ωi = wi(τ
N
i , τ

N
j ) for i = 1, 2.

Each of these shaded areas also represents the set of all steady states supported by IREs, as

Appendix B shows.

The following result characterizes all the pairs of level curves supported by IREs.

Lemma 3.5. A pair of level curves (gω2
1 , g

ω1
2 ) is supported by an IRE if and only if (i) the

graphs of gω2
1 and gω1

2 have an intersection in [0, τN1 ] × [0, τN2 ] and (ii) ωi ≥ wi(τ
N
i , τ

N
j ) for

i = 1, 2.
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(a) (b)

0 τ1
τN1

τ2
τN2

g
w

2
(τ

N2
,τ

N1
)

1

g
w1(τ

N
1 ,τ

N
2 )

2

0 τ1
τN1

τ2
τN2

g
w

2
(τ

N2
,τ

N1
)

1

g
w1(τ

N
1 ,τ

N
2 )

2

Figure 3: Set of all steady states supported by IREs

This result follows from Kamihigashi and Furusawa (2010, Theorem 5.1). Condition (i)

is necessary because if it is violated, there is no path that stays on the level curves forever,

which contradicts Lemma 3.4, as Figure 4 shows. Condition (ii) is a requirement from Lemma

3.3.

Now, we are ready to state the proposition that characterizes an important class of IREs.

Proposition 3.1. Let (gω2
1 , g

ω1
2 ) satisfy the two conditions (i) and (ii) in Lemma 3.5. Then,

the pair of reaction functions (f1, f2) defined below is an IRE:

fi(τj) = max{gωj

i (τj), τ
ωi,ωj

i } for i = 1, 2. (3.5)

We say that an IRE satisfying (3.5) is regular. Figure 5 illustrates a typical regular IRE;

the IRE depicted in Figure 2 is also regular. It is readily verified that in either IRE, depicted

in Figure 2 or Figure 5, the IRE path starting with any τ2,1 ∈ [0, τN2 ] satisfies Lemma 3.4.

The regular IRE is indeed the simplest IRE given the result described in the following

lemma.
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0
τ1

τN1

τ2
τN2

g
ω

2
1

gω1
2

Figure 4: Level curves not supported by IRE

0 τ1
τN1τω1,ω2

1

τ2
τN2

τω2,ω1

2

f
1

f2

Figure 5: Regular IRE
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Lemma 3.6. For any IRE (f1, f2), we have fi(τj) ≥ τ
ωi,ωj

i for any τj ∈ [0, τNj ] and i = 1, 2.

To see why it must be the case that fi(τj) ≥ τ
ωi,ωj

i , let us suppose to the contrary

that f1(τ
′
2) < τω1,ω2

1 at some τ ′2 ∈ [0, τN2 ]. Then, if τ2,1 = τ ′2, we have τ1,1 = f1(τ
′
2) <

τω1,ω2

1 , which implies from Lemma 3.4 that (τ1,2, τ2,2) is on country 1’s optimal level curve

in [0, τω1,ω2

1 ]× [0, τω2,ω1

2 ] (see Figure 5). Lemma 3.4 further implies that the subsequent path

would follow as indicated in Figure 4, eventually violating Lemma 3.4. Thus, fi(τj) ≥ τ
ωi,ωj

i

for any τj ∈ [0, τNj ]. See Kamihigashi and Furusawa (2010, Proposition 5.1) for a formal

proof.

For the rest of the paper, we focus on regular IREs, which are guaranteed to exist

whenever an IRE exists. We are especially interested in a regular IRE that satisfies a certain

criterion of efficiency.

We say that an IRE (f1, f2) is effectively efficient if there is no IRE (f̃1, f̃2) such that

w∗1(f2) ≤ w∗1(f̃2) and w∗2(f1) ≤ w∗2(f̃2) with at least one of the inequalities holding strictly. In

other words, an effectively efficient IRE is not Pareto dominated by any other IRE in terms

of effective payoffs. Effective efficiency can also be characterized graphically:

Lemma 3.7. An IRE (f1, f2) is effectively efficient if and only if the graphs of g
w∗1(f2)
2 and

g
w∗2(f1)
1 never cross each other (and thus only touch each other).

