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Abstract

We analyze a infinitely repeated tariff-setting game by two large countries with al-
ternating moves. We focus on the subgame perfect equilibria in which each country
chooses its tariff according to a stationary function of the other country’s tariff. We
show that there are many equilibria with two steady states, one with higher tariffs
(but still lower than the static Nash tariffs), the other with lower tariffs. We also show
that there is a special class of equilibria in which there exists a unique, globally sta-
ble steady state. In both types of equilibria, one country unilaterally reduces its tariff
from the static Nash equilibrium, the other country reciprocates in response to the first
country’s implicit “promise” to lower its tariff even further, and this process continues
forever, converging to a steady state with tariffs lower than the static Nash tariffs.
Therefore it is promises, rather than threats, that induce the countries to gradually
reduce their tariffs.
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1 Introduction

Why does a country sometimes liberalize trade unilaterally? Trade theory suggests that

trade liberalization benefits a country as long as it is small. But why does even a large

country sometimes liberalize trade unilaterally? A notable example is Britain’s unilateral

trade liberalization in the 1840s, including the repeal of the Corn Laws in 1846 (Conybeare,

2002). Did Britain act unilaterally because it believed that unilateral trade liberalization

itself would benefit Britain? Or did Britain hope that other countries would follow suit?

Bhagwati (2002) argues that the latter idea occurred to British Prime Minister Sir Robert

Peel, who showed leadership in abolishing the Corn Laws. Indeed, most European countries

gradually liberalized trade from the 1840s to the 1880s, following the continual free trade

movement by Britain (Bairoch, 1989; Kindleberger, 1975; Conybeare, 2002, p. 47). History

witnessed what is now known as gradual trade liberalization.

In the literature on trade liberalization, threats play an important role in sustaining

liberalized trade. Using a repeated tariff-setting game, Dixit (1987) shows that liberalized

trade can be sustained by the threat of reverting to the static Nash equilibrium forever

after any deviation. The threat of (infinite) Nash reversion is also used to support an

entire process of trade liberalization by Staiger (1995), Furusawa and Lai (1999), and Bond

and Park (2002). They all consider trade agreements between two countries in which the

countries gradually decrease their tariffs while satisfying at all times an incentive constraint

such that any deviation triggers Nash reversion. These studies show that optimal reciprocal

liberalization must be gradual if skills of workers that are displaced from an import-competing

industry dissipates (Staiger, 1995), if there exist sectoral adjustment costs (Furusawa and

Lai, 1999), or if the incentive constraint is binding only for one of the countries due to size

asymmetry (Bond and Park, 2002).1

1Krishna and Mitra (1999) and Coates and Ludema (2001) explain unilateral trade liberalization based
on lobbying activities, but they do not consider the gradual feature of liberalization processes.
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However, since punitive retaliatory actions are seldom observed in reality, the threat

of reverting to the static Nash equilibrium after a small deviation may not be realistic.

Furthermore, such threats are effective only in sustaining an already established (or agreed-

upon) process of trade liberalization. Once any deviation occurs, the cooperative process

can never be restored.

In this paper, we argue that when a country liberalizes trade unilaterally, what moti-

vates other countries to follow suit is its implicit promise to liberalize trade further if they

reciprocate. For this purpose we study a simple tariff-setting game with alternating moves

between two large countries. Each country’s one-shot payoff is simply the sum of import

and export surplus, and the countries take turns in setting their tariffs: in the first period

one country chooses its tariff, in the second period the other country chooses its tariff, in the

third period the first country chooses its tariff again, and so on. We focus on the subgame

perfect equilibria in which each country, in its turn to move, chooses its tariff according to

a stationary function of the other country’s current tariff. A subgame perfect equilibrium

in this class is termed an “immediately reactive equilibrium” (IRE) by Kamihigashi and

Furusawa (2010), and this class seems particularly suitable for capturing the sequential and

reciprocal aspects of trade liberalization.2

We show first that the IREs are versatile enough to encompass familiar equilibria. For

example, there is an IRE in which each country keeps choosing its static Nash tariff forever.

There is also an IRE in which a steady state with low tariffs is supported by the threat of

Nash reversion. We then show that there are many IREs that have two steady states, one

with higher tariffs, the other with lower tariffs; the higher steady state is locally stable, and

the lower steady state is stable from below but unstable from above. In “effectively efficient”

IREs (defined in Section 3), however, there is a unique, globally stable steady state.

2Kamihigashi and Furusawa (2010) show that our model is in fact equivalent to the corresponding model
with simultaneous moves as long as the IREs are concerned. In model, however, the dynamics generated by
IREs are easier to describe.
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In many of these equilibria, including all the effectively efficient IREs, if the initial tariff

profile is at the static Nash equilibrium, the countries gradually decrease their tariffs toward a

steady state with low tariffs. More specifically, the country that is allowed to move in the first

period cuts its tariff first, the second country responds by cutting its tariff, the first country

then reacts by further cutting its tariff again, and this process continues and gradually

converges to the steady state. Hence these equilibria induce gradual trade liberalization

initiated by unilateral tariff reduction. Furthermore, when the first country cuts its tariff in

the first period, the second country is not threatened to reciprocate. If it did not reciprocate,

the first country would simply keep its tariff unchanged. It is therefore the first country’s

implicit promise to lower its tariff even further if the second country reciprocates, that

motivates the second country to lower its tariff.

A steady state of an IRE has the property that it is supported by a minimum threat:

each country simply makes the other country indifferent between raising its tariff and staying

at the steady state. Even after a deviation, each country promises to lower its tariff as long

as the other country does so, which makes it possible to restore the steady state in a self-

enforcing way. Therefore any stable steady state of an IRE has a built-in mechanism to

restore itself after a deviation. This is in sharp contrast to the aforementioned studies on

gradual trade liberalization, which use the threat of Nash reversion to support a cooperative

process, which could be lost forever in case of any deviation.

