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Abstract

We study a one-dimensional voting game in which voters choose a policy from

a one-dimensional policy set over which voters have single-peaked preferences. The

purpose of this paper is to analyze coalitional behaviors under any given voting mech-

anism. We employ the notion of strong Nash equilibrium and identify a necessary

and su¢ cient condition for a voting mechanism to possess a strong Nash equilibrium

by using the minimax theorem. We moreover show that any strong Nash outcome,

if it exists, results in an outcome recommended by a particular augmented median

voter rule.

JEL Classi�cation: D78, D72, C70.

Key words: Single-peakedness, Augmented median voter rule, Strong Nash equilib-

rium, Coalition-proof Nash Equilibrium, Minimax theorem, Manipulation.

1 Introduction

We study a one-dimensional voting game in which voters choose a policy from a one-

dimensional policy set according to a given voting mechanism over which voters single-

peaked preferences (Black [9]). In this environment, it is well known that there exist

strategy-proof, e¢ cient and anonymous social choice functions, contrary to the Gibbard-

Satterthwaite theorem (Gibbard [17]; Satterthwaite [33]). A typical example of such a

function is the median voter rule, which chooses the median of voters�peaks. Moreover,

Moulin [27] provided a characterization of strategy-proof social choice functions. He

showed that a social choice function is strategy-proof, e¢ cient, anonymous and peak-

only if and only if it is a �generalized median voter rule,�which chooses the median of n

voters�peaks and n� 1 exogenous parameters. Because of the existence of �reasonable�
�Research Institute for Economics and Business Administration, Kobe University, 2-1, Rokkodaicho,

Nadaku, Kobe, 657-8501, Japan. Email: hyamamura@rieb.kobe-u.ac.jp
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and strategy-proof social choice functions, many studies on this environment have focused

on strategy-proof voting rules1.

On the other hand, we have not paid much attention to what happens under any

given voting mechanism that does not possess a dominant strategy2. The purpose of

this paper is to analyze the consequence of strategic votes under any given voting mecha-

nisms, including indirect mechanisms, satisfying a mild condition that we call "own range

continuity."

In voting situations, voters with similar thoughts often form a coalition to in�uence

the outcome of the vote. For example, in a congress, most of its members belong to

political parties, because an independent member usually has little power to in�uence

political decisions. When there is an election, some voters with a common interest form

an interest group to in�uence political decisions. The importance of analyzing coali-

tional behaviors in voting situations is explained by Sertel and Sanver [35], that studied

coalitional manipulations in general voting games and implied by the fact that coalitional

notions, such as the core, strong Nash implementation, and coalitional strategy-proofness,

are often applied to the studies of political situations. This is why we pay attention to

coalitional behaviors theroughout this paper. To do so, we employ the notions of strong

Nash equilibrium (Aumann [2]) and coalition-proof Nash equilibrium (Bernheim, Peleg

and Whinston [8]) and obtain the following results.

First, we identify a necessary and su¢ cient condition for a voting mechanism to pos-

sess a non-empty strong Nash equilibrium (Theorem 1). So far as the author knows, there

have been no environments where we can provide a necessary and su¢ cient condition for

the existence of strong Nash equilibria, though, several studies, such as Ichiishi [19], Kon-

ishi, Le Breton, and Weber [21] and Bochet, Sakai and Thomson [11] have found su¢ cient

conditions. In this sense, a one-dimensional voting game is an interesting environment in

the literature of game theory, as well as in that of social choice theory.

Second, we analyze what happens in strong Nash equilibria and show that if a voting

mechanism possess a non-empty strong Nash equilibrium, the set of strong Nash out-

comes must be single-valued and equivalent to an outcome recommended by a particular

augmented median voter rule (Theorem 2). Augmented median voter rules are known as

the only social choice functions satisfying strategy-proofness and continuity (Ching [13].)

Theorem 2 says that even if we do not use a direct revelation mechanism of an augmented

median voter rule, voters�strategic votes must result in a particular augmented median

1See for example, Barbera, Gul, and Stachetti [5], Ching [13], and so on. Sprumont [39], Barbera [3]
and Jackson [20] o¤er surveys in this literature.

2Recently, some papers have analyzed properties of direct reveration mechanisms of some manipulable
rules. See, for example, Renault and Trannoy [30] [31] and Yamamura and Kawasaki [43].

2



voter rule, as long as coalitional behaviors are permitted.

In the proof of Theorem 1 and Theorem 2, we make use of the well-known minimax

theorem (von Neumann [42]). In a two-person zerosum gameG = ff1; 2g ; fA1; A2g ; fu1; u2gg,
thanks to the minimax theorem, we can judge whether G has a Nash equilibrium or not

and specify what happens in a Nash equilibrium. That is,

(1) G has a Nash equilibrium if and only if max
a12A1

inf
a22A2

u1(a1; a2) = min
a22A2

sup
a12A1

u1(a1; a2);

and

(2) if (a�1; a
�
2) is a Nash equilibrium of G, then u1(a�1; a

�
2) = max

a12A1
inf
a22A2

u1(a1; a2) =

min
a22A2

sup
a12A1

u1(a1; a2):

Observe that a two-person zerosum game G is a special case of a one-dimensional voting

game, because in a two-person zerosum game the outcome space can be identi�ed with

range(u1), that is a one-dimensional set, and two players have single-peaked preferences

over the outcome space range(u1), whose peaks are sup range(u1) and inf range(u1), re-

spectively. Such similarity between two-person zerosum games and one-dimensional vot-

ing games enables us to expand the results of the minimax theorem into one-dimensional

voting games.