This result follows from Kamihigashi and Furusawa (2010, Proposition 5.2). Figure 6

illustrates an effectively efficient regular IRE. Effective efficiency has an important dynamic

implication, as we will see in the next section.

4 Dynamics of Trade Liberalization

With the general results established in the previous section in hand, we now focus on the

economic implications of the model. For this purpose, we assume that mi(τi) and xi(τj) are
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0 τ1
τN1

τ2
τN2

f
1

f2

Figure 6: Effectively efficient IRE

differentiable and that m′i(τi) > 0 for all τi ∈ [0, τNi ) and x′i(τj) < 0 for all τj ∈ [0, τNj ]. Since

mi(τi) has a single peak at τi = τNi , we have

m′i(τ
N
i ) = 0 for i = 1, 2. (4.1)

Since a tariff on country i’s imports creates market distortions, mi(τi) + xj(τi) is maximized

at τi = 0:

m′i(0) + x′j(0) = 0. (4.2)

This is an implication of the well-known result that free trade (τ1, τ2) = (0, 0) is Pareto

efficient.

The slope of the ωi-level curve of wi, or the graph of gωi
j , is calculated from (3.1) to be

(gωi
j )′(τi) = − m′i(τi)

δix′i(g
ωi
j (τi))

. (4.3)

It follows from our assumptions on m′i(τi) and x′i(τj) that

(gωi
j )′(τi)

{
> 0 if τi ∈ [0, τNi ),

= 0 if τi = τNi .

To simplify the exposition, we assume that gωi
j is strictly concave in τi for all relevant

14
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Figure 7: Static Nash steady state

values of ωi, i.e., for all ωi ∈ [wi(τ
N
i , τ

N
j ), wi(τ

N
i , 0)). (See Appendix A for a parametric

example that satisfies this assumption.)

Furthermore, we assume for the rest of the paper that

wi(τ
N
i , τ

N
j ) < wi(0, 0) for i = 1, 2, (4.4)

so that country i’s level curve extending from (τNi , τ
N
j ) is located above that extending

from the origin (see Figure 7). This assumption is satisfied if the countries are not very

asymmetric and have rather high discount factors. Note that since (4.4) can be written as

mi(τ
N
i )−mi(0) < δi(xi(0)− xi(τNj )), it is never satisfied if δi is close to zero. If both δ1 and

δ2 are close to one, on the other hand, the inequality in (4.4) must be satisfied at least for

either i = 1 or i = 2. This is because mi(τi) + xj(τi) is maximized at τi = 0 (recall (4.2)), so

that the sum of the left-hand sides of (4.4) over i = 1, 2 is strictly less than the sum of the

right-hand sides when both δi are close to 1. This also indicates that (4.4) holds if both δ1

and δ2 are close to 1 in the special case where the countries are entirely symmetric.

Now, we start by studying the stability properties of some natural steady states. The

following proposition, which is illustrated in Figure 7, is a direct consequence of Corollary

15



3.1.

Proposition 4.1. There exists a unique regular IRE such that the static Nash equilibrium

(τN1 , τ
N
2 ) is a steady state. In this IRE, (τN1 , τ

N
2 ) is a unique steady state, and is globally

stable. More specifically, given any τ2,1, the IRE path converges to (τN1 , τ
N
2 ).

In this IRE, even if the initial tariff τ2,1 is close to zero, both countries successively raise

their tariffs, and the IRE path converges to the static Nash equilibrium in the long run.

The next proposition, illustrated in Figure 8, considers an IRE that supports free trade

as a steady state.

Proposition 4.2. There exists a unique regular IRE such that free trade (0, 0) is a steady

state. In this IRE, the steady state (0, 0) is unstable. More specifically, given any τ2,1 > 0,

the IRE path never converges to (0, 0).

This proposition follows from the following result.

Lemma 4.1. In the (τ1, τ2)-space, the graph of g
w1(0,0)
2 is strictly steeper than that of g

w2(0,0)
1

at the origin. As δ1 and δ2 both approach one, these slopes converge to each other.