We also argue that in order to benefit from unilateral liberalization, a country must leave

sufficient room for further liberalization; in other words, a mutually beneficial liberalization

process must be sufficiently gradual. This is because in our equilibria, a country induces the

other country to reciprocate by promising to offer further liberalization. If a country lowers

its tariff too much at the beginning, then it cannot lower it much further and thus cannot

give the other country much motivation to reciprocate.

We should mention that Johnson (1953-54) studies a similar framework in which two
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large countries alternately select their tariffs. In his model, each country chooses its tariff in

a myopic way in response to the tariff chosen by the other country in the previous period.

The tariff profile then either converges to the static Nash equilibrium or to a cycle around

the Nash equilibrium. By contrast, our model is fully rational and has many equilibria in

which the tariff profile converges to a steady state with tariffs lower than at the static Nash

equilibrium.

The rest of the paper is organized as follows. In Section 2 we describe our tariff-setting

game and formally define IREs. In Section 3 we establish some general properties of the

IREs of our model based on Kamihigashi and Furusawa’s (2010) results. In Section 4 we

describe various IREs of interest and discuss trade liberalization processes. In Section 5 we

offer some concluding remarks.

2 The Model

We consider an alternating-move, tariff-setting game between two large countries, 1 and 2.

Country i imposes a tariff τi ≥ 0 on imports from country j 6= i. Country i’s import demand

is assumed to be a strictly decreasing, continuous function of the price of imports such that

it is equal to zero at country i’s autarkic equilibrium price, whereas its export supply is a

strictly increasing, continuous function of the price of exports. Country i’s import surplus

mi(τi) is the area below the import demand curve and above the world price level. Country

i’s export surplus xi(τj) is the area below the world price level and above the export supply

curve; xi(τj) is a strictly decreasing continuous function of τj. The one-shot payoff of country

i is its gains from trade, i.e., the sum of its import surplus mi(τi) and export surplus xi(τj):

ui(τi, τj) = mi(τi) + xi(τj). (2.1)

Optimal tariff theory suggests that mi(τi) is increasing where τi is small, and decreasing

where τi is large. We assume for simplicity that mi(τi) has a single peak at τNi > 0 and is
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strictly increasing for τi < τNi .3 In Appendix A we derive the surplus functions mi(τi) and

xi(τj) explicitly in a parametric example based on linear demand and supply functions.

Since τNi is country i’s strictly dominant strategy, (τN1 , τ
N
2 ) is a unique static Nash equi-

librium. We henceforth restrict the feasible set of country i’s tariffs to [0, τNi ], as we are

mainly interested in tariff reduction processes. A more general case allowing for τi > τNi can

be analyzed using Kamihigashi and Furusawa’s (2010) results.

Let T1 = {1, 3, 5, · · · } and T2 = {2, 4, 6, · · · } denote the sets of periods in which country

1 and country 2 select their individual tariffs, respectively. We focus the subgame perfect

equilibria in which country i, in its turn to move (i.e., t ∈ Ti), selects its tariff τi,t according

to a stationary reaction function fi(τj,t) of country j’s current tariff τj,t, which was selected

in the previous period. Such equilibria are termed immediately reactive equilibria (IREs)

by Kamihigashi and Furusawa (2010). Since country i cannot change its tariff in period

t+ 1 ∈ Tj, we have that τi,t+1 = τi,t for all t ∈ Ti. Let δi denote country i’s discount factor.

Then, given country j’s reaction function fj, country i maximizes the sum of one-shot payoffs

from period i (= 1 or 2) onwards:

max
{τi,t}t∈Ti

∞∑
t=i

δt−ii [mi(τi,t) + xi(τj,t)] (2.2)

s.t. τi,t+1 = τi,t for t ∈ Ti, (2.3)

τj,t+1 = τj,t = fj(τi,t) for t ∈ Tj, (2.4)

τj,i given.

We say that country i’s reaction function fi is a best response to country j’s reaction

function fj if for any τj,i ∈ [0, τNj ], the above maximization problem has a solution {τi,t}∞t=i

such that τi,t = fi(τj,t) for all t ∈ Ti. We call a pair of reaction functions (f1, f2) an

3This partial equilibrium setup can be interpreted as a general equilibrium model by assuming that each
country i consumes three goods, country i’s export good, country j’s export good, and a common numeraire
good, and that the representative consumer’s utility function is additively separable in the three goods and
linear in the numeraire good. The social welfare of each country is then measured by gains from trade and
can thus be represented by the total surplus derived from the markets of the non-numeraire goods. See
Furusawa and Lai (1999) for another example.
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immediately reactive equilibrium (IRE) if f1 is a best response to f2, and vice versa.4

Given an IRE (f1, f2), we say that (τ1, τ2) ∈ [0, τN1 ]× [0, τN2 ] is a steady state if τ1 = f1(τ2)

and τ2 = f2(τ1). Needless to say, if the game starts from a steady state (τ1, τ2), each country

i keeps choosing τi forever according to fi.

3 General Properties of IREs

In this section we present some useful properties of IREs. Since the tariff-setting game in this

paper is a special case of the general model studied in Kamihigashi and Furusawa (2010),

the results of the latter apply here. However, many of them are considerably simplified (and

easier to understand) due to the extra assumption that mi(τj) is strictly increasing. This

assumption also enables us to establish some additional results.

In this section we assume only that mi(τi) is strictly increasing and continuous, and that

xi(τj) is strictly decreasing and continuous. Additional assumptions will be introduced in

the next section.