Third, we study what happens in coalition-proof Nash equilibria. We show that

though the set of coalition-proof Nash equilibria is not always equivalent to that of strong

Nash equilibria (Example 1), these two coincide under a large class of voting mechanisms

(Theorem 3). As long as the equivalence between strong Nash equilibria and coalition-

proof Nash equilibria holds, we can also state that by Theorem 2 any coalition-proof Nash

outcome is equivalent to a particular augmented median voter rule.

Our theorems help us analyze strtategic manipulations of a direct revelation mecha-

nism of a given social choice function3. Since we consider a large class of indirect voting

mechanisms containing direct mechanisms, the analysis of direct mechanisms can be ob-

tained as corollaries. Recently, strategic manipulations of some manipulable rules, such as

average voting rules, have been studied by Renault and Trannoy [30] [31] and Yamamura

and Kawasaki [43] based on dynamically stable Nash equilibrium. They show that there

exists a class of direct revelation mechanisms in which voters learn to play a unique Nash

equilibrium that implements an augmented median voter rule. Our theorems reinforce

their results from the standpoint of coalitional stability.

3There have been some studies that analyzes the consequence of strategic manipulations in several
economic models. See, for example, Hurwicz [18], Otani and Sicilian [28] and Kranich [23] in divisible
goods economies, Tadenuma and Thomson [40] and Fujinaka and Sakai [15] [16] in the economies of one
indivisible good and money, Bochet, Sakai and Thomson [11] in the division problem with single-peaked
preferences, Ma [24] , Alcade [1], Shin and Suh [36], Sonmez [34] and Takamiya [41] in matching problems
and Sertel and Sanver [35] in general voting situations.
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Our theorems are also useful when we characterize the class of of strategy-proof

social choice functions; and when we consider what happens in a two-person division

problem with single-peaked preferences. We will show how to apply our theorems to

these situations.

The rest of this paper is organized as follows: in section 2, we introduce the model and

de�nitions; in section 3, we indicate our main result; in section 4, we propose applications

for our theorems; and in section 5, we conclude this paper.

2 Notation

2.1 Basic De�nitions

Let N � f1; 2; � � � ; ng be the set of voters. A denotes the policy set. Through this

paper, we suppose that A is a non-empty and closed subset of the extended real number

line R[f�1;1g4. For each voter i2N , i has a complete, transitive and single-peaked
preference Ri over A. The symmetric and asymmetric parts of Ri are denoted by Ii and

Pi respectively. A preference relation Ri over A is said to be single-peaked if there exists a

peak p(Ri) 2 A such that for each c; d 2 A; c < d � p(Ri) implies dPic and p(Ri) � c < d
implies cPid. Let Ri be the set of i�s single-peaked preferences.

S � A is said to be an interval of A if for any a; b; c 2 A, a � b � c, if a; c 2 S,
then b 2 A: For each a; b 2 A, a � b; [a; b]A denotes the set fc 2 Aj a � c � bg and is
called an closed interval of A.

2.2 Voting Mechanism

A voting mechanism is de�ned by a pair � = (fMigi2N ; g) where Mi denotes voter i�s

message space, and g : M ! A the outcome function that associates with each message

pro�le m � fmigi2N 2M � fMigi2N a policy g(m) 2 A.
We moreover introduce some properties of voting mechanisms.

Own Range Continuity: For any i 2 N and any m�i 2 M�i � fMjgj2Nnfig,
g(Mi;m�i) is an interval of A:

Own range continuity requires that for any a; b; c 2 A, a � b � c, whenever a voter
can change a policy from a to c by changing his message, he is also able to change a

policy from a to b. The policy change from a to c is more radical than the policy change

from a to b. In this sense, own range continuity is a condition that makes it possible for

4We allow A to be either �nite or a closed interval.
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a voter to change a policy moderately. Throughout this paper, we assume that a voting

mechanism satis�es own range continuity.

Optimizability: For any i 2 N , there exist emi;mi 2Mi such that for any m�i 2M�i,

g(Mi;m�i) � [g(emi;m�i); g(mi;m�i)]A :

Optimizability requires that whenever a voter wants to make a policy the lowest (or

the highest), he is able to do so by reporting emi (or mi). That is, under an optimizable

voting mechanism, a voter can minimize (or maximize) a policy without expecting other

voters�messages.

2.3 Equilibrium Notions

Under a voting mechanism �, each voter reports his own messsage and a policy is decided

according to the reported messages. Then, each voter will vote strategically to his advan-

tage. We expect the consequences of strategic votes based on strong Nash equilibrium

(Aumann [2]) and coalition-proof Nash equilibrium (Bernheim, Peleg and Whinston [8]),

which take coalitional deviations into consideration.

First, let us de�ne a strong Nash equilibrium. Given a voting mechanism � =

(fMigi2N ; g) and a preference pro�le R 2 R, we say a coalition S � N has a devia-

tion m0
S 2 MS � fMigi2S at a voting pro�le m 2 M , if g (m0

S ;m�S)Pig(m), 8i 2 S. A
message pro�le m is a strong Nash equilibrium if there is no coalition that has a deviation

at m. Given a voting mechanism � and a preference pro�le R, let

SNv(�; R) � fm 2M j : (9S � N such that S has a deviation atm:)g :

be the set of Nash equilibrium voting pro�les and

SN(�; R) � g(SNv(�; N))

be the set of strong Nash outcomes of a voting mechanism � under a preference pro�le

R.

Next, we introduce the notion of coalition-proof Nash equilibrium. Given � and R,

we say a coalition S � N has a credible deviation m0
S 2 MS at a voting pro�le m, if

g (m0
S ;m�S)Pig(m), 8i 2 S and there is no T � S, T 6= S such that T has a credible

deviation at (m0
S ;m�S). A message pro�le m is a coalition-proof Nash equilibrium if

there is no coalition that has a credible deviation at m. The set of coalitional-proof Nash
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voting pro�les CNv(�; R) is de�ned as follows.