This result is equivalent to saying that (g
w1(0,0)
2 )′(0) > 1/(g

w2(0,0)
1 )′(0) and both sides

converge to each other as δ1 and δ2 both approach 1. To see this, note from (4.3) that this

inequality is equivalent to

m′1(0)

x′2(0)

m′2(0)

x′1(0)
> δ1δ2.

By (4.2), the left-hand side equals 1. Thus the inequality is satisfied, and the right-hand side

converges to the left-hand side as both δ1 and δ2 converge to 1. This establishes the lemma.

Since the graph of g
w1(0,0)
2 is strictly steeper than that of g

w2(0,0)
1 at the origin, the IRE

path moves away from the origin if τ2,1 is close to 0; indeed, as we can see from Figure 8,

there is no IRE path converging to the origin.
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Figure 8: Free-trade steady state

The next result describes IREs with two steady states, including the IRE in Figure 8 as

a special case.

Proposition 4.3. There exist regular IREs with two steady states. In these IREs, the

higher-tariff steady state (τ 1, τ 2) is locally stable, while the lower-tariff steady state (τ 1, τ 2)

is stable from below and unstable from above. More specifically, if τ2,1 > τ 2, then the IRE

path converges to (τ 1, τ 2). If τ2,1 < τ 2, then the IRE path converges to (τ 1, τ 2) in two periods.

Figure 9 illustrates how the IRE path converges to the higher-tariff steady state if τ2,1 >

τ 2. Of particular interest is the case in which τ2,1 = τN2 . This can be considered as a

situation in which the initial pair of tariffs is at the static Nash equilibrium, and then

country 1 unilaterally lowers its tariff to τ̃1,1 < τN1 . At this point there is no threat involved

in country 1’s strategy; indeed, if country 2 does not lower its tariff from τN2 , then country

1 continues to choose τ̃1,1. It is therefore country 1’s “implicit promise” to further lower

its tariff, depending on country 2’s reaction, that actually gives country 2 an incentive to

lower its own tariff. Country 2 for its part makes country 1’s promised reaction optimal for

country 1 by promising to reciprocate further in case country 1 further lowers its tariff. These
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Figure 9: Regular IRE with two steady states

mutually optimal promises result in gradual tariff reduction after country 1’s deviation from

the static Nash equilibrium, and the IRE path converges to the higher-tariff steady state,

which is still lower than the static Nash equilibrium.

It is worth pointing out that this steady state is supported by a minimum “threat.” To be

specific, suppose that the initial tariffs of both countries are at this steady state. If country 2

makes a small deviation, then country 1 reacts in such a way as to make country 2’s effective

payoff simply unchanged. In other words, rather than threatening country 2 with a severe

punishment, country 1 gives country 2 exactly zero incentive to deviate. Either country

thus has nothing to gain as well as nothing to lose by deviating. In contrast with a severe

punishment scheme like Nash reversion, this minimum threat is just enough to maintain the

steady state and has a built-in mechanism to restore it after a small deviation.

Let us now turn to the lower-tariff steady state, which also has an interesting property.

Suppose that the initial pair of tariffs is at this steady state. If either country raises its

tariff, then it triggers a tariff war: both countries’ tariffs keep rising and converge to the

higher-tariff steady state, as depicted in Figure 9. However, if either country lowers its tariff

18



rate, the other country does not react at all, for each country i’s reaction function is flat

(taking the same level τ i) for any τj ∈ [0, τ j]. This “kinked” feature is not necessarily an

artifact of the specific IRE studied here. In fact, Lemma 3.6 implies that in any IRE, neither

country sets a tariff lower than its tariff at the lower-tariff steady state. Therefore, at the

lower-tariff steady state, a decrease in either country’s tariff is never matched by a decrease

in the other country’s tariff. At this steady state, by lowering its tariff rate, each country

only rewards the other country while incurring a loss.