Let us define the function wi : [0, τNi ]× [0, τNj ]→ R by

wi(τi, τj) = mi(τi) + δixi(τj). (3.1)

We call this function country i’s effective payoff since country i in effect seeks to maximize

the discounted sum of effective payoffs. Indeed, country i’s discounted sum of payoffs from

period i onward is written as

∞∑
t=i

δt−ii [xi(τj,t) +mi(τi,t)] (3.2)

= xi(τj,i) +
∞∑
t=1

δt−1i [mi(τi,t) + δixi(τj,t+1)] (3.3)

= xi(τj,i) +
∞∑
t=1

δt−1i wi(τi,t, τj,t+1). (3.4)

4The concept of IRE may or may not be consistent with that of Markov perfect equilibrium (Maskin and
Tirole, 1988a, 2001), depending on how “payoff relevant information” is defined.
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Since country i has no influence on τj,i, its problem is equivalent to maximizing the discounted

sum of effective payoffs. This implies that each country’s best responses are characterized

by a static maximization problem. To state this result, given country j’s reaction function

fj, let w∗i (fj) denote country i’s maximum feasible effective payoff (provided that it exists):

w∗i (fj) ≡ max
τi∈[0,τNi ]

wi(τi, fj(τi)). (3.5)

Lemma 3.1. Country i’s reaction function fi is a best response to country j’s reaction

function fj if and only if

wi(fi(τj), fj(fi(τj))) = w∗i (fj) for any τj ∈ [0, τNj ]. (3.6)

In other words, (f1, f2) is an IRE if and only if (3.6) holds for i = 1, 2.

See Kamihigashi and Furusawa (2010, Lemma 2.1) for a formal proof. Lemma 3.1 suggests

that the level curves of effective payoffs are closely related with best responses. Since xi(τj)

is strictly decreasing, the ωi-level curve of wi can be expressed as the graph of a function,

which we denote by gωi
j (τi):

ωi = wi(τi, g
ωi
j (τi)) = mi(τi) + δixi(g

ωi
j (τi)). (3.7)

Without loss of generality we assume that xi(τj) can be extended to a strictly decreasing

function, denoted xi(τj) again, on R. Given this innocuous extension, xi(τj) is well defined

and strictly decreasing for all τj ∈ R. Solving (3.7) for gωi
j (τi) we obtain

gωi
j (τi) = x−1i (ωi −mi(τi)). (3.8)

Since xi(τj) is strictly decreasing, a lower level curve is associated with a higher value of wi;

see Figure 1. In terms of level curves, Lemma 3.1 can be restated as follows:

Lemma 3.2. A pair of reaction functions (f1, f2) is an IRE if and only if for i = 1, 2,

fj(fi(τj)) = g
w∗i (fj)
j (fi(τj)) for any τj ∈ [0, τNj ]. (3.9)
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0
τi

τj

g
wi(τ

N
i ,τ

N
j )

j (τi)

gωi
j (τi)

Figure 1: Level curves g
wi(τ

N
i ,τNj )

j and gωi
j with ωi > wi(τ

N
i , τ

N
j ).

To illustrate Lemma 3.2, let (f1, f2) be given by fi(τj) = τNi for all τj and i; i.e., each

country i chooses its static Nash tariff τNi . Since w∗i (fj) is the highest feasible effective

payoff given fj, the corresponding level curve g
w∗i (fj)
j is the lowest one that intersects with

the graph of fj; see Figure 2(a). Since the graphs of g
w∗i (fj)
j and fj coincide at (τNi , τ

N
J ),

we have w∗i (fj) = wi(τ
N
i , τ

N
j ). Note that for any τ2, we have f1(τ2) = τN1 and f2(τ

N
1 ) =

g
w∗1(f2)
2 (τN1 ) = τN2 . Thus (3.9) holds, and (f1, f2) is an IRE.

As another example, let (f1, f2) be such that fi(τj) = τ i if τj = τ j, and fi(τj) = τNi

otherwise, where τ 1 and τ 2 are as in Figure 2(b). In this case, as long as country j chooses τ j,

country i chooses τ i. However, if either country deviates at all, the other country immediately

reverts to the static Nash tariff τNi . One can easily check that (f1, f2) satisfies (3.9).

The above two examples show that the IREs include familiar equilibria such as the static

Nash equilibrium and the Nash reversion equilibrium. There are of course other IREs. For

example, condition (3.9) is trivial to verify if fj = g
w∗i (fj)
j for both j. Such an IRE is possible

if there are ω1, ω2 ∈ R such that gωi
j (τi) ∈ [0, τNj ] for all τi ∈ [0, τNi ] and both j. In this case,

if we define fj = gωi
j for both j, then gωi

j exactly coincides with fj and is thus the lowest level

curve that intersects with fj. Hence we have ωi = w∗i (fj), so that (3.9) immediately follows
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(see Kamihigashi and Furusawa, 2010, Proposition 3.2, for a formal proof). See Figure 2(c)

for an example constructed this way.

As one can see from Figure 2(b), an IRE can be discontinuous. Figure 2(d) illustrates

another discontinuous IRE. One can easily check that this example also satisfies (3.9).

To study the dynamics generated by IREs, we define an IRE path associated with an

IRE (f1, f2) as a sequence {(τ1,t, τ2,t)}∞t=1 satisfying (2.3) and (2.4) for both i:

τ1,2 = τ1,1 = f1(τ2,1), τ2,3 = τ2,2 = f2(τ1,2), τ1,4 = τ1,3 = f1(τ2,3), · · · . (3.10)

The following result shows an important property of IRE paths.