CNv(�; R) � fm 2M j : (9S � N such that S has a credible deviation atm:)g :

Let

CN(�; R) � g(CNv(�; N))

be the set of coalitional-proof Nash outcomes.

By the de�nitions of these two equilibrium notions, we can easily check that

SN(�; R) � CN(�; R); for any � and any R:

2.4 Social Choice Function

A social choice function is de�ned as a mapping f : R ! A that associates with each

preference pro�le R 2 R a policy f(R) 2 A that is considered to be socially desirable.

Here are examples of social choice functions.

Augmented median voter rule: For each S � N , there exists aS 2 A such that S � T
implies aS � aT and for each R 2 R, whenever p(Ri(1)) � p(Ri(2)) � � � � � p(Ri(n)),

f(R) = m(
�
p(Ri(1)); � � � ; p(Ri(n)); a�; afi1g; afi1;i2g; � � � ; aN

	
);

where m(fx1; � � � ; xng) denotes the median of fx1; � � � ; xng.
Given a list of parameters a � faSgS�N such that S � T =) aS � aT ; ma denotes

an augmented median voter rule such that for each R 2 R, if p(Ri(1)) � p(Ri(2)) � � � � �
p(Ri(n)), then

ma(R) = m(
�
p(Ri(1)); � � � ; p(Ri(n)); a�; afi1g; afi1;i2g; � � � ; aN

	
):

Augmented median voter rules are known as the only rules satisfying strategy-proofness

and an additional condition (Moulin [27], Ching [13]), such as continuity, peak-only, peak-

monotonicity, uncompromisingness or range continuity.

Generalized median voter rule: An augmented median voter rule ma such that a� =

maxA; aN = minA and jSj = jT j =) aS = aT , where jXj denotes the cardinality of X.
It is well known that a social choice satis�es e¢ ciency, anonymity, strategy-proofness

and an additional condition, if and only if it is a generalized median voter rules (Moulin

6



[27], Ching [13]).

Generalized average voting rule: Suppose that A is a closed interval [a; b]. There

exists a continuous and strictly increasing function g : [na:nb]! [a; b] such that g(na) =

a; g(nb) = b, and for each R 2
Q
i2N Ri, f(R) = g(

P
i2N p(Ri)):

Though generalized average voting rules are not strategy-proof, some studies, such

as Renault and Trannoy [30] [31] and Yamamura and Kawasaki [43] pay attention to

the behaviors of generalized average voting rules, because a direct revelation mechanism

of a generalized average voting rule implements a generalized median voter rule in a

dynamically stable and unique Nash equilibrium. This is a merit any direct revelation

mechanism of an augmented median voter rule does not possess; as pointed out by Saijo,

Sjostrom and Yamato [32], there is no augmented median voter rule that can exclude

ine¢ cient Nash outcomes.

Next, We introduce some properties of social choice functions.

Own Range Continuity: For any i 2 N and any R�i 2 R�i, f(Ri; R�i) is an interval
of A:

Optimizability: For any i 2 N , there exist eRi; Ri 2 Ri such that for any R�i 2 R�i,
f(Ri; R�i) �

h
f( eRi; R�i); f(Ri; R�i)i

A
:

It can be easily checked that both median voter rules and average voting rules satisfy

all of these properties.

These properties are somewhat similar to those Bochet, Sakai and Thomson [11]

imposed on division rules in the context of the division problem with single-peaked pref-

erences. However, our properties are di¤erent from theirs, because we replace e¢ ciency5,

anonymity, own peak continuity and own peak monotonicity, which Bochet, Sakai and

Thomson [11] imposed on division rules, with own range continuity and optimizability.

We can obtain similar results to Bochet, Sakai and Thomson [11] even if peak continuity

and own peak monotonicity are weakened to own range continuity and optimizability,

respectively.

Given a social choice funtion f , a natural (but not always rational) way to achieve

5 In the problem of one-dimensional voting, we can easily be checked that a rule f satis�es e¢ ciency
if and only if for any R 2 R, there exists i; j 2 N , such that p(Ri) � f(R) � p(Rj).
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f is to ask each voter their preference directly and a policy is chosen according to a

social choice function f . Such a voting mechanism is called a direct revelation mechanism

associated with f and denoted by �f � (fRigi2N ; f).
A social choice funtion f is said to be strategy-proof if for any R 2 R, R is a Nash

equilibrium of �f and coalitionally strategy-proof if for any R 2 R, R is a strong Nash

equilibrium of �f :

3 Results

3.1 Strong Nash Equilibrium

The purpose of this paper is to analyze the consequence of coalitional behaviors under

any range continuous voting mechanism. First, we provide a necessary and su¢ cient

condition for a voting rule to possess a non-empty strong Nash equilibrium.

Throughout this chapter, we assume without a loss of generality that p(R1) � � � � �
p(Rn).

Theorem 1. Let � be any own range continuous voting mechanism. Then for any

R 2 R, SNv(�; N) 6= � if and only if for any S � N , the policies

max
mNnS

inf
mS

g(mS ;mNnS);min
mS

sup
mNnS

g(mS ;mNnS);

exist and satisfy the following two conditions;

Condition 1: max
mNnS

inf
mS

g(mS ;mNnS) = min
mS

sup
mNnS

g(mS ;mNnS);

Condition 2: for any i 2 N , S � Nn fig, and any c 2
�
max

mNnS[fig
inf

mS[fig
g(mS ;mNnS); max

mNnS
inf
mS

g(mS ;mNnS)

�
A

,

there exists m�
i 2Mi such that the policies

max
mNnS[fig

inf
mS

g(mS ;mNnS[fig;m
�
i );minmS

sup
mNnS[fig

g(mS ;mNnS[fig;m
�
i )

exist and satisfy

max
mNnS[fig

inf
mS

g(mS ;mNnS[fig;m
�
i );minmS

sup
mNnS[fig

g(mS ;mNnS[fig;m
�
i ) = c:

Proof of Theorem 1.
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In order to prove theorem 1, we make use of the following "minimax theorem."