Under our assumption that the level curves are strictly concave, Lemma 3.7 implies

that an IRE with two steady states is not effectively efficient, i.e., it is Pareto dominated

by another IRE in terms of effective payoffs. As discussed above, the lower-tariff steady

state of such an IRE is unstable from above; in other words, it is difficult to maintain

cooperation to keep the tariffs as low as possible in a regular IRE that is not effectively

efficient. The following result shows that an effectively efficient regular IRE always yields

stable cooperation.

Proposition 4.4. In any effectively efficient regular IRE, there exists a unique, globally

stable steady state (τ ∗1 , τ
∗
2 ), which satisfies

0 < τ ∗i < τNi for i = 1, 2. (4.5)

In particular, if τ2,1 > τ ∗2 , then the IRE path gradually converges to (τ ∗1 , τ
∗
2 ). If τ2,1 < τ ∗2 ,

then the IRE path converges to (τ ∗1 , τ
∗
2 ) in two periods.

To see this result, note first that the existence of a unique steady state follows from

Lemma 3.7 and the strict concavity of the level curves. The inequalities in (4.5) follow from

Propositions 4.1 and 4.2. The stability properties stated in the proposition should be clear

from Figure 10, which illustrates an effectively efficient regular IRE. There is a unique steady

state (τ ∗1 , τ
∗
2 ), which is globally stable. If τ2,1 > τ ∗2 , then the IRE path converges to the steady

state, as depicted in Figure 10 with τ2,1 = τN2 . If τ2,1 < τ ∗2 , then the IRE path converges
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Figure 10: Globally stable steady state

to the steady state in two periods, since country 1 chooses τ ∗1 whenever τ2,1 < τ ∗2 ; i.e., each

country faces a kinked reaction curve as at the lower-tariff steady state in Figure 9.

One might wonder why the countries do not lower their tariffs all the way to 0 even in

an effectively efficient IRE. A short answer is that the first inequality in (4.5) says that the

origin cannot be the steady state of an effectively efficient IRE. To see this intuitively, note

that when a country lowers its tariff, it incurs the loss immediately, while it receives the

benefit only in the next period, when the other country is expected to reciprocate. Since

the future benefit is discounted, free trade involves excessive trade liberalization by both

countries so far as Pareto optimality in terms of the effective payoffs is concerned. In the

extreme situation where δ1 and δ2 are both 0, for example, any reciprocal tariff reduction

from the static Nash equilibrium reduces each country’s effective payoff. Thus, the static

Nash equilibrium is Pareto optimal (in terms of the effective payoffs) in this case. As both

δ1 and δ2 increase from 0, the set of Pareto optimal points associated with effective payoffs,

which is a downward-sloping curve in the (τ1, τ2)-space, shifts down toward the origin and

reaches the origin only when δ1 and δ2 both converge to 1. Since tariffs are gradually lowered

only to a Pareto optimal point associated with the effective payoffs, therefore, countries do
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not lower their tariffs all the way to 0 when both δ1 and δ2 are strictly between 0 and 1.

But it follows from Lemma 4.1 that the steady state (τ ∗1 , τ
∗
2 ) is close to the origin if

δ1 and δ2 are both close to 1. Starting at the static Nash equilibrium (where τ2,1 = τN2 ),

country 1 unilaterally lowers its tariff in period 1, which triggers reciprocal, gradual tariff

reduction. This process will bring the countries almost to free trade if both countries are

patient enough. We record this important finding in the following.

Corollary 4.1. In an effectively efficient IRE, a unilateral tariff reduction from the static

Nash equilibrium triggers reciprocal, gradual tariff reduction. Although free trade will not be

attained in this tariff reduction process, the tariff vector will converge to a steady state that

can be arbitrarily close to free trade if both countries are patient enough.