Lemma 3.3. Given an IRE (f1, f2), let {(τ1,t, τ2,t)}∞t=1 be any IRE path. For any t ≥ 2, if

t ∈ Ti, then (τi,t, τj,t) is on country j’s optimal level curve:

τi,t = g
w∗j (fi)

i (τj,t). (3.11)

See Kamihigashi and Furusawa (2010, Theorem 4.1) for the proof. This result shows that

any IRE path is characterized by the corresponding level curves (g
w∗2(f1)
1 , g

w∗1(f2)
2 ) except for

the initial period. The initial period must be excluded because τ2,1 is an arbitrary initial

condition that need not be optimal for country 2 given country 1’s reaction function f1. For

example, in the case of Figure 2(a), any τ2,1 6= τN2 is not optimal for country 2; thus (τ1,1, τ2,1)

is not on country 2’s optimal level curve for t = 1 unless τ2,1 = τN2 . The situation in Figure

2(b) is similar: (τ1,1, τ2,1) is not on country 2’s optimal level curve for t = 1 unless τ2,1 = τN2

or τ 2. In Figure 2(c), by contrast, any IRE path stays on the optimal level curves for all

t ≥ 1, which is also consistent with Lemma 3.3.

Lemma 3.3 implies that any steady state must be on both level curves. We state this

result as a corollary:

Corollary 3.1. Any steady state of an IRE (f1, f2) is an intersection between the graphs of

the associated level curves g
w∗1(f2)
2 and g

w∗2(f1)
1 .
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(a) Static Nash equilibrium (b) Nash reversion

0 τ1
τN1

τ2
τN2

τ2,1

f
1

g
w

∗2
(f

1
)

1

f2

g
w∗

1 (f2)
2

0 τ1
τN1τ1

τ2
τN2

τ2,1

τ2

f
1

g
w

∗2
(f

1
)

1

f2

g
w∗

1 (f2)
2

(c) IRE with fi = g
w∗

j (fi)

i (d) Discontinuous IRE

0 τ1
τN1

τ2
τN2

τ2,1

f
1

=
g
w

∗2
(f

1
)

1

f2 = g
w∗

1 (f2)
2

0 τ1
τN1

τ2
τN2

f
1

g
w

∗2
(f

1
)

1

f2

g
w∗

1 (f2)
2

Figure 2: Examples of IREs
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We say that a pair of level curves (gω2
1 , g

ω1
2 ) is supported by an IRE if there exists an

IRE (f1, f2) such that ωi = w∗i (fj) for both i. If (f1, f2) is an IRE, then (g
w∗1(f2)
1 , g

w∗2(f1)
2 ) is

supported by (f1, f2). Given a pair of level curves (gω2
1 , g

ω1
2 ), let (τω1,ω2

1 , τω2,ω1

2 ) denote the

lower left corner of the set

{(τ1, τ2) ∈ [0, τN1 ]× [0, τN2 ] : τ2 ≤ gω1
2 (τ1), τ1 ≤ gω2

1 (τ2)}. (3.12)

In Figure 2(b), τ
ωi,ωj

i = τ i. In Figures 2(c) and (d), τ
ωi,ωj

i = 0. The following result

characterizes all the pairs of level curves supported by IREs.

Lemma 3.4. A pair of level curves (gω2
1 , g

ω1
2 ) is supported by an IRE if and only if (i) the

graphs of gω2
1 and gω1

2 have an intersection in [0, τN1 ]× [0, τN2 ] and (ii)

0 ≤ g
ωj

i (τNj ) ≤ τNi for i = 1, 2. (3.13)

In particular, under (i) and (ii), the pair of reaction functions (f1, f2) defined below is an

IRE:

fi(τj) = max{gωj

i (τj), τ
ωi,ωj

i } for i = 1, 2. (3.14)

This result follows from Kamihigashi and Furusawa (2010, Theorems 5.1 and 5.2). Con-

dition (i) is necessary because if it is violated, there is no path that stays on the level curves

forever, which contradicts Lemma 3.3; see Figure 3. Condition (ii) means that each country’s

effective payoff must be feasible and no less than its minimax effective payoff.

We say that an IRE satisfying (3.14) is regular. Figure 4 illustrates a typical regular IRE;

the IRE depicted in Figure 2(c) is also regular. For the rest of the paper, we mostly focus

on regular IREs, which are guaranteed to exist whenever an IRE exists. There are of course

other IREs, as we saw in Figure 2, but all IREs have one property in common:

Lemma 3.5. For any IRE (f1, f2), we have fi(τj) ≥ τ i for an τj ∈ [0, τNj ] and i = 1, 2.

See Kamihigashi and Furusawa (2010, Proposition 5.1) for the proof. The next result

characterizes the set of steady states supported by IREs:
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0
τ1

τN1

τ2
τN2

g
ω

2
1

gω1
2

Figure 3: Level curves not supported by IRE

0 τ1
τN1τ

(ω1,ω2)
1

τ2
τN2

τ
(ω2,ω1)
2

f
1

f2

Figure 4: Regular IRE
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(a) (b)

0 τ1
τN1

τ2
τN2

g
w

2
(τ

N1
,τ

N2
)

1

g
w1(τ

N
1 ,τ

N
2 )

2

0 τ1
τN1

τ2
τN2

g
w

2
(τ

N1
,τ

N2
)

1
g
w1(τ

N
1 ,τ

N
2 )

2

Figure 5: Set of all steady states supported by IREs

Proposition 3.1. Let (τ1, τ2) ∈ [0, τN1 ]× [0, τN2 ]. There exists an IRE such that (τ1, τ2) is a

steady state if and only if

τi ≤ g
wj(τ

N
i ,τNj )

i (τj) for i = 1, 2. (3.15)

This result is specific to our setting, and is proved in Appendix B. Note that the set of

(τ1, τ2) satisfying (3.15) is the area bounded by the level curves extending from (τN1 , τ
N
2 ); see

Figure 5.