Theorem (Minimax Theorem6.) Let f : X � Y ! R [ f�1;1g be an extended
real-valued mapping. There exists (x�; y�) 2 X � Y such that for any x 2 X and y 2 Y;

f(x�; y) � f(x�; y�) � f(x; y�);

if and only if the two quantities

max
y
inf
x
f(x; y);min

x
sup
y
f(x; y)

exist and the following equality holds:

max
y
inf
x
f(x; y) = min

x
sup
y
f(x; y):

First, we shall prove the "only if" part. For each S � N , consider a preference pro-

�le R 2 R such that p(Rj) = minA, 8j 2 S and p(Rj) = maxA, 8j 2 NnS7: Under
this preference pro�le R, we can easily check that m� 2 SN(�; R) if and only if for any
mS 2MS and any mNnS 2MNnS ;

g(m�
S ;mNnS) � g(m�) � g(mS ;m

�
NnS):

Then, by applying the minimax theorem, there exists a strong Nash message pro�le

m� 2 SN(�; R), only if the policies

max
mNnS

inf
mS

g(mS ;mNnS);min
mS

sup
mNnS

g(mS ;mNnS);

exist and satisfy the following property;

(1 ) max
mNnS

inf
mS

g(mS ;mNnS) = min
mS

sup
mNnS

g(mS ;mNnS):

The rest of the proof of the "only if" part is to show that the condition (2) is also required.

6For example, Petrosjan and Zenkevich [29] provide a proof of this statement.
7Since A is a closed subset of R[f�1;1g, minA and maxA are well-de�ned.
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For any i 2 N , S � Nn fig, and any c 2
�

max
mNn(S[fig)

inf
m(S[fig)

g(mS ;mNnS); max
mNnS

inf
mS

g(mS ;mNnS)

�
A

,

consider a preference pro�le R0 2 R such that p(R0j) = minA, 8j 2 S and p(R0j) = maxA,
8j 2 Nn (S [ fig) and p(R0i) = c: In this case, m� 2 SN(�; R0) only if for any mS 2MS

and any mNn(S[fig) 2MNnS ;

g(m�
S ;mNn(S[fig);m

�
i ) � g(m�) � g(mS ;m

�
Nn(S[fig);m

�
i ):

Then, by applying the minimax theorem again, there exists a strong Nash message pro�le

m� 2 SN(�; R0), only if the policies

max
mNnS[fig

inf
mS

g(mS ;mNnS[fig ;m
�
i );minmS

sup
mNnS[fig

g(mS ;mNnS[fig ;m
�
i )

exist and satisfy

max
mNnS[fig

inf
mS

g(mS ;mNnS[fig ;m
�
i ) = minmS

sup
mNnS[fig

g(mS ;mNnS[fig ;m
�
i ):(a)

Now suppose that there exists m� 2 SN(�; R0) such that p(Ri) > g(m�): Then, since

min
mS

sup
mNnS[fig

g(mS ;mNnS[fig ;mi) � min
mS

sup
mNnS

g(mS ;mNnS ;mi), we can take m0
NnS 2MNnS

such that

g(m�) < g(m�
S ;m

0
NnS) � p(Ri);

by own range continuity of �. So, g(m�
S ;m

0
NnS)Pi; 8j 2 NnS, that contradicts m

� 2
SN(�; R0). Hence, m� 2 SN(�; R0) only if p(Ri) � g(m�).

We can similarly show that whenever m� 2 SN(�; R0), p(Ri) � g(m�); so we have

m� 2 SN(�; R0) only if p(Ri) = g(m�). (b)

Combining (a) with (b), we have that m� 2 SN(�; R0), only if the policies

max
mNnS[fig

inf
mS

g(mS ;mNnS[fig ;m
�
i );minmS

sup
mNnS[fig

g(mS ;mNnS[fig ;m
�
i )

exist and satisfy

max
mNnS[fig

inf
mS

g(mS ;mNnS[fig ;mi) = min
mS

sup
mNnS[fig

g(mS ;mNnS[fig ;mi) = c;

that shows the necessity of the condition (2). The proof of the "only if" part is completed.�

Next, we shall show the "if" part. Before we proceed to the proof of the "if" part, we

introduce 2n policies that are useful for our analysis. Let � be any own range continuous
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voting mechanism that satis�es the conditions of Theorem 1. For each S � N , de�ne

�S 2 A as
�S = max

mNnS
inf
mS

g(mS ;mNnS) = min
mS

sup
mNnS

g(mS ;mNnS):

This �S indicates an outcome when members of S minimize the policy and the rest of

the members maximize it. These 2n policies f�SgS�N helps us analyze the consequence

of strategic votes, because they actually play the roles of 2n exogenous parameters of an

augmented median voter rule.

Case 1.
�
i 2 N j p(Ri) = m(

�
p(R1); � � � ; p(Rn);��;�f1g;�f1;2g; � � � ;�N

	
)
	
= �.