5 Concluding Remarks

In this paper, we have analyzed a tariff-setting game between two large countries in which

they alternate in setting their individual tariffs. We have focused on the IREs, the subgame

perfect equilibria in which each country chooses its tariff according to a stationary function of

the other country’s tariff. We have fully characterized the IREs of this model and the set of

all steady states. We have shown that there are many IREs with two steady states, one with

higher tariffs (but still lower than the static Nash tariffs), the other with lower tariffs. The

higher-tariff steady state is locally stable, while the lower-tariff steady state is stable from

below but unstable from above. We have also shown that in effectively efficient IREs, there

exists a unique, globally stable steady state. In most IREs, one country unilaterally reduces

its tariff from the static Nash equilibrium, the other country reciprocates in response to the

first country’s implicit promise to lower its tariff even further, and this process continues

forever, converging to a steady state with tariffs lower than at the static Nash equilibrium.

We have argued therefore that promises, rather than threats, induce countries to gradually

reduce their tariffs.
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A steady state of an IRE has the property that it involves only a minimum threat. Each

country makes the other country exactly indifferent between raising its tariff and staying

at the steady state. Even if a deviation occurs, each country is willing to lower its tariff

again provided that the other country does so. Therefore, the IREs we have studied have

a self-enforcing built-in mechanism to restore a stable steady state as well as to initiate a

trade liberalization process. This suggests that an explicit agreement may not be necessary

to initiate and continue trade liberalization. In a natural environment without any explicit

trade agreement, it is possible that a country will unilaterally lower its tariff, which triggers

reciprocal, gradual tariff reduction.

Appendix A A Parametric Example

In this appendix, we derive the surplus functionsmi and xi explicitly in a parametric example.

We also show that the level curves associated with the effective payoff functions are strictly

concave in this example.

Let pi be the domestic price of country i’s import good, which we call good i, and qi

be the associated trade quantity. We assume that the import demand and export supply

functions are identical across the countries, and that country i’s import demand and country

j’s export supply functions are given by

qi = 1 + a− pi,

qi = (pi − τi)− a,

where a > 0 is the autarkic equilibrium price of good i in the exporting country j (and 1 +a

is the autarkic equilibrium price of good i in the importing country i). In trade equilibrium,

1 + a− pi = pi − τi − a, so that

pi =
1 + τi

2
+ a, qi =

1− τi
2

.
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Consequently, country i’s import surplus and country j’s export surplus are given by

m(τi) =
1

2
(1 + a− pi)qi + τiqj =

(1− τi)(1 + 3τi)

8
,

x(τi) =
1

2
(pi − τi − a)qi =

(1− τi)2

8
.

The static Nash equilibrium is (1/3, 1/3).

We assume that the discount factors are common across the countries; we let δ denote

this common discount factor. In what follows we show that the ωi-level curve of country i’s

effective payoff is strictly concave for any ωi ∈ [wi(τ
N
i , τ

N
j ), wi(τ

N
i , 0)). In this example, we

have

wi(τ
N
i , τ

N
j ) = m(1/3) + δx(1/3) = (1/6) + (δ/18),

wi(τ
N
i , 0) = m(1/3) + δx(0) = (1/6) + (δ/8).

Recall that the ωi-level curve of country i’s effective payoff is given by the function gωi
j (τi),

which satisfies

(1− τi)(1 + 3τi)

8
+
δ(1− gωi

j (τi))
2

8
= ωi. (A.1)

Differentiating (gωi
j )′(τi) given in (4.3) we have

(gωi
j )′′(τi) = −

δm′′(τi)x
′(gωi

j (τi))
2 +m′(τi)

2x′′(gωi
j (τi))

δ2x′(gωi
j (τi))3

.

Since x′(gωi
j (τi)) < 0 (provided that gωi

j (τi) ≤ 1/3), we have (gωi
j )′′(τi) < 0 if and only if

0 > δm′′(τi)x
′(gωi

j (τi))
2 +m′(τi)

2x′′(gωi
j (τi))

=
−3δ

(
1− gωi

j (τi)
)2

+ (1− 3τi)
2

64
.