Recall from Lemma 3.3 that any IRE path stays on the associated pair of level curves

except for the initial period. Since both level curves are monotone, any IRE path is also

monotone after the initial period, and thus converges to a steady state. We state this

observation, which is specific to our setting, as a proposition.

Proposition 3.2. Any IRE path converges to a steady state.

We say that an IRE (f1, f2) is effectively efficient if there is no IRE (f̃1, f̃2) such that

w∗1(f2) ≤ w∗1(f̃2) and w∗2(f1) ≤ w∗2(f̃2) with at least one of the inequalities holding strictly. In

other words, an effectively efficient IRE is not Pareto dominated by any other IRE in terms
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0 τ1
τN1

τ2
τN2

f
1

f2

Figure 6: Effectively efficient IRE

of effective payoffs. Effective efficiency can also be characterized graphically:

Lemma 3.6. An IRE (f1, f2) is effectively efficient if and only if the graphs of g
w∗1(f2)
2 and

g
w∗2(f1)
1 never cross each other (and thus only touch each other).

This result follows from Kamihigashi and Furusawa (2010, Proposition 5.2). Figure 6

illustrates an effectively efficient regular IRE. Effective efficiency has an important dynamic

implication, as we will see in the next section.

4 Dynamics of Trade Liberalization

With the general results established in the previous section in hand, we now focus on the

economic implications of the model. For this purpose, we assume that mi(τi) and xi(τj) are

differentiable on an open interval containing [0, τNi ] and that m′i(τi) > 0 for all τi ∈ [0, τNi )

and x′i(τj) < 0 for all τj ∈ [0, τNj ]. Since mi(τi) has a single peak at τi = τNi , we have

m′i(τ
N
i ) = 0 for i = 1, 2. (4.1)
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Since a tariff on country i’s imports creates market distortions, mi(τi) + xj(τi) is maximized

at τi = 0:

m′i(0) + x′j(0) = 0. (4.2)

This is an implication of the well-known result that free trade (τ1, τ2) = (0, 0) is Pareto

efficient, i.e., the contract curve passes through the origin of the tariff space.

The slope of the ωi-level curve of wi, or the graph of gωi
j , is calculated from (3.8) to be

(gωi
j )′(τi) = − m′i(τi)

δix′i(g
ωi
j (τi))

. (4.3)

It follows from our assumptions on m′i(τi) and x′i(τj) that

(gωi
j )′(τi)

{
> 0 if τi ∈ [0, τNi ),

= 0 if τi = τNi .
(4.4)

As we saw in Figure 2(b), if wi(0, 0) < wi(τ
N
i , τ

N
j ) for both i, then tariffs lower than the

static Nash tariffs can be sustained by a threat to revert to the static Nash equilibrium. If

it happens that wi(0, 0) = wi(τ
N
i , τ

N
j ), then free trade can be sustained by the same threat;

see Figure 7. In such IREs, even a small deviation is punished to a maximum degree: once

any deviation occurs, both countries choose the static Nash tariffs forever, and the initial,

“cooperative” steady state is never stored.

Therefore, threats are useful in maintaining already low tariffs, but they may not be

effective in restoring low tariffs once any deviation occurs, or to initiate a tariff reduction

process when the tariffs are already high.5 We argue below that it is promises, rather than

threats, that induce both countries to gradually lower their tariffs.

To simplify the exposition, we assume for the rest of the paper that

wi(τ
N
i , τ

N
j ) < wi(0, 0) for i = 1, 2. (4.5)

This means that both countries prefer free trade to the static Nash equilibrium in terms of

effective payoffs.

5Of course it is possible to support an entire decreasing path by Nash reversion, but such an equilibrium
also fails to restore low tariffs once any deviation occurs.
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Figure 7: Free trade supported by Nash reversion

Since (4.5) can be written as mi(τ
N
i )−mi(0) < δi(xi(0)− xi(τNj )), it is never satisfied if

δi is close to zero. If both δi are close to one, then the inequality in (4.5) must be satisfied at

least for i = 1 or 2. This is because mi(τi) + xj(τi) is maximized at τi = 0 (recall (4.2)), so

that the sum of the left-hand sides of (4.5) over i = 1, 2 is strictly less than the sum of the

right-hand sides when both δi are close to one. This also indicates that (4.5) holds if both

δi are close to one in the special case where the countries are entirely symmetric.

Since (4.5) implies that country i’s level curve extending from (τNi , τ
N
i ) is higher than

that extending from the origin, we have

g
wi(τ

N
i ,τNj )

j (0) > 0 for j = 1, 2. (4.6)

See Figure 8. Hence the cases considered in Figures 2(a), 2(b), and 7 are now ruled out; we

can thus focus on cases where low tariffs cannot be sustained by Nash reversion.

We assume further that g
ωj

i (τj) is strictly concave in τj for all relevant values of ωj, i.e.,

for all ωj ∈ [wj(τ
N
j , τ

N
i ), wj(τ

N
i , 0)] for both j.6 This and the above assumptions are used

only to reduce the number of cases we need to consider when we state our results and draw

6See Appendix A for a parametric example that satisfies this assumption.
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Figure 8: Static Nash steady state

graphs. Using the results of Section 3, the analysis here can easily be extended to cases

where these assumptions are not satisfied.

We start by studying the stability of some natural steady states:

Proposition 4.1. There exists a unique regular IRE such that the static Nash equilibrium

(τN1 , τ
N
2 ) is a steady state. In this IRE, (τN1 , τ

N
2 ) is a unique steady state, and is globally

stable. More specifically, given any τ2,1, the IRE path converges to (τN1 , τ
N
2 ).