In this case, there exists j 2 f0; 1; � � � ; ng such that

�f1;��� ;jg = m(
�
p(R1); � � � ; p(Rn);��;�f1g;�f1;2g; � � � ;�N

	
):

Because the value of �f1;��� ;jg is the median of 2n + 1 policies, we can choose j 2
f0; 1; � � � ; ng to satisfy the following equality,

���i 2 N jp(Ri) < �f1;��� ;jg	��+ j = ���i 2 N jp(Ri) > �f1;��� ;jg	��+ (n� j):
Then, since both sides of the above equality must equal n; we obtain

���i 2 N jp(Ri) < �f1;��� ;jg	�� = n� j and ���i 2 N jp(Ri) > �f1;��� ;jg	�� = j:
Let us consider the following message pro�le m� such that

m�
f1;��� ;n�jg 2 Arg min

mf1;��� ;n�jg
sup

mfn�j+1;��� ;ng
g(mf1;��� ;n�jg;mfn�j+1;��� ;ng), and

m�
fn�j+1;��� ;ng 2 Arg max

mfn�j+1;��� ;ng
inf

mf1;��� ;n�jg
g(mf1;��� ;n�jg;mfn�j+1;��� ;ng):

By assumption, we can take such a message pro�le m� and

g(m�) = min
mf1;��� ;n�jg

sup
mfn�j+1;��� ;ng

g(mf1;��� ;n�jg;mfn�j+1;��� ;ng)

= max
mfn�j+1;��� ;ng

inf
mf1;��� ;n�jg

g(mf1;��� ;n�jg;mfn�j+1;��� ;ng)

= �f1;��� ;jg:

We will show that this message pro�le m� is a strong Nash equilibrium. Suppose that

there exist S � N and m0
S 2 MS such that g(m0

S ;m
�
NnS)Pig(m

�); 8i 2 S. We moreover
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suppose without a loss of generality that g(m0
S ;m

�
NnS) < g(m

�). Then,

S � f1; � � � ; n� jg ;

because g(m�)Pig(m0
S ;m

�
NnS), 8i 2 fn� j + 1; � � � ; ng : However, since m�

f1;��� ;n�jg 2
Arg min

mf1;��� ;n�jg
g(mf1;��� ;n�jg;m

�
fn�j+1;��� ;ng)

g(m0
S ;m

�
NnS) � g(m

�), 8m0
S 2MS ;

which contradicts g(m0
S ;m

�
NnS) < g(m

�). Hence,m� must be a strong Nash equilibrium.�
Case 2.

�
i 2 N j p(Ri) = m(

�
p(R1); � � � ; p(Rn);��;�f1g;�f1;2g; � � � ;�N

	
)
	
6= �.

In this case, by de�nition of the median, we can take i 2 N , and j 2 f0; 1; � � � ; ng with
�f1;2;��� ;jg � p(Ri) such that

p(Ri) = m(
�
p(R1); � � � ; p(Rn);��;�f1g;�f1;2g; � � � ;�N

	
)

and j + (i� 1) = n or j = n:
By de�nition of the median again, we must also have

�f1;2;��� ;n�ig � p(Ri) � �f1;2;��� ;n�i+1g:

Let us consider the following message pro�le m� such that

m�
f1;��� ;i�1g 2 Arg min

mf1;��� ;i�1g
sup

mfi+1;��� ;ng
g(mf1;��� ;i�1g;m

�
i ;mfi+1;��� ;ng); and

m�
fi+1;��� ;ng 2 Arg max

mfi+1;��� ;ng
inf

mf1;��� ;i�1g
g(mf1;��� ;i�1g;m

�
i ;mfi+1;��� ;ng);

and g(m�) = p(Ri). By assumption, we can take such a message pro�le m� and

g(m�) = min
mf1;��� ;i�1g

sup
mfi+1;��� ;ng

g(mf1;��� ;i�1g;m
�
i ;mfi+1;��� ;ng)

= max
mfi+1;��� ;ng

inf
mf1;��� ;i�1g

g(mf1;��� ;i�1g;m
�
i ;mfi+1;��� ;ng)

= p(Ri):

We will show that this message pro�le m� is a strong Nash equilibrium. Suppose that

there exist S � N and m0
S 2 MS such that g(m0

S ;m
�
NnS)Pig(m

�); 8i 2 S. We moreover

12



suppose without a loss of generality that g(m0
S ;m

�
NnS) < g(m

�). Then,

S � f1; 2; � � � ; i� 1g ;

because g(m�)Pjg(m0
S ;m

�
NnS), 8j 2 fi; i+ 1; � � � ; ng.

However, since m�
f1;��� ;i�1g 2 Arg min

mf1;��� ;i�1g
g(mf1;��� ;i�1g;m

�
i ;m

�
fi+1;��� ;ng)

g(m0
S ;m

�
NnS) � g(m

�), 8m0
S 2MS ;

which contradicts g(m0
S ;m

�
NnS) < g(m

�). Hence,m� must be a strong Nash equilibrium.�

Theorem 1 establishes the necessary and su¢ cient condition for a voting mecha-

nism to possess a non-empty strong Nash equilibrium. The proof of su¢ ciency part of

Theorem 1 is constructive. First, focus on the policy a� 2 A that is the median of�
p(R1); � � � ; p(Rn);��;�f1g;�f1;2g; � � � ;�N

	
. Next, construct a message pro�le m� 2 M

such that8>>>>><>>>>>:
m�
NnfS[Tg 2

�
m0
NnfS[TgjminmS

sup
mT

g(mS ;m
0
NnfS[Tg;mT ) = a

�
�

m�
S 2 ArgminmS

sup
mT

g(mS ;m
�
NnfS[Tg;mT ); S = fi 2 N jp(Ri) < a�g

m�
T 2 ArgmaxmT

inf
mS

g(mS ;m
�
NnfS[Tg;mT ); T = fi 2 N jp(Ri) > a�g

and show that this message pro�le m� is a strong Nash equilibrium

As a next step, we specify strong Nash outcomes.

Theorem 2. Let � be any own range continuous voting mechanism that satis�es all

conditions in Theorem 1. Then, for any R 2 R,

SN(�; R)= fma�(R)g ;

where a�S=�S , for each S � N .

Proof of Theorem 2.
In Theorem 1, we have already shown that for any R 2 R, ma�(R) 2 SN(�; R): So, it is
su¢ cient to show that SN(�; R) does not contain any other policy.