The above inequality is equivalent to

3δ
(
1− gωi

j (τi)
)2
> (1− 3τi)

2. (A.2)

Solving (A.1) for δ(1 − gωi
j (τi))

2 and substituting the resulting expression into (A.2), we

find that (A.2) reduces to ωi > 1/6. This condition is satisfied for any δ ∈ (0, 1) since

ωi ∈ [(1/6) + (δ/18), (1/6) + (δ/8)), so we conclude that all the relevant level curves are

strictly concave in this example.
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Appendix B Characterization of Steady States

In this appendix, we characterize the set of all steady states supported by IREs and divide

the set of steady states supported by regular IREs according to their stability properties in

the framework of Section 4, although Proposition B.1 and Proposition B.2 are valid even in

the less restrictive framework studied in Section 3.

Proposition B.1. There exists an IRE such that (τ1, τ2) ∈ [0, τN1 ]× [0, τN2 ] is a steady state

if and only if

τi ≤ g
wj(τ

N
j ,τNi )

i (τj) for i = 1, 2. (B.1)

Proof. If: Let (τ1, τ2) satisfy (B.1). Let ω1 = w1(τ1, τ2) and ω2 = w2(τ1, τ2). Then gω2
1

and gω1
2 satisfy both conditions (i) and (ii) in Lemma 3.5. Define (f1, f2) by (3.5). Then

(f1, f2) is an IRE by Lemma 3.5. Since (τ1, τ2) ≥ (τω1,ω2

1 , τω2,ω1

2 ), we have f1(τ2) = gω2
1 (τ2)

and f2(τ1) = gω1
2 (τ1). This together with condition (i) in Lemma 3.5 shows that (τ1, τ2) is a

steady state.

Only if: Let (f1, f2) be an IRE such that (τ1, τ2) is a steady state. Then by Corollary 3.1,

we have τ1 = g
w∗2(f1)
1 (τ2) and τ2 = g

w∗1(f2)
2 (τ1). Since w∗1(f2) ≥ w1(τ

N
1 , τ

N
2 ) and w∗2(f1) ≥

w2(τ
N
2 , τ

N
1 ) by Lemma 3.3, we have τ1 = g

w∗2(f1)
1 (τ2) ≤ g

w2(τN2 ,τN1 )
1 (τ2) and likewise τ2 ≤

g
w1(τN1 ,τN2 )
2 (τ1). Hence we obtain (B.1). Q.E.D.

Note that the set of (τ1, τ2) satisfying (B.1) is the area bounded by the level curves

extending from (τN1 , τ
N
2 ); see Figure 3.

Recall from Lemma 3.4 that any IRE path stays on the associated pair of level curves

except for the initial period. Since both level curves are monotone, any IRE path is also

monotone after the initial period and thus converges to a steady state. We state this obser-

vation as a proposition.

Proposition B.2. Any IRE path converges to a steady state.
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As we have seen in Section 4, each steady state of a regular IRE can be stable from below

and unstable from above, locally stable, or globally stable. We can thus divide the set of

steady states according to these stability properties.

Figure 11 divides the set of steady states supported by regular IREs into three regions

and one curve. The black region (excluding the entire kinked lower left boundary) and the

thick black curve comprise the set of globally stable steady states. The kinked lower left

boundary of the black region is the locus of the higher intersection of a pair of level curves

extending from a common point on the τ1 or τ2 axis. Therefore, a pair of level curves having

an intersection in the black region has no other intersection in [0, τN1 ]× [0, τN2 ]; thus a point

in this region is a globally stable steady state, as Figure 7 shows. The thick black curve is

the locus of points of tangency between a pair of level curves; these points are globally stable

steady states by Proposition 4.4. The dark gray region is the set of locally stable steady

states. A point in this region is above the thick black curve and surrounded by a pair of

level curves extending from a common point on the τ1 or τ2 axis. Hence it is the higher-tariff

steady state of a regular IRE with two steady states and is thus locally stable by Proposition

4.3. The light gray region is the set of steady states stable from below and unstable from

above. A point in this region is below the locus of tangency and is also surrounded by a

pair of level curves extending from a common point on the τ1 or τ2 axis. Hence it is the

lower-tariff steady state of a regular IRE with two steady states and is stable from below

and unstable from above by Proposition 4.3.
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Figure 11: Classification of steady states supported by regular IREs (light gray = stable
from below and unstable from above, dark gray = locally stable, black = globally stable)
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