This result follows from (4.6), the concavity of the level curves, and Figure 8, which

illustrates the IRE given in Proposition 4.1. Even if the initial tariff τ2,1 is close to zero,

both countries successively raise their tariffs, and the IRE path converges to the static Nash

equilibrium in the long run.

Proposition 4.2. There exists a unique regular IRE such that free trade (0, 0) is a steady

state. In this IRE, the steady state (0, 0) is unstable. More specifically, given any τ2,1 > 0,

the IRE path never converges to (0, 0).

This result follows from the following result.
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Figure 9: Free-trade steady state

Lemma 4.1. In the (τ1, τ2)-space, the graph of g
w1(0,0)
2 is strictly steeper than that of g

w2(0,0)
1

at the origin. As δ1 and δ2 both approach one, these slopes converge to each other.

This result is equivalent to saying that (g
w1(0,0)
2 )′(0) > 1/(g

w2(0,0)
1 )′(0) and both sides

converge to each other as δ1 and δ2 both approach one. To see this, note from (4.3) that this

inequality is equivalent to

m′1(0)

x′2(0)

m′2(0)

x′1(0)
> δ1δ2.

By (4.2), the left-hand side equals one. Thus the inequality is satisfied, and the right-hand

side converges to the left-hand side as both δi converge to one. This establishes the lemma.

Since the graph of g
w1(0,0)
2 is strictly steeper than that of g

w2(0,0)
1 at the origin, the IRE

path moves away from the origin if τ2,1 is close to zero; see Figure 9. Since both g
wi(0,0)
j (= fj),

j = 1, 2, are monotone, it follows from Lemma 3.3 that there is no IRE path converging to

the origin.

The following result deals with IREs with two steady states, including the IRE in Figure

9 as a special case.

Proposition 4.3. There exist regular IREs with two steady states. In these IREs, the higher
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steady state (τ 1, τ 2) is locally stable, while the lower steady state (τ 1, τ 2) is stable from below

and unstable from above. More specifically, if τ2,1 > τ 2, then the IRE path converges to

(τ 1, τ 2). If τ2,1 < τ 2, then the IRE path converges to (τ 1, τ 2) in two periods.

To understand this result, consider the regular IRE in Figure 10, which illustrates how

the IRE path converges to the higher steady state if τ2,1 > τ 2. Of particular interest is the

case in which τ2,1 = τN2 . This can be considered as a situation in which the initial pair

of tariffs is at the static Nash equilibrium, and then country 1 unilaterally lowers its tariff

to τ̃1,1 < τN1 . At this point there is no threat involved in country 1’s strategy; indeed, if

country 2 does not lower its tariff from τN2 , then country 1 continues to choose τ̃1,1. It is

therefore country 1’s “implicit promise” to further lower its tariff, depending on country 2’s

reaction, that actually gives country 2 an incentive to lower its own tariff. Country 2 on its

part makes country 1’s promised reaction optimal for country 1 by promising to reciprocate

further in case country 1 further lowers its tariff. These mutually optimal promises result

in gradual tariff reduction after country 1’s deviation from the static Nash equilibrium, and

the IRE path converges to the higher steady state, which is still lower than the static Nash

equilibrium.

It is worth pointing out that this steady state is supported by a minimum “threat.” To be

specific, suppose that the initial tariffs of both countries are at this steady state. If country

2 makes a small deviation, then country 1 reacts in such a way as to make country 2’s

effective payoff simply unchanged. In other words, instead of punishing country 2, country

1 gives country 2 exactly zero incentive to deviate. Either country thus has nothing to gain

as well as nothing to lose by deviating. In contrast to a severe punishment scheme like Nash

reversion, this minimum threat is just enough to maintain the steady state and has a built-in

mechanism to restore it after a small deviation.

Let us now turn to the lower steady state, which also has an interesting property. Suppose

that the initial pair of tariffs is at this steady state. If either country raises its tariff, then
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Figure 10: Regular IRE with two steady states

it triggers tariff war: both countries’ tariffs keep rising and converge to the higher steady

state, as depicted in Figure 10. However, if either country lowers its tariff rate, the other

country does not react at all, for either country’s reaction function is flat from 0 to the lower

steady state. This “kinked” feature is not necessarily an artifact of the specific IRE under

study here. In fact, Lemma 3.5 implies that in any IRE, neither country sets a tariff lower

than its tariff at the lower steady state. Therefore, at the lower steady state, a decrease in

either country’s tariff is never matched by a decrease in the other country’s tariff. At this

steady state, by lowering its tariff rate, each country only rewards the other country while

incurring a loss.

Under our assumption that the level curves are strictly concave, Lemma 3.6 implies that

an IRE with two steady states is not effectively efficient, i.e., it is Pareto dominated by

another IRE in terms of effective payoffs. As discussed above, the lower steady state of such

an IRE is unstable from above; in other words, it is difficult to maintain cooperation to keep

the tariffs as low as possible in a regular IRE that is not effectively efficient. The following

result shows that an effectively efficient regular IRE always yields stable cooperation.

Proposition 4.4. In any effectively efficient regular IRE, there exists a unique, globally
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Figure 11: Globally stable steady state

stable steady state (τ ∗1 , τ
∗
2 ), which satisfies

0 < τ ∗i < τNi for i = 1, 2. (4.7)

In particular, if τ2,1 > τ ∗2 , then the IRE path gradually converges to (τ ∗1 , τ
∗
2 ). If τ2,1 < τ ∗2 ,

then the IRE path converges to (τ ∗1 , τ
∗
2 ) in two periods.