Suppose that there exists m 2 SN(�; R), such that

g(m) > m(
�
p(R1); � � � ; p(Rn);��;�f1g;�f1;2g; � � � ;�N

	
):
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Let

S �
�
i 2 N j p(Ri) � m(

�
p(R1); � � � ; p(Rn);��;�f1g;�f1;2g; � � � ;�N

	
)
	
= f1; � � � ; ig and

T �
�
j 2 f0; � � � ; ng j �f1;2;��� ;jg � m(p(R1); � � � ; p(Rn); f1; � � � ; fn�1)

	
= fj; j + 1; � � � ; ng :

Then, since jSj+ jT j � n+ 1;

�S = min
mS

sup
mNnS

g(mS ;mNnS) 2 T:

By own range continuity, we can take m0
S 2MS such that

�S � m
��
p(R1); � � � ; p(Rn);��;�f1g;�f1;2g; � � � ;�N

	�
� g(m0

S ;mNnS) < g(m):

In this case, since for any i 2 S, p(Ri) � m
��
p(R1); � � � ; p(Rn);��;�f1g;�f1;2g; � � � ;�N

	�
,

we obtain

g(m0
S ;mNnS)Pig(m); 8i 2 S:

Hence, S has a deviation m0
S 2MS , which contradicts m 2 SN(�; R). That is, whenever

m 2 SN(�; R),

g(m) � m(
�
p(R1); � � � ; p(Rn);��;�f1g;�f1;2g; � � � ;�N

	
):

We can similarly show that whenever m 2 SN(�; R),

g(m) � m(
�
p(R1); � � � ; p(Rn);��;�f1g;�f1;2g; � � � ;�N

	
):�

Theorem 1 and Theorem 2 together characterize strong Nash outcomes. As a direct

consequence of Theorem 1 and Theorem 2, we can state that if a voting mechanism

satis�es range continuity, and all conditions of Theorem1, then whenever p(R1) � � � � �
p(Rn);

SN(�; R) =
�
m(p(R1); � � � ; p(Rn);��;�fiig; � � � ;�N )

	
;

which implies that strategic votes must result in an augmented median voter rule when

communication among voters is allowed.

In the context of implementation theory, Theorem 1 and Theorem 2 "almost" charac-

terize the class of social choice rules that can be implemented in strong Nash equilibrium.

These theorems tell us that a social choice rule that can be implemented in strong Nash

equilibrium by an own range continuous mechnism must be single-valued and an aug-
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mented median voter rule: The way to establish this result is quite di¤erent from the

"standard" approach to implementation theory, such as Maskin [25] [26], Dutta and Sen

[14], and Suh [37], in which a particular mechanism is constructed to show the imple-

menbility of a social choice rule.

In the last of this section, we illustrate how to use Theorem 1 and Theorem 2. The fol-

lowing Proposition 1 exhibits how many voting mechanisms possess a non-empty strong

Nash equilibrium.

Proposition 1. Let � be any voting mechanism that satis�es own range continuity

and optimizability. Then, for any R 2 R,

SN(�; R) = fma�(R)g 6= �;

where a�S = g(emS ;mNnS); in which for any i 2 N , any mi 2 Mi, and any m�i 2 M�i;

g(emi;m�i) � g(mi;m�i) � g(mi;m�i):

Proof of Proposition 1.
By Theorem 1 and Theorem 2, it is su¢ cient to show that an optimizable voting mech-

anism � satis�es all conditions in Theorem 1. If, � satis�es optimizability, then for any

S � N ,
g(emS ;mS) = max

mNnS
inf
mS

g(mS ;mNnS) = min
mS

sup
mNnS

g(mS ;mNnS):

Hence, Condition (1) of Theorem 1 is satis�ed.

For any i 2 N , S � Nn fig, and any c 2
�
max

mNnS[fig
inf

mS[fig
g(mS ;mNnS); max

mNnS
inf
mS

g(mS ;mNnS)

�
A

,

by range continuity, we can take m�
i 2Mi such that

g(emS ;mNn(S[fig);m
�
i ) = max

mNn(S[fig)
inf
mS

g(mS ;mNn(S[fig);m
�
i )

= min
mS

sup
mNnS[fig

g(mS ;mNn(S[fig);m
�
i )

= c:

Hence, Condition (2) of Theorem 1 is also satis�ed.�

3.2 Coalition-proof Nash Equilibrium

Next, we study what happens in a coalition-proof Nash equilibrium. Though the set of

coalition-proof Nash outcomes is not always equivalent to that of strong Nash outcomes,
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we can show the equivalence between CN(�; R) and SN(�; R) in a large class of voting

mechanisms. The following Example 1 exhibits the inequivalence between CN(�; R) and

SN(�; R).

Example 1. Let N = f1; 2g, A = f1; 2; 3g. Consider the following voting mechanism
� = (fM1;M2g ; g) such that M1 = M2 = fx; y; zg and g is expressed by the following
Table 1.

Table 1.

1n2 x y z

x 1 1 1

y 1 3 2

z 1 2 3

Then, under a preference pro�le R = (R1; R2) such that p(R1) = 2 and p(R2) = 3, since

SNv(�; R) = � 6= f(x; x)g = CNv(�; R);

SN(�; R) = � 6= f1g = CN(�; R):

Thus, the equivalence between SNv(�; R) and CNv(�; R) does not always hold.

On the other hand, as long as � satis�es optimizability, the equivalence between

coalition-proof Nash equilibrium and strong Nash equilibrium is assured.

Theorem 3. Let � be any voting mechanism that satis�es own range continuity and

optimizability. Then, for any R 2 R,

SNv(�; R) = CNv(�; R) 6= �.