To see this result, note first that the existence of a unique steady state follows from

Lemma 3.6 and the strict concavity of the level curves. The inequalities in (4.7) follow from

Propositions 4.1 and 4.2, respectively. The stability properties stated in the proposition

should be clear from Figure 11, which illustrates an effectively efficient regular IRE. There

is a unique steady state (τ ∗1 , τ
∗
2 ), which is globally stable. If τ2,1 > τ ∗2 , then the IRE path

converges to the steady state, as depicted in the figure with τ2,1 = τN2 . If τ2,1 < τ ∗2 , then the

IRE path converges to the steady state in two periods, since country 1 chooses τ ∗1 whenever

τ2,1 < τ ∗2 ; i.e., each country faces a kinked reaction curve as at the lower steady state in

Figure 10.

One might wonder why the countries do not lower their tariffs all the way to zero even

in an effectively efficient IRE. A short answer is that the first inequality in (4.7) says that
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the origin cannot be the steady state of an effectively efficient IRE. To see this intuitively,

note that when a country lowers its tariff, it incurs the loss immediately, while it receives

the benefit only in the next period, when the other country is expected to reciprocate. Since

the future benefit is discounted, a reaction function optimal in terms of effective payoff is

different from a reaction function optimal in terms of one-shot payoff. In an effectively

efficient IRE, in particular, there is no room for Pareto improvement in terms of effective

payoff, so that neither country ever chooses a reaction that would be optimal in terms of

one-shot payoff.

In fact, an effectively efficient IRE need not be regular to have a unique, globally stable

steady state:

Proposition 4.5. Any effectively efficient IRE has a unique, globally stable steady state.

To see this result, note from Proposition 3.2 that any IRE converges to a steady state

and thus has at least one steady state. There can be only one by effective efficiency and the

strict concavity of the level curves. Thus there is a unique steady state. This steady state is

globally stable since any IRE path must converge to this unique steady state by Proposition

3.2.

So far we have only seen symmetric IREs in figures. However, there is no guarantee that

trade liberalization is symmetric. Figure 12 illustrates an effectively efficient regular IRE

that has an unequal steady state. In this IRE, country 2 enjoys the highest possible effective

payoff, while country 1’s effective payoff is unchanged from the static Nash equilibrium. In

other words, trade liberalization here is a one-sided effort on country 1’s part.

The asymmetric IRE in Figure 12 has an important implication on unilateral trade lib-

eralization. In this IRE, country 1 chooses the lowest possible response to τN2 in the initial

period, offering the highest possible effective payoff to country 2. Given this effective payoff,

however, the best that country 2 can do for country 1 is to keep country 1’s effective payoff

unchanged from the static Nash equilibrium. Since the IRE in Figure 12 is already effectively

22



0 τ1
τN1

τ2
τN2

f
1

f2

Figure 12: Unequal liberalization

efficient, any higher effective payoff is infeasible for country 1 given its own reaction func-

tion f1! This suggests that in order to benefit from unilateral liberation, a country should

leave sufficient room for further liberalization. In other words, a mutually beneficial tariff

reduction process should be sufficiently gradual.

Our results so far demonstrate that various steady states can be supported by regular

IREs. This is an implication of Proposition 3.1, which shows that the set of all steady states

supported by IREs is the area bounded by the pair of level curves extending from the static

Nash equilibrium; recall Figure 5. As we have seen, each steady state can be stable from

below and unstable from above, locally stable, or globally stable. We can thus divide the set

of steady states according to these stability properties.

Figure 13 divides the set of steady states into three regions and one curve. The light

gray region is the set of steady states stable from below and unstable from above. A point

in this region is surrounded by a pair of level curves extending from a common point on the

τ1 or τ2 axis. Hence it is the lower steady state of a regular IRE with two steady states and

is stable from below and unstable from above by Proposition 4.3. The dark gray region is

the set of locally stable steady states. A point in this region is also surrounded by a pair
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Figure 13: Classification of steady states supported by regular IREs (light gray = stable
from below and unstable from above, dark gray = locally stable, black = globally stable)

of level curves extending from a common point on the τ1 or τ2 axis. Hence it is the higher

steady state of a regular IRE with two steady states and is thus locally stable by Proposition

10. The black region (excluding the entire kinked lower left boundary) and the thick black

curve comprise the set of globally stable steady states. The kinked lower left boundary of

the black region is the locus of the higher intersection of a pair of level curves extending from

a common point on the τ1 or τ2 axis. Therefore a pair of level curves having an intersection

in the black region has no other intersection in [0, τN1 ] × [0, τN2 ]; thus a point in this region

is a globally stable steady state by the argument of Figures 8. The thick black curve is the

locus of points of tangency between a pair of level curves; these points are globally stable

steady states by Proposition 4.4.

Although Figure 13 might seem to suggest that a steady state in the black region in

the figure cannot be close to the origin, this is not necessarily the case. In fact, if both δi

are close to one, a steady state in the black region can be close to the origin. This is an

implication of Lemma 4.1, which shows that the slopes of the two level curves extending

from the origin converge to each other as both δi approach one. Indeed, if we let both δi
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approach one, the higher steady state in Figure 9 converges to zero, as the slopes of the two

level curves are exactly equal to each other at the origin when both δi are equal to one. It

then follows from Figure 13 that if both δi are close to one, the kinked point of the lower left

boundary of the black region is close to zero. Therefore, provided that both δi are close to

one, a pair of extremely low tariffs can be achieved in the long run as the unique, globally

stable steady state of an IRE.

5 Concluding Remarks

In this paper we have analyzed a tariff-setting game between two large countries in which

they alternate in setting their individual tariffs. We have focused on the IREs, the subgame

perfect equilibria in which each country chooses its tariff according to a stationary function

of the other country’s tariff. We have fully characterized the IREs of this model and the set

of all steady states. We have shown that there are many IREs with two steady states, one

with higher tariffs (but still lower than the static Nash tariffs), the other with lower tariffs.