Hence, for any R 2 R;

SN(�; R) = CN(�; R) = fma�(R)g ;

where a�S = g(emS ;mNnS); in which for any i 2 N , any mi 2 Mi, and any m�i 2 M�i;

g(emi;m�i) � g(mi;m�i) � g(mi;m�i):

Proof of Theorem 3.
It is su¢ cient to show that there exists S0 � N which has a credible deviation at
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m 2 M , whenever there exists S � N which has a deviation at m 2 M . Suppose

that S � N has a deviation m0
S 2 MS at m 2 M . We moreover assume with-

out a loss of generality g(m0
S ;m�S) < g(m). Then, for any i 2 S, p(Ri) < g(m).

Let S � fi1; � � � ; ikg be such that p(Ri1) � � � � � p(Rik): Consider emS 2 MS , such

that g(emi;m�i) � g(mi;m�i) 8i 2 S; 8mi 2 Mi.and 8m�i 2 M�i Then, there exists

h 2 f1; � � � ; kgsuch that

g
� emfi1;��� ;ih�1g;mi2N=fi1;��� ;ih�1g

�
= g(m), and

g
� emfi1;��� ;ihg;mN=fi1;��� ;ihg

�
< g(m):

Let S0 � fi1; � � � ; ihg and take m00
S0 2 MS0 such that m00

i = emi, 8i 2 fi1; � � � ; ih�1g,
and

m00
ih
=

8<:emih if g
� emS0 ;mN=S0

�
> p(Rih)bmih ; such that g

� emfi1;��� ;ih�1g; bmih ;mN=S0
�
= p(R

ih
) if g

� emS0 ;mN=S0
�
� p(R

ih
):

We shall show that m00
S0 is a credible deviation of S

0 at m.

If g
� emS0 ;mN=S0

�
> p(Rih), then

g(m00
S0 ;m�S0) � g(m000

S0 ;m�S0), 8m000
S0 2MS0

by optimizability, so we have

g(m00
S0 ;m�S0)Rig(m

000
s00 ;m

00
S0nS00 ;m�S0);8S00 � S0, 8mS00 2MS00 , 8i 2 S00:

Hence, there is no S00 � S0 that has a credible deviation at (m00
S0 ;m�S0). So, m00

S0 is a

credible deviation of S0 at m.

If g
� emS0 ;mN=S0

�
� p(Rih), then

g(m00
S0 ;m�S0)Rihg(m

000
S0 ;m�S0); 8m000

S0 2MS0 ;

because p(Rih) =g(m
00
S0 ;m�S0): Hence, if there exists S00 � S0 that has a credible deviation

at (m00
S0 ;m�S0), then ih =2 S00. However, by optimizability,

g
� emS0nfihg;m

00
ih
;mNnS0

�
� g

�
m000
S0nfihg;m

00
ih
;mNnS0

�
;8m000

S0nfihg 2MS0nfihg;
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that implies

g(m00
S0 ;m�S0)Rig(m

000
S00 ;m

00
S0nS00 ;m�S0);8S00 � S0n fihg , 8mS00 2MS00 , 8i 2 S00:

Therefore, there is no S00 � S0 that has a credible deviation at (m00
S0 ;m�S0). So, m00

S0 is a

credible deviation of S0 at m.�

Note that by Theorem 3, we �nd a new su¢ cient condition for the equivalence be-

tween strong Nash and coalition-proof Nash equilibria. Konishi, Breton, and Weber [22]

showed su¢ cient conditions for the equivalence between these two solutions, but we can-

not apply them to our case.

4 Applications

4.1 Direct Revelation Games

The original motivation of this study is to analyze what happens as a consequence of

coalitional manipulations under a given direct revelation mechanisms as in other en-

vironments, such as Shin and Suh [36], Selter and Sanver [35] and Bochet, Sakai and

Thomson [11]. Since our theorems cover direct revelation mechanisms as special cases,

we can propose the following proposition as corollaries of our Theorem 1, 2 and 3.

Proposition 2. Let f be any own range continuous and optimizable social choice func-
tion. Then for any R 2 R;

SNv(�f ; R) = CNv(�f ; R) 6= � and SN(�f ; R) = CN(�f ; R) = fma�(R)g ;

where a�S = f( eRS ; RNnS); in which for any i 2 N , any Ri 2 Ri, and any R�i 2 R�i;
f( eRi; R�i) � f(Ri; R�i) � f(Ri; R�i):

This Proposition 2 exhibits no matter what kind of direct revelation mechanism we

use, coalitional manipulations result in an outcome that a particular augmented median

voter rule suggests, as long as an associated social choice function satis�es own range

continuity and optimizability. Notice that optimizability is a natural property for a so-

cial choice function to be satis�ed. It is implied by the fact that the following condition

called "own peak monotonicity" implies optimizability.
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Own Peak Monotonicity: For any i 2 N; Ri; R
0
i 2 Ri any and any R�i 2 R�i,

if p(Ri) � p(R0i), then f(Ri; R�i) � f(Ri; R�i):

4.2 Characterization of Strategy-proof Social Choice Functions: A Sim-
ple Proof

Our Theorem 2 is, in fact, useful for characterizing strategy-proof social choice functions.

Though Moulin [27] and Ching [13] have already provided the proofs of the characteri-

zation theorems, Theorem 2 can make them much simpler. The following Theorem 4 is

an alternative characterization theorem of strategy-proof social choice functions with a

simple proof.

Theorem 4. A Social function f satis�es (coalitional) startegy-proofness and own range
continuity if and only if it is an augmented median voter rule.

Proof of Theorem 4.
Barbera, Berga and Moreno [4] have shown that in one-dimensional voting situations,

strategy-proofness is equivalent to coalitional strategy-proofness. So, it is su¢ cient to

characterize the class of coalitional strategy-proof social choice functions. In this paper

we provide the proof of the "only if" part only.

Let f be any coalitionally strategy-proof and own range continuous social choice

function. Then, since for any R 2 R, R 2 SNv(�f ; R), we have f(R) 2 SN(�f ; R). By
Theorem 2, we obtain SN(�f ; R) = ff(R)g and f(R) must be a particular augmented
median voter rule. Thus, if an own range continuous social choice function satis�es

coalitional strategy-proofness, it must be an augmented median voter rule.�

Ching [13] has shown that a social choice function f is an augmented median voter

rule if and only if f satis�es strategy-proofness and one of the following �ve conditions;

Continuity: For any i 2 N , any R�i 2 R�i, any Ri 2 Ri and any
�
Rki
	1
k=1

� Ri, if
lim
k!1

Rki = Ri, then lim
k!1

f(Rki ; R�i) = f(Ri; R�i);

Peak Only: For any R;R0 2 R, if for any i 2 N , p(Ri) = p(R0i); then f(R) = f(R0);

Own Peak Monotonicity: For any i 2 N; Ri; R0i 2 Ri any and any R�i 2 R�i, if
p(Ri) � p(R0i), then f(Ri; R�i) � f(Ri; R�i);
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Uncompromisingness: For any R 2 R; i 2 N; and anyR0i 2 Ri, if [f(R) < p(Ri) and f(R) � p(R0i)]
or [f(R) > p(Ri) and f(R) � p(R0i)], then f(R) = f(R0i; R�i);

Range Continuity: There exists eR;R 2 R such that f(R) =
h
f( eR); f(R)i

A
:

Notice that our Theorem 4 is independent of Ching [13]�s characterization theorem,

because own range continuity implies none of these �ve conditions. The following Exam-

ple 2 indicates that own range continuity does not imply range continuity.

Example 2. Let A = [0; 1] and consider the following social choice funciton f such

that

f(R) =

8<:maxi2N
p(Ri) if p(Ri) > 0; 8i 2 N;

1 otherwise.

Since for any i 2 N , and any R�i 2 R�i,

f(Ri; R�i) =

8><>:
�
max
j 6=i

p(Rj); 1

�
if p(Rj) > 0; 8j 6= i;

f1g otherwise,

f satis�es own range continuity. However, f fails to satisfy range continuity, because

f(R) = (0; 1].

4.3 Division Problem in Single-peaked Preferences: Two-person Case

A division problem with single peaked preferences is a situation where a �xed amount of

a resource should be shared among agents who have single-peaked preferences over the

amount of a resource. In this environment, it is known that there exists a strategy-proof,

e¢ cient and anonymous division rule; the uniform rule (Benassy [7]; Sprumout [38]).

The division problem with single-peaked preferences can be described as follows.

Let N = f1; � � � ; ng be the set of agents and there is a �xed amount of a resource

 > 0 to be shared among N: The set of feasible allocations is denoted by A =�
fxigi2N 2 Rn+j

P
i2N xi = 


	
. Each agent i 2 N has a single-peaked preference over

the amount of a resource [0;
] allocated to i: p(Ri) 2 [0;
] denotes agent i�s peak.
An allocation mechanism is de�ned by the pair � = (fMigi2N ; g) where Mi denotes
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voter i�s message space, and g : M ! A the outcome function that associates with each

message pro�le m 2M an allocation g(m) 2 A. An allocation mechanism � is said to be

own range continuous if for any i 2 N and any m�i 2M�i, gi(Mi;m�i) is an interval of

[0;
], and to be optimizable if for any i 2 N , there exist emi;mi 2 Mi such that for any

m�i 2M�i, gi(Mi;m�i) � [gi(emi;m�i); gi(mi;m�i)] :

Observe that A can be regarded as an n�1 dimensional simplex. Hence, when n = 2,
as Barbera, Jackson and Neme [6] have pointed out, we can identify A with the set of

agent 1�s allotments, that is a one-dimensional interval, and two agents have single-peaked

preference over 1�s allotments; agent 1�s peak and agent 2�s peak are p(R1); 
 � p(R2);
respectively. That is, when n = 2; we can apply our results to the analysis of division

problems in sigle-peaked preferences.

When n = 2; our Theorem 1 tells us whether any given own range continuous division

mechanism has a non-empty strong Nash equilibrium or not; our Theorem 2 says that the

set of strong Nash outcomes must be single-valued and speci�ed as a particular sequential

allotment rule (Barbera, Jackson and Neme [6]); and our Theorem 3 shows us that as long

as a division mechanism satis�es optimizability, coalition-proof Nash equilibriua must be

equivalent to strong Nash equilibria.

Our results above are independent of Bochet and Sakai [10] and Bochet Sakai and

Thomson [11], that analyze stragtegic manipulations in direct revelation mechanisms,

in the sense that when n = 2, our results cover a larger class of division mechanisms,

including indirect mechanisms, than their studies. On the other hand, our results cannot

apply to the cases n > 2, because the minimax theorem is useful only for the cases where

the outcome space is one-dimensional. Hence, in order to analyze more than two-person

cases, a di¤erent approach is required.

5 Concluding Remarks

Through the analysis of strategic votes, we reveal the strong position that augmented

median voter rules possess. They are not only strategy-proof but also always expected

as a result of coalitional votes under any given voting mechanism satisfying own range

continuity. This result has a somewhat negative message in the context of implementation

theory. No matter what kind of own range continuous voting mechanism we use, we

cannot escape from augmented median voter rules, as long as coalitional behaviors are

permitted. The class of social choice rules that an own range continuous voting mechanism

can implemented in strong Nash equilibrium is quite restricted.

In one-dimensional voting games, most voters intend either to minimize the policy or

21



to maximize it. Then, the interest of those who want to minimize the policy perfectly

con�icts with that of those who want to maximize it. We can regard the situation as a

kind of two-person zerosum game between minimizers and maximizers. This is why we

can apply the minimax theorem to the analysis of one-dimensional voting games.
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