The higher steady state is locally stable, while the lower steady state is stable from below

but unstable from above. We have also shown that in effectively efficient IREs, there exists

a unique, globally stable steady state. In most IREs, one country unilaterally reduces its

tariff from the static Nash equilibrium, the other country reciprocates in response to the

first country’s implicit promise to lower its tariff even further, and this process continues

forever, converging to a steady state with tariffs lower than at the static Nash equilibrium.

We have argued that it is therefore promises, rather than threats, that induce the countries

to gradually reduce their tariffs.

We have also argued that trade liberalization must be sufficiently gradual since what

motivates a country to decrease its tariff is an expected future decrease in the other country’s

tariff. This also implies that to benefit from unilateral liberalization, a country should not

decrease its tariff too much at the initial stage.
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A steady state of an IRE has the property that it involves only a minimum threat. Each

country makes the other country exactly indifferent between raising its tariff and staying

at the steady state. Even if a deviation occurs, each country is willing to lower its tariff

again provided that the other country does so. Therefore the IREs we have studied have a

self-enforcing built-in mechanism to restor a stable steady state as well as to initial a trade

liberalization process. This suggests that an explicit agreement may not be necessary to

initiate and continue trade liberalization.

Appendix A A Parametric Example

In this appendix we derive the surplus functions mi(τi) and xi(τj) explicitly in a parametric

example. We also show that the level curves associated of the effective payoff functions are

strictly concave in this example.

Let pi be the domestic price of country i’s import good, which we call good i, and qi

be the associated trade quantity. We assume that the import demand and export supply

functions are identical across the countries, and that country i’s import demand and country

j’s export supply functions are given by

qi = 1 + a− pi, (A.1)

qi = (pi − τi)− a, (A.2)

where a > 0 is the autarkic equilibrium price of good i in the exporting country j. Note

that the autarkic equilibrium price of good i in the importing country i is 1 + a. In trade

equilibrium, 1 + a− pi = pi − τi − a, so that

pi =
1 + τi

2
+ a, qi =

1− τi
2

. (A.3)
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Consequently, country i’s import surplus and country j’s export surplus are given by

m(τi) =
1

2
(1 + a− pi)qi + τiqj =

(1− τi)(1 + 3τi)

8
, (A.4)

x(τi) =
1

2
(pi − τi − a)qi =

(1− τj)2

8
, (A.5)

where we omit the subscript i by symmetry. The static Nash equilibrium is (1/3, 1/3).

We assume that the discount factor, denoted δ, is common across the countries. In what

follows we show that the ωi-level curve of country i’s effective payoff is strictly concave for

any ωi ∈ [wj(τ
N
j , τ

N
i ), wj(τ

N
i , 0)], where

wi(τ
N
i , τ

N
j ) = m(1/3) + δx(1/3) = (1/6) + (δ/18), (A.6)

wi(τ
N
i , 0) = m(1/3) + δx(0) = (1/6) + (δ/8). (A.7)

Recall that the ωi-level curve of country i’s effective payoff is given by the function gωi
j (τi),

which satisfies

(1− τi)(1 + 3τi)

8
+
δ(1− gωi

j (τi))
2

8
= ωi. (A.8)

Differentiating (gωi
j )′(τi) given in (4.3) we have

(gωi
j )′′(τi) = −

δm′′(τi)x
′(gωi

j (τi))
2 +m′(τi)

2x′′(gωi
j (τi))

δ2x′(gωi
j (τi))3

.

Since x′(gωi
j (τi)) < 0 (provided that gωi

j (τi) ≤ 1/3), we have (gωi
j )′′(τi) < 0 if and only if

0 > δm′′(τi)x
′(gωi

j (τi))
2 +m′(τi)

2x′′(gωi
j (τi)) (A.9)

=
−3δ

(
1− gωi

j (τi)
)2

+ (1− 3τi)
2

64
. (A.10)

The above inequality is equivalent to

3δ
(
1− gωi

j (τi)
)2
> (1− 3τi)

2. (A.11)

Solving (A.8) for δ(1 − gωi
j (τi))

2 and substituting the resulting expression into (A.11), we

find that (A.11) reduces to ωi > 1/6. This condition is satisfied for any δ ∈ (0, 1) since

ωi ∈ [(1/6) + (δ/18), (1/6) + (δ/8)], so we conclude that all the relevant level curves are

strictly concave in this example.
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Appendix B Proof of Proposition 3.1

If: Let (τ1, τ2) satisfy (3.15). Let ω1 = w1(τ1, τ2) and ω2 = w2(τ1, τ2). Then gω2
1 and gω1

2

satisfy both conditions (i) and (ii) in Lemma 3.4. Define (f1, f2) by (3.14). Then (f1, f2) is an

IRE by Lemma 3.4. Since (τ1, τ2) ≥ (τ 1, τ 2), we have f1(τ2) = gω2
1 (τ2) and f2(τ1) = gω1

2 (τ1).

This together with condition (i) in Lemma 3.4 shows that (τ1, τ2) is a steady state.

Only if: Let (f1, f2) be an IRE such that (τ1, τ2) is a steady state. Then by Lemma 3.3,

we have have τ1 = gω2
1 (τ2) and τ2 = gω1

2 (τ1). Let ω1 = w∗1(f2) and ω2 = w∗2(f1). By Lemma

3.2, we obtain condition (i) in Lemma 3.4. Since ω1 ≥ w1(τ
N
1 , τ

N
2 ) and ω2 ≥ w2(τ

N
1 , τ

N
2 ) by

Lemma 3.1, we have τ1 = gω2
1 (τ2) ≤ g

w2(τN1 ,τN2 )
1 (τ2) and likewise τ2 ≤ g

w1(τN1 ,τN2 )
2 (τ1). Hence we

obtain (3.15).